Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. MNP Synthesis
2.3. Morpho-Structural Characterization
2.3.1. X-ray Diffraction (XRD)
2.3.2. Transmission Electron Microscopy (TEM), High-Resolution TEM (HR-TEM), and Selected Area Electron Diffraction (SAED)
2.3.3. Dynamic Light Scattering (DLS), Polydispersity Index (PDI), and Zeta Potential
2.3.4. Fourier Transform Infrared Spectroscopy (FT-IR)
2.3.5. Thermogravimetry and Differential Scanning Calorimetry (TG-DSC)
2.3.6. UV–Vis Spectrophotometry
2.4. Biological Evaluation
2.4.1. Cell Viability and Proliferation
2.4.2. Antimicrobial Activity
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health 2015, 109, 309–318. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Vasile, B.Ș.; Andronescu, E. Inorganic nanoparticles and composite films for antimicrobial therapies. Int. J. Mol. Sci. 2021, 22, 4595. [Google Scholar] [CrossRef]
- Spirescu, V.A.; Chircov, C.; Grumezescu, A.M.; Andronescu, E. Polymeric nanoparticles for antimicrobial therapies: An up-to-date overview. Polymers 2021, 13, 724. [Google Scholar] [CrossRef] [PubMed]
- Mihai, A.D.; Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetite nanoparticles and essential oils systems for advanced antibacterial therapies. Int. J. Mol. Sci. 2020, 21, 7355. [Google Scholar] [CrossRef] [PubMed]
- Despotovic, A.; Milosevic, B.; Milosevic, I.; Mitrovic, N.; Cirkovic, A.; Jovanovic, S.; Stevanovic, G. Hospital-acquired infections in the adult intensive care unit—Epidemiology, antimicrobial resistance patterns, and risk factors for acquisition and mortality. Am. J. Infect. Control 2020, 48, 1211–1215. [Google Scholar] [CrossRef]
- Raoofi, S.; Pashazadeh Kan, F.; Rafiei, S.; Hosseinipalangi, Z.; Noorani Mejareh, Z.; Khani, S.; Abdollahi, B.; Seyghalani Talab, F.; Sanaei, M.; Zarabi, F.; et al. Global prevalence of nosocomial infection: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0274248. [Google Scholar] [CrossRef]
- Murugaiyan, J.; Kumar, P.A.; Rao, G.S.; Iskandar, K.; Hawser, S.; Hays, J.P.; Mohsen, Y.; Adukkadukkam, S.; Awuah, W.A.; Jose, R.A.M.; et al. Progress in alternative strategies to combat antimicrobial resistance: Focus on antibiotics. Antibiotics 2022, 11, 200. [Google Scholar] [CrossRef]
- Zong, T.-X.; Silveira, A.P.; Morais, J.A.V.; Sampaio, M.C.; Muehlmann, L.A.; Zhang, J.; Jiang, C.-S.; Liu, S.-K. Recent advances in antimicrobial nano-drug delivery systems. Nanomaterials 2022, 12, 1855. [Google Scholar] [CrossRef] [PubMed]
- Skwarczynski, M.; Bashiri, S.; Yuan, Y.; Ziora, Z.M.; Nabil, O.; Masuda, K.; Khongkow, M.; Rimsueb, N.; Cabral, H.; Ruktanonchai, U. Antimicrobial activity enhancers: Towards smart delivery of antimicrobial agents. Antibiotics 2022, 11, 412. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Shi, Y.; Song, H.; Yu, C. Antibiotic-free antibacterial strategies enabled by nanomaterials: Progress and perspectives. Adv. Mater. 2020, 32, 1904106. [Google Scholar] [CrossRef]
- Materón, E.M.; Miyazaki, C.M.; Carr, O.; Joshi, N.; Picciani, P.H.S.; Dalmaschio, C.J.; Davis, F.; Shimizu, F.M. Magnetic nanoparticles in biomedical applications: A review. Appl. Surf. Sci. Adv. 2021, 6, 100163. [Google Scholar] [CrossRef]
