Chitosan in Oral Drug Delivery Formulations: A Review
Abstract
:1. Introduction
2. Oral Drug Delivery
- The risk of the administered medicine becoming unstable is increased by the presence of digestive enzymes in the gastrointestinal tract. In the context of using large molecules, such as proteins, and nucleic acids, this is a particularly significant concern.
- The probability of absorption of macromolecules by gastrointestinal cells is low.
- Food intake may alter drug absorption because the duration of stomach emptying is proportional to the amount of food consumed.
- There is often no precise delivery location, making it difficult to exercise control over the drug release.
- The parenteral or rectal route of drug delivery is still the preferred route for some patients, although oral administration is the most common.
3. Nanotechnology in Delivery Systems
3.1. Nanoparticles
3.2. Liposomes
3.3. Micelles
4. Applicability of Chitosan-Oriented Multifarious Delivery
Role of P-gp Inhibitors in Oral Drug Delivery
5. Herbal Bioactives Loaded Nanoformulations for Oral Delivery
5.1. Aloe Vera
Components | Nanoformulations | Applications | Reference |
---|---|---|---|
Aloe vera + Chitosan + polycaprolactone | Nanofiber | Antibacterial | [92] |
Aloe marlothii gel + Chitosan | Nanoparticles | Antioxidant, Anti-inflammatory, anti-apoptotic | [93] |
Chitosan + Aloe vera | Silver Nanoparticles | Enhanced physiochemical properties | [94] |
Aloe vera + Chitosan + Dextran sulfate + Eucalyptus extract | Nano-hydrogel | Antibacterial | [95] |
Aloe vera + Chitosan + Minoxidil | Nanocomposite | Alopecia therapy | [96] |
5.2. Quercetin
Components | Nanoformulations | Applications | Reference |
---|---|---|---|
Chitosan + Quercetin (QC) + Alginate + Zein | Nanoparticles | Delivery system | [102] |
QC + Chitosan + Doxorubicin (DOX) | Nanoparticle | Cardiotoxicity | [103] |
Quercetin + CS + Aspirin + Eudragit L100 | Nanoparticles (NPs) | Colorectal cancer | [104] |
Quercetin + Chitosan | NPs | Anti-rheumatic | [105] |
Quercetin + Chitosan + Halloysite (HNT) + Graphite-carbon nitride (g-C3N4) | Hydrogel nanocomposite | Anticancer | [106] |
5.3. Curcumin
Components | Nanoformulations | Applications | Reference |
---|---|---|---|
Curcumin + Chitosan + Rose Bengal (RB) | Niosomes | Lung cancer | [113] |
Chitosan + Curcumin + Cerium oxide + Octenyl-succinic anhydride (OSA) | Nanoparticles | Antibacterial, anti-inflammatory | [114] |
Chitosan + Hyaluronic acid + Curcumin + Cisplatin | Nanoparticle | Cervical carcinoma | [115] |
Chitosan + Curcumin + Trimethoprim-sulfamethoxazole (TMP-SXT) | Nanocomplexes | Antimicrobial, Antibiofilm | [116] |
6. Patents
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pourmadadi, M.; Mahdi Eshaghi, M.M.; Ostovar, S.; Mohammadi, Z.; Sharma, R.K.; Paiva-Santos, A.C.; Pandey, S. Innovative nanomaterials for cancer diagnosis, imaging, and therapy: Drug delivery applications. J. Drug Deliv. Sci. Technol. 2023, 82, 104357. [Google Scholar] [CrossRef]
- Shabani, L.; Abbasi, M.; Azarnew, Z.; Amani, A.M.; Vaez, A. Neuro-nanotechnology: Diagnostic and therapeutic nano-based strategies in applied neuroscience. BioMed. Eng. OnLine 2023, 22, 1–41. [Google Scholar] [CrossRef]