- Chircov, C.; Mincă, M.-A.; Serban, A.B.; Bîrcă, A.C.; Dolete, G.; Ene, V.-L.; Andronescu, E.; Holban, A.-M. Zinc/cerium-substituted magnetite nanoparticles for biomedical applications. Int. J. Mol. Sci. 2023, 24, 6249. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Ștefan, R.-E.; Dolete, G.; Andrei, A.; Holban, A.M.; Oprea, O.-C.; Vasile, B.S.; Neacșu, I.A.; Tihăuan, B. Dextran-coated iron oxide nanoparticles loaded with curcumin for antimicrobial therapies. Pharmaceutics 2022, 14, 1057. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Bejenaru, I.T.; Nicoară, A.I.; Bîrcă, A.C.; Oprea, O.C.; Tihăuan, B. Chitosan-dextran-glycerol hydrogels loaded with iron oxide nanoparticles for wound dressing applications. Pharmaceutics 2022, 14, 2620. [Google Scholar] [CrossRef]
- Chircov, C.; Pîrvulescu, D.-C.; Bîrcă, A.C.; Andronescu, E.; Grumezescu, A.M. Magnetite microspheres for the controlled release of rosmarinic acid. Pharmaceutics 2022, 14, 2292. [Google Scholar] [CrossRef] [PubMed]
- Dolete, G.; Chircov, C.; Motelica, L.; Ficai, D.; Oprea, O.-C.; Gheorghe, M.; Ficai, A.; Andronescu, E. Magneto-mechanically triggered thick films for drug delivery micropumps. Nanomaterials 2022, 12, 3598. [Google Scholar] [CrossRef]
- Chircov, C.; Grumezescu, A.M.; Holban, A.M. Magnetic particles for advanced molecular diagnosis. Materials 2019, 12, 2158. [Google Scholar] [CrossRef]
- Dudchenko, N.; Pawar, S.; Perelshtein, I.; Fixler, D. Magnetite nanoparticles: Synthesis and applications in optics and nanophotonics. Materials 2022, 15, 2601. [Google Scholar] [CrossRef]
- Wallyn, J.; Anton, N.; Vandamme, T.F. Synthesis, principles, and properties of magnetite nanoparticles for in vivo imaging applications-a review. Pharmaceutics 2019, 11, 601. [Google Scholar] [CrossRef]
- Abdullah, N.H.; Shameli, K.; Abdullah, E.C.; Abdullah, L.C. Solid matrices for fabrication of magnetic iron oxide nanocomposites: Synthesis, properties, and application for the adsorption of heavy metal ions and dyes. Compos. Part B Eng. 2019, 162, 538–568. [Google Scholar] [CrossRef]
- Wu, W.; Wu, Z.; Yu, T.; Jiang, C.; Kim, W.S. Recent progress on magnetic iron oxide nanoparticles: Synthesis, surface functional strategies and biomedical applications. Sci. Technol. Adv. Mater. 2015, 16, 023501. [Google Scholar] [CrossRef]
- Ganapathe, L.S.; Mohamed, M.A.; Mohamad Yunus, R.; Berhanuddin, D.D. Magnetite (Fe3O4) nanoparticles in biomedical application: From synthesis to surface functionalisation. Magnetochemistry 2020, 6, 68. [Google Scholar] [CrossRef]
- Chircov, C.; Vasile, B.S. New approaches in synthesis and characterization methods of iron oxide nanoparticles. In Iron Oxide Nanoparticles; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. 2005, 44, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Sun, K.; Liang, Y. Hydrothermal synthesis of magnetite: Investigation of influence of aging time and mechanism. Micro Nano Lett. 2015, 10, 99–104. [Google Scholar] [CrossRef]
- Cao, S.-W.; Zhu, Y.-J.; Chang, J. Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New J. Chem. 2008, 32, 1526–1530. [Google Scholar] [CrossRef]
- Medinger, J.; Nedyalkova, M.; Lattuada, M. Solvothermal synthesis combined with design of experiments—Optimization approach for magnetite nanocrystal clusters. Nanomaterials 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Matei, M.-F.; Neacșu, I.A.; Vasile, B.S.; Oprea, O.-C.; Croitoru, A.-M.; Trușcă, R.-D.; Andronescu, E.; Sorescu, I.; Bărbuceanu, F. Iron oxide–silica core–shell nanoparticles functionalized with essential oils for antimicrobial therapies. Antibiotics 2021, 10, 1138. [Google Scholar] [CrossRef]
- Chircov, C.; Bîrcă, A.C.; Dănciulescu, L.A.; Neacșu, I.A.; Oprea, O.C.; Trușcă, R.D.; Andronescu, E. Usnic acid-loaded magnetite nanoparticles-a comparative study between synthesis methods. Molecules 2023, 28, 5198. [Google Scholar] [CrossRef]
- Chellappa, M.; Vijayalakshmi, U. Fabrication of Fe3O4-silica core-shell magnetic nano-particles and its characterization for biomedical applications. Mater. Today Proc. 2019, 9, 371–379. [Google Scholar] [CrossRef]
- Karimi Pasandideh, E.; Kakavandi, B.; Nasseri, S.; Mahvi, A.H.; Nabizadeh, R.; Esrafili, A.; Rezaei Kalantary, R. Silica-coated magnetite nanoparticles core-shell spheres (Fe3O4@SiO2) for natural organic matter removal. J. Environ. Health Sci. Eng. 2016, 14, 21. [Google Scholar] [CrossRef]
- Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M.; Vasile, B.S.; Oprea, O.; Nicoară, A.I.; Yang, C.-H.; Huang, K.-S.; Andronescu, E. Synthesis of magnetite nanoparticles through a lab-on-chip device. Materials 2021, 14, 5906. [Google Scholar] [CrossRef] [PubMed]
- Chircov, C.; Bîrcă, A.C.; Vasile, B.S.; Oprea, O.C.; Huang, K.S.; Grumezescu, A.M. Microfluidic synthesis of -nh(2)- and -cooh-functionalized magnetite nanoparticles. Nanomaterials 2022, 12, 3160. [Google Scholar] [CrossRef]
- Yu, B.; Lee, R.J.; Lee, L.J. Chapter 7—Microfluidic methods for production of liposomes. In Methods in Enzymology; Academic Press: Cambridge, MA, USA, 2009; Volume 465, pp. 129–141. [Google Scholar] [CrossRef]
- Kašpar, O.; Koyuncu, A.H.; Hubatová-Vacková, A.; Balouch, M.; Tokárová, V. Influence of channel height on mixing efficiency and synthesis of iron oxide nanoparticles using droplet-based microfluidics. RSC Adv. 2020, 10, 15179–15189. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, J.; Sun, R.; Han, S.; Yang, Z.; Teng, L. Microfluidics for nano-drug delivery systems: From fundamentals to industrialization. Acta Pharm. Sin. B 2023, 13, 3277–3299. [Google Scholar] [CrossRef]
- Bendre, A.; Bhat, M.P.; Lee, K.-H.; Altalhi, T.; Alruqi, M.A.; Kurkuri, M. Recent developments in microfluidic technology for synthesis and toxicity-efficiency studies of biomedical nanomaterials. Mater. Today Adv. 2022, 13, 100205. [Google Scholar] [CrossRef]
- Niculescu, A.G.; Chircov, C.; Bîrcă, A.C.; Grumezescu, A.M. Nanomaterials synthesis through microfluidic methods: An updated overview. Nanomaterials 2021, 11, 864. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Yang, G.; Hui, Y.; Ranaweera, S.; Zhao, C.-X. Microfluidic nanoparticles for drug delivery. Small 2022, 18, 2106580. [Google Scholar] [CrossRef] [PubMed]
- Neacsu, I.A.; Leau, S.-A.; Marin, S.; Holban, A.M.; Vasile, B.-S.; Nicoara, A.-I.; Ene, V.L.; Bleotu, C.; Albu Kaya, M.G.; Ficai, A. Collagen-carboxymethylcellulose biocomposite wound-dressings with antimicrobial activity. Materials 2021, 14, 1153. [Google Scholar] [CrossRef]
- Caciandone, M.; Niculescu, A.-G.; Roșu, A.R.; Grumezescu, V.; Negut, I.; Holban, A.M.; Oprea, O.; Vasile, B.Ș.; Bîrcă, A.C.; Grumezescu, A.M. Peg-functionalized magnetite nanoparticles for modulation of microbial biofilms on voice prosthesis. Antibiotics 2022, 11, 39. [Google Scholar] [CrossRef] [PubMed]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases. Determination of minimum inhibitory concentrations (mics) of antibacterial agents by agar dilution. Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar] [CrossRef]