- Hatae, A.C.; Roque-Borda, C.A.; Pavan, F.R. Strategies for lipid-based nanocomposites with potential activity against Mycobacterium tuberculosis: Microbial resistance challenge and drug delivery trends. OpenNano 2023, 13, 100171. [Google Scholar] [CrossRef]
- Umapathy, V.R.; Natarajan, P.M.; Swamikannu, B. Review of the role of nanotechnology in overcoming the challenges faced in oral cancer diagnosis and treatment. Molecules 2023, 28, 5395. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Luo, C.; Pang, Z.; Zhang, J.; Ruan, S.; Wu, M.; Wang, L.; Sun, T.; Li, N.; Han, L.; et al. Advances of nanoparticles as drug delivery systems for disease diagnosis and treatment. Chin. Chem. Lett. 2023, 34, 107518. [Google Scholar] [CrossRef]
- Song, Y.; Zheng, X.; Hu, J.; Ma, S.; Li, K.; Chen, J.; Xu, X.; Lu, X.; Wang, X. Recent advances of cell membrane-coated nanoparticles for therapy of bacterial infection. Front. Microbiol. 2023, 14, 1083007. [Google Scholar] [CrossRef]
- Bushra, R.; Ahmad, M.; Seidi, F.; Qurtulen, J.; Song, J.; Jin, Y.; Xiao, H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv. Colloid Interface Sci. 2023, 318, 102953. [Google Scholar] [CrossRef]
- Chidre, P.; Chavan, A.; Mallikarjunaiah, N.H.; Revanasiddappa, K.C. Nanomaterials: Potential broad spectrum antimicrobial agents. Curr. Nanomater. 2023, 8, 319–327. [Google Scholar] [CrossRef]
- Asghar, B.H.; Hassan, R.K.A.; Barakat, L.A.A.; Alharbi, A.; El Behery, M.; Elshaarawy, R.F.M.; Hassan, Y.A. Cross-linked quaternized chitosan nanoparticles for effective delivery and controllable release of O. europaea phenolic extract targeting cancer therapy. J. Drug Deliv. Sci. Technol. 2023, 83, 104388. [Google Scholar] [CrossRef]
- Madaan, R.; Singla, R.K.; Kumar, S.; Dubey, A.K.; Kumar, D.; Sharma, P.; Bala, R.; Singla, S.; Shen, B. Bergenin-a biologically active scaffold: Nanotechnological perspectives. Curr. Top. Med. Chem. 2022, 22, 132–149. [Google Scholar] [CrossRef]
- Kaur, M.; Nagpal, M.; Aggarwal, G. Nanotechnology for Targeted Drug Delivery to Treat Osteoporosis. Curr. Drug Targets 2023, 24, 2–12. [Google Scholar] [PubMed]
- Chopra, H.; Mishra, A.K.; Singh, I.; Mohanta, Y.K.; Sharma, R.; Emran, T.B.; Bibi, S. Nano-chitosan: A novel material for glioblastoma treatment. Int. J. Surg. 2022, 104, 106713. [Google Scholar] [CrossRef] [PubMed]
- Chopra, H.; Bibi, S.; Singh, I.; Kamal, M.A.; Islam, F.; Alhumaydhi, F.A.; Emran, T.B.; Cavalu, S. Nanomedicines in the management of Alzheimer’s disease: Current view and future prospects. Front. Aging Neurosci. 2022, 14, 879114. [Google Scholar] [CrossRef] [PubMed]
- Islam, S.; Bhuiyan, M.A.R.; Islam, M.N. Chitin and chitosan: Structure, properties and applications in biomedical engineering. J. Polym. Environ. 2017, 25, 854–866. [Google Scholar] [CrossRef]
- Wang, Z.; Ng, K.; Warner, R.D.; Stockmann, R.; Fang, Z. Effects of chitosan nanoparticles incorporation on the physicochemical quality of cellulose coated deep-fried meatballs. Food Control 2023, 149, 109715. [Google Scholar] [CrossRef]
- Amin, H.; Amin, M.A.; Osman, S.K.; Mohammed, A.M.; Zayed, G. Chitosan nanoparticles as a smart nanocarrier for gefitinib for tackling lung cancer: Design of experiment and in vitro cytotoxicity study. Int. J. Biol. Macromol. 2023, 246, 125638. [Google Scholar] [CrossRef]