- Rattanachueskul, N.; Dokkathin, O.; Dechtrirat, D.; Panpranot, J.; Watcharin, W.; Kaowphong, S.; Chuenchom, L. Sugarcane bagasse ash as a catalyst support for facile and highly scalable preparation of magnetic fenton catalysts for ultra-highly efficient removal of tetracycline. Catalysts 2022, 12, 446. [Google Scholar] [CrossRef]
- Mukhopadhyay, P.; Kundu, P.P. Chitosan-graft-pamam–alginate core–shell nanoparticles: A safe and promising oral insulin carrier in an animal model. RSC Adv. 2015, 5, 93995–94007. [Google Scholar] [CrossRef]
- Ficai, D.; Ficai, A.; Vasile, B.; Ficai, M.; Oprea, O.; Guran, C.; Andronescu, E. Synthesis of rod-like magnetite by using low magnetic field. Dig. J. Nanomater. Biostructures 2011, 6, 943–951. [Google Scholar]
- Mohammed, H.B.; Rayyif, S.M.I.; Curutiu, C.; Birca, A.C.; Oprea, O.-C.; Grumezescu, A.M.; Ditu, L.-M.; Gheorghe, I.; Chifiriuc, M.C.; Mihaescu, G.; et al. Eugenol-functionalized magnetite nanoparticles modulate virulence and persistence in pseudomonas aeruginosa clinical strains. Molecules 2021, 26, 2189. [Google Scholar] [CrossRef]
- Gherasim, O.; Popescu, R.C.; Grumezescu, V.; Mogoșanu, G.D.; Mogoantă, L.; Iordache, F.; Holban, A.M.; Vasile, B.Ș.; Bîrcă, A.C.; Oprea, O.-C.; et al. Maple coatings embedded with essential oil-conjugated magnetite for anti-biofilm applications. Materials 2021, 14, 1612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhou, R.; Rao, W.; Shanghai 201800 P.R. China. Influence of precipitator agents naoh and NH4OH on the preparation of Fe3O4 nano-particles synthesized by electron beam irradiation. J. Radioanal. Nucl. Chem. 2006, 270, 285–289. [Google Scholar] [CrossRef]
- Mascolo, M.C.; Pei, Y.; Ring, T.A. Room temperature co-precipitation synthesis of magnetite nanoparticles in a large ph window with different bases. Materials 2013, 6, 5549–5567. [Google Scholar] [CrossRef]
- Zou, L.; Huang, B.; Zheng, X.; Pan, H.; Zhang, Q.; Xie, W.; Zhao, Z.; Li, X. Microfluidic synthesis of magnetic nanoparticles in droplet-based microreactors. Mater. Chem. Phys. 2022, 276, 125384. [Google Scholar] [CrossRef]
- Bemetz, J.; Wegemann, A.; Saatchi, K.; Haase, A.; Häfeli, U.O.; Niessner, R.; Gleich, B.; Seidel, M. Microfluidic-based synthesis of magnetic nanoparticles coupled with miniaturized nmr for online relaxation studies. Anal. Chem. 2018, 90, 9975–9982. [Google Scholar] [CrossRef]
- Baby, T.; Liu, Y.; Yang, G.; Chen, D.; Zhao, C.-X. Microfluidic synthesis of curcumin loaded polymer nanoparticles with tunable drug loading and ph-triggered release. J. Colloid Interface Sci. 2021, 594, 474–484. [Google Scholar] [CrossRef] [PubMed]
- Elsana, H.; Olusanya, T.O.B.; Carr-wilkinson, J.; Darby, S.; Faheem, A.; Elkordy, A.A. Evaluation of novel cationic gene based liposomes with cyclodextrin prepared by thin film hydration and microfluidic systems. Sci. Rep. 2019, 9, 15120. [Google Scholar] [CrossRef] [PubMed]
- Damiati, S.A.; Damiati, S. Microfluidic synthesis of indomethacin-loaded plga microparticles optimized by machine learning. Front. Mol. Biosci. 2021, 8, 67754. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, S.; Machado, A.; Lecommandoux, S.; Sandre, O.; Gu, F.; Colin, A. Controllable microfluidic production of drug-loaded plga nanoparticles using partially water-miscible mixed solvent microdroplets as a precursor. Sci. Rep. 2017, 7, 4794. [Google Scholar] [CrossRef] [PubMed]
- Gdowski, A.; Johnson, K.; Shah, S.; Gryczynski, I.; Vishwanatha, J.; Ranjan, A. Optimization and scale up of microfluidic nanolipomer production method for preclinical and potential clinical trials. J. Nanobiotechnology 2018, 16, 12. [Google Scholar] [CrossRef] [PubMed]
- Zamani, M.H.; Khatibi, A.; Tavana, B.; Zahedi, P.; Aghamohammadi, S. Characterization of drug-loaded alginate-chitosan polyelectrolyte nanoparticles synthesized by microfluidics. J. Polym. Res. 2023, 30, 86. [Google Scholar] [CrossRef]
Sample | Type of Antibiotic Used | Antibiotic Concentration (%) |
---|---|---|
Fe3O4 | - | - |
Fe3O4_str_1% | streptomycin sulfate | 1 |
Fe3O4_str_5% | 5 | |
Fe3O4_str_10% | 10 | |
Fe3O4_neo_1% | neomycin trisulfate | 1 |
Fe3O4_neo_5% | 5 | |
Fe3O4_neo_10% | 10 |
Sample | Unit Cell Parameters | Average Crystallite Size ± Standard Deviation (SD) [nm] | Crystallinity [%] | |
---|---|---|---|---|
a = b = c [Å] | α = β = γ [°] | |||
Fe3O4 | 8.35 | 90 | 6.71 ± 0.46 | 12.91 |
Fe3O4_str_1% | 8.33 | 90 | 5.62 ± 0.57 | 15.54 |
Fe3O4_str_5% | 8.37 | 90 | 4.99 ± 0.10 | 14.62 |
Fe3O4_str_10% | 8.34 | 90 | 5.78 ± 0.66 | 12.84 |
Fe3O4_neo_1% | 8.34 | 90 | 6.23 ± 0.73 | 13.62 |
Fe3O4_neo_5% | 8.35 | 90 | 5.80 ± 0.38 | 13.20 |
Fe3O4_neo_10% | 8.37 | 90 | 5.46 ± 0.25 | 12.45 |
Sample | Mass Loss (%) 200 °C | Endo (°C) | Mass Loss (%) 200–400 °C | Mass Loss (%) 400–900 °C | Exo (°C)/ Area (J/g) | Estimated Load (%) |
---|---|---|---|---|---|---|
Fe3O4 | 2.63 | 76.8 | 1.58 | 1.27 | 521.9/111.6 | - |
Fe3O4_str_1% | 3.14 | 79.8 | 1.99 | 1.22 | 501.8/111.1 | 1.03 |
Fe3O4_str_5% | 3.87 | 88.4 | 2.85 | 1.00 | 488.4/112.0 | 2.40 |
Fe3O4_str_10% | 4.17 | 79.1 | 3.31 | 1.35 | 495.1/122.8 | 3.55 |
Fe3O4_neo_1% | 3.23 | 86.3 | 2.02 | 0.90 | 500.1/111.3 | 0.76 |
Fe3O4_neo_5% | 3.44 | 86.9 | 2.70 | 1.05 | 504.4/112.9 | 1.81 |
Fe3O4_neo_10% | 3.29 | 88.3 | 3.52 | 1.25 | 504.4/122.1 | 2.73 |
Microbial Strain | Inhibition Zone Diameter (mm) | ||||||
---|---|---|---|---|---|---|---|
Fe3O4 | Fe3O4_str_ 1% | Fe3O4_str_ 5% | Fe3O4_str_ 10% | Fe3O4_neo_ 1% | Fe3O4_neo_ 5% | Fe3O4_neo_ 10% | |
S. aureus | 2 | 0 | 2 | 2 | 2 | 4 | 4 |
P. aeruginosa | 7 | 6 | 6 | 6 | 6 | 5 | 6 |
C. albicans | 5 | 2 | 4 | 4 | 5 | 4 | 5 |
Microbial Strain | MIC (mg/mL) | ||||||
---|---|---|---|---|---|---|---|
Fe3O4 | Fe3O4_str_ 1% | Fe3O4_str_ 5% | Fe3O4_str_ 10% | Fe3O4_neo_ 1% | Fe3O4_neo_ 5% | Fe3O4_neo_ 10% | |
S. aureus | 2 | 2 | 1 | 2 | 2 | 2 | 1 |
P. aeruginosa | 1 | 1 | 1 | 1 | 1 | 2 | 1 |
C. albicans | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chircov, C.; Dumitru, I.A.; Vasile, B.S.; Oprea, O.-C.; Holban, A.M.; Popescu, R.C. Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics. Pharmaceutics 2023, 15, 2215. https://doi.org/10.3390/pharmaceutics15092215
Chircov C, Dumitru IA, Vasile BS, Oprea O-C, Holban AM, Popescu RC. Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics. Pharmaceutics. 2023; 15(9):2215. https://doi.org/10.3390/pharmaceutics15092215
Chicago/Turabian StyleChircov, Cristina, Iulia Alexandra Dumitru, Bogdan Stefan Vasile, Ovidiu-Cristian Oprea, Alina Maria Holban, and Roxana Cristina Popescu. 2023. "Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics" Pharmaceutics 15, no. 9: 2215. https://doi.org/10.3390/pharmaceutics15092215
APA StyleChircov, C., Dumitru, I. A., Vasile, B. S., Oprea, O. -C., Holban, A. M., & Popescu, R. C. (2023). Microfluidic Synthesis of Magnetite Nanoparticles for the Controlled Release of Antibiotics. Pharmaceutics, 15(9), 2215. https://doi.org/10.3390/pharmaceutics15092215