- Salatin, S.; YariKhosroushahi, A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J. Cell. Mol. Med. 2017, 21, 1668–1686. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Jia, S.; Xu, F. Emerging frontiers in drug delivery with special focus on novel techniques for targeted therapies. Biomed. Pharmacother. 2023, 165, 115049. [Google Scholar] [CrossRef]
- Medina, C.; Santos-Martinez, M.; Radomski, A.; Corrigan, O.; Radomski, M. Nanoparticles: Pharmacological and toxicological significance. Br. J. Pharmacol. 2007, 150, 552–558. [Google Scholar] [CrossRef]
- Shen, A.M.; Minko, T. Pharmacokinetics of inhaled nanotherapeutics for pulmonary delivery. J. Control. Release Off. J. Control. Release Soc. 2020, 326, 222–244. [Google Scholar] [CrossRef]
- Kong, X.; Gao, P.; Wang, J.; Fang, Y.; Hwang, K.C. Advances of medical nanorobots for future cancer treatments. J. Hematol. Oncol. 2023, 16, 74. [Google Scholar] [CrossRef]
- Bharti, S.; Anant, P.S.; Kumar, A. Nanotechnology in stem cell research and therapy. J. Nanopart. Res. 2023, 25, 6. [Google Scholar] [CrossRef]
- Lou, J.; Duan, H.; Qin, Q.; Teng, Z.; Gan, F.; Zhou, X.; Zhou, X. Advances in oral drug delivery systems: Challenges and opportunities. Pharmaceutics 2023, 15, 484. [Google Scholar] [CrossRef]
- Spleis, H.; Sandmeier, M.; Claus, V.; Bernkop-Schnürch, A. Surface design of nanocarriers: Key to more efficient oral drug delivery systems. Adv. Colloid Interface Sci. 2023, 313, 102848. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.B.; Xu, T.; Gong, Y.; Chen, A.; Zou, L.; Jiang, T.; Shi, Y. Cracking the intestinal lymphatic system window utilizing oral delivery vehicles for precise therapy. J. Nanobiotechnol. 2023, 21, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, R.; Fanse, S.; Burgess, D.J. Mucoadhesive drug delivery systems: A promising non-invasive approach to bioavailability enhancement. Part I: Biophysical considerations. Expert Opin. Drug Deliv. 2023, 20, 395–412. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Day, C.M.; Afinjuomo, F.; Tan, J.Q.E.; Page, S.W.; Garg, S. Advanced Strategies of Drug Delivery via Oral, Topical, and Parenteral Administration Routes: Where Do Equine Medications Stand? Pharmaceutics 2023, 15, 186. [Google Scholar] [CrossRef]
- Herdiana, Y.; Husni, P.; Nurhasanah, S.; Shamsuddin, S.; Wathoni, N. Chitosan-based nano systems for natural antioxidants in breast cancer therapy. Polymers 2023, 15, 2953. [Google Scholar] [CrossRef]
- Ateeq, H.; Zia, A.; Husain, Q.; Khan, M.S. Role of inorganic nanocomposite materials in drug delivery systems. In Synthesis and Applications of Nanomaterials and Nanocomposites; Springer Nature: Singapore, 2023; pp. 171–195. [Google Scholar]
- Qi, M.; Wang, X.; Chen, J.; Liu, Y.; Liu, Y.; Jia, J.; Li, L.; Yue, T.; Gao, L.; Yan, B.; et al. Transformation, absorption and toxicological mechanisms of silver nanoparticles in the gastrointestinal tract following oral exposure. ACS Nano 2023, 17, 8851–8865. [Google Scholar] [CrossRef]
- Zheng, S.; Yin, S.; Qin, G.; Yao, J.; Liu, S.; Han, J.; Zhou, Y.; Duan, S. Gastrointestinal digestion and absorption of soybean β-conglycinin in an early weaned piglet model: An initial step to the induction of soybean allergy. Food Chem. 2023, 427, 136640. [Google Scholar] [CrossRef]
- Zhang, S.; Zhu, C.; Huang, W.; Liu, H.; Yang, M.; Zeng, X.; Zhang, Z.; Liu, J.; Shi, J.; Hu, Y.; et al. Recent progress of micro/nanomotors to overcome physiological barriers in the gastrointestinal tract. J. Control. Release Off. J. Control. Release Soc. 2023, 360, 514–527. [Google Scholar] [CrossRef] [PubMed]
- Cary, C.; Stapleton, P. Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers. Arch. Toxicol. 2023, 97, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lang, X.; Wang, T.; Sun, M.; Chen, X.; Liu, Y. Advances and applications of chitosan-based nanomaterials as oral delivery carriers: A review. Int. J. Biol. Macromol. 2020, 154, 433–445. [Google Scholar] [CrossRef] [PubMed]
- Jafernik, K.; Ładniak, A.; Blicharska, E.; Czarnek, K.; Ekiert, H.; Wiącek, A.E.; Szopa, A. Chitosan-Based Nanoparticles as Effective Drug Delivery Systems—A review. Molecules 2023, 28, 1963. [Google Scholar] [CrossRef]
- Das, S.; Mazumder, A. Recent advances in hydrogel-based drug delivery for wound healing therapy: A systematic review. Allelopath. J. 2023, 59, 197–206. [Google Scholar]
- Silvestre, A.L.P.; Dos Santos, A.M.; de Oliveira, A.B.; Ferrisse, T.M.; Brighenti, F.L.; Meneguin, A.B.; Chorilli, M. Evaluation of photodynamic therapy on nanoparticles and films loaded-nanoparticles based on chitosan/alginate for curcumin delivery in oral biofilms. Int. J. Biol. Macromol. 2023, 240, 124489. [Google Scholar] [CrossRef]
- Fan, B.; Liu, L.; Zheng, Y.; Xing, Y.; Shen, W.; Li, Q.; Wang, R.; Liang, G. Novel pH-responsive and mucoadhesive chitosan-based nanoparticles for oral delivery of low molecular weight heparin with enhanced bioavailability and anticoagulant effect. J. Drug Deliv. Sci. Technol. 2022, 78, 103955. [Google Scholar] [CrossRef]
- Wasana, P.W.D.; Vajragupta, O.; Rojsitthisak, P.; Towiwat, P.; Rojsitthisak, P. Metformin and curcumin co-encapsulated chitosan/alginate nanoparticles as effective oral carriers against pain-like behaviors in mice. Int. J. Pharm. 2023, 640, 123037. [Google Scholar] [CrossRef]
- Patriota, Y.B.; Arruda, I.E.; de Jesus Oliveira, A.C.; de Oliveira, T.C.; Silva, E.D.; Chaves, L.L.; Ribeiro, F.D.; da Silva, D.A.; Soares, M.F.; Soares-Sobrinho, J.L. Synthesis of Eudragit® L100-coated chitosan-based nanoparticles for oral enoxaparin delivery. Int. J. Biol. Macromol. 2021, 193 Pt A, 450–456. [Google Scholar] [CrossRef]
- Guadarrama-Escobar, O.R.; Serrano-Castañeda, P.; Anguiano-Almazán, E.; Vázquez-Durán, A.; Peña-Juárez, M.C.; Vera-Graziano, R.; Morales-Florido, M.I.; Rodriguez-Perez, B.; Rodriguez-Cruz, I.M.; Miranda-Calderón, J.E.; et al. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci. 2023, 24, 4289. [Google Scholar] [CrossRef]
- Sahatsapan, N.; Pamornpathomkul, B.; Rojanarata, T.; Ngawhirunpat, T.; Poonkhum, R.; Opanasopit, P.; Patrojanasophon, P. Feasibility of mucoadhesive chitosan maleimide-coated liposomes for improved buccal delivery of a protein drug. J. Drug Deliv. Sci. Technol. 2022, 69, 103173. [Google Scholar] [CrossRef]
- Lai, W.F.; Wong, W.T.; Rogach, A.L. Molecular design of layer-by-layer functionalized liposomes for oral drug delivery. ACS Appl. Mater. Interfaces 2020, 12, 43341–43351. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhou, Q.; Zheng, J.; Xiong, H.; Zhao, L.; Xu, Y.; Bai, C. Fabricating pectin and chitosan double layer coated liposomes to improve physicochemical stability of beta-carotene and alter its gastrointestinal fate. Int. J. Biol. Macromol. 2023, 247, 125780. [Google Scholar] [CrossRef] [PubMed]
- Khodarahmi, M.; Abbasi, H.; Kouchak, M.; Mahdavinia, M.; Handali, S.; Rahbar, N. Nanoencapsulation of aptamer-functionalized 5-fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J. Drug Deliv. Sci. Technol. 2022, 71, 103299. [Google Scholar] [CrossRef]
- Hanafy, N.A.N.; Sheashaa, R.F.; Moussa, E.A.; Mahfouz, M.E. Potential of curcumin and niacin-loaded targeted chitosan coated liposomes to activate autophagy in hepatocellular carcinoma cells: An in vitro evaluation in HePG2 cell line. Int. J. Biol. Macromol. 2023, 245, 125572. [Google Scholar] [CrossRef]
- Nam, J.-P.; Park, S.-C.; Kim, T.-H.; Jang, J.-Y.; Choi, C.; Jang, M.-K.; Nah, J.-W. Encapsulation of paclitaxel into lauric acid-O-carboxymethyl chitosan-transferrin micelles for hydrophobic drug delivery and site-specific targeted delivery. Int. J. Pharm. 2013, 457, 124–135. [Google Scholar] [CrossRef]
- Almeida, A.; Linares, V.; Mora-Castaño, G.; Casas, M.; Caraballo, I.; Sarmento, B. 3D printed systems for colon-specific delivery of camptothecin-loaded chitosan micelles. Eur. J. Pharm. Biopharm. Off. J. Arbeitsgemeinschaft Fur Pharm. V 2021, 167, 48–56. [Google Scholar] [CrossRef]
- Chen, T.; Tu, L.; Wang, G.; Qi, N.; Wu, W.; Zhang, W.; Feng, J. Multi-functional chitosan polymeric micelles as oral paclitaxel delivery systems for enhanced bioavailability and anti-tumor efficacy. Int. J. Pharm. 2020, 578, 119105. [Google Scholar] [CrossRef]
- Kumar, R.; Sirvi, A.; Kaur, S.; Samal, S.K.; Roy, S.; Sangamwar, A.T. Polymeric micelles based on amphiphilic oleic acid modified carboxymethyl chitosan for oral drug delivery of bcs class IV compound: Intestinal permeability and pharmacokinetic evaluation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020, 153, 105466. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Li, D.; Lin, S.; Chen, H.; Wu, W.; Zhang, W. Linolenic acid conjugated chitosan micelles for improving the oral absorption of doxorubicin via fatty acid transporter. Carbohydr. Polym. 2023, 300, 120233. [Google Scholar] [CrossRef]
- Zlotnikov, I.D.; Streltsov, D.A.; Belogurova, N.G.; Kudryashova, E.V. Chitosan or cyclodextrin grafted with oleic acid self-assemble into stabilized polymeric micelles with potential of drug carriers. Life 2023, 13, 446. [Google Scholar] [CrossRef] [PubMed]
- Ghaemi, A.; Vakili-Azghandi, M.; Abnous, K.; Taghdisi, S.M.; Ramezani, M.; Alibolandi, M. Oral non-viral gene delivery platforms for therapeutic applications. Int. J. Pharm. 2023, 642, 123198. [Google Scholar] [CrossRef] [PubMed]
- van den Berg, A.I.S.; Yun, C.O.; Schiffelers, R.M.; Hennink, W.E. Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. J. Control. Release Off. J. Control. Release Soc. 2021, 331, 121–141. [Google Scholar] [CrossRef] [PubMed]
- Torres-Vanegas, J.D.; Cruz, J.C.; Reyes, L.H. Delivery systems for nucleic acids and proteins: Barriers, cell capture pathways and nanocarriers. Pharmaceutics 2021, 13, 428. [Google Scholar] [CrossRef] [PubMed]
- Karimi Jabali, M.; Allafchian, A.R.; Jalali, S.A.H.; Shakeripour, H.; Mohammadinezhad, R.; Rahmani, F. Design of a pDNA nanocarrier with ascorbic acid modified chitosan coated on superparamagnetic iron oxide nanoparticles for gene delivery. Colloids Surf. Part A Physicochem. Eng. Asp. 2022, 632, 127743. [Google Scholar] [CrossRef]
- Wang, J.; Wang, K.; Liang, J.; Jin, J.; Wang, X.; Yan, S. Chitosan-tripolyphosphate nanoparticles-mediated co-delivery of MTHFD1L shRNA and 5-aminolevulinic acid for combination photodynamic-gene therapy in oral cancer. Photodiagnosis Photodyn. Ther. 2021, 36, 102581. [Google Scholar] [CrossRef]
- Verma, A.; Tiwari, A.; Saraf, S.; Panda, P.K.; Jain, A.; Jain, S.K. Chapter 9. Protein and peptide delivery by chitosan systems. In Chitosan in Biomedical Applications; Hasnain, M.S., Beg, S., Nayak, A.K., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 211–228. [Google Scholar]
- Zhu, Q.; Chen, Z.; Paul, P.K.; Lu, Y.; Wu, W.; Qi, J. Oral delivery of proteins and peptides: Challenges, status quo and future perspectives. Acta Pharm. Sin. B 2021, 11, 2416–2448. [Google Scholar] [CrossRef]
- Desai, N.; Rana, D.; Salave, S.; Gupta, R.; Patel, P.; Karunakaran, B.; Sharma, A.; Giri, J.; Benival, D.; Kommineni, N. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 2023, 15, 1313. [Google Scholar] [CrossRef]
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 33. [Google Scholar] [CrossRef]
- Žigrayová, D.; Mikušová, V.; Mikuš, P. Advances in antiviral delivery systems and chitosan-based polymeric and nanoparticulate antivirals and antiviral carriers. Viruses 2023, 15, 647. [Google Scholar] [CrossRef]
- Chellathurai, M.S.; Yong, C.L.; Sofian, Z.M.; Sahudin, S.; Hasim, N.B.M.; Mahmood, S. Self-assembled chitosan-insulin oral nanoparticles—A critical perspective review. Int. J. Biol. Macromol. 2023, 243, 125125. [Google Scholar] [CrossRef]
- Vitulo, M.; Gnodi, E.; Meneveri, R.; Barisani, D. Interactions between nanoparticles and intestine. Int. J. Mol. Sci. 2022, 23, 4339. [Google Scholar] [CrossRef] [PubMed]
- Virmani, T.; Kumar, G.; Sharma, A.; Pathak, K.; Akhtar, M.S.; Afzal, O.; Altamimi, A.S.A. Amelioration of cancer employing chitosan, its derivatives, and chitosan-based nanoparticles: Recent updates. Polymers 2023, 15, 2928. [Google Scholar] [CrossRef] [PubMed]
- Stie, M.B.; Öblom, H.; Hansen, A.C.; Jacobsen, J.; Chronakis, I.S.; Rantanen, J.; Nielsen, H.M.; Genina, N. Mucoadhesive chitosan-and cellulose derivative-based nanofiber-on-foam-on-film system for non-invasive peptide delivery. Carbohydr. Polym. 2023, 303, 120429. [Google Scholar] [CrossRef] [PubMed]
- Asal, H.A.; Shoueir, K.R.; El-Hagrasy, M.A.; Toson, E.A. Controlled synthesis of in-situ gold nanoparticles onto chitosan functionalized PLGA nanoparticles for oral insulin delivery. Int. J. Biol. Macromol. 2022, 209 Pt B, 2188–2196. [Google Scholar] [CrossRef]
- AlSalem, H.S.; Abdulsalam, N.M.; Khateeb, N.A.; Binkadem, M.S.; Alhadhrami, N.A.; Khedr, A.M.; Abdelmonem, R.; Shoueir, K.R.; Nadwa, E.H. Enhance the oral insulin delivery route using a modified chitosan-based formulation fabricated by microwave. Int. J. Biol. Macromol. 2023, 247, 125779. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, Z.; Li, W.; Guo, L.; Wang, L.; Guo, L.; Ma, S.; Han, B.; Chang, J. pH-sensitive O-carboxymethyl chitosan/sodium alginate nanohydrogel for enhanced oral delivery of insulin. Int. J. Biol. Macromol. 2022, 223 Pt A, 433–445. [Google Scholar] [CrossRef]
- Tiwari, P.K.; Ko, T.H.; Dubey, R.; Chouhan, M.; Tsai, L.W.; Singh, H.N.; Chaubey, K.K.; Dayal, D.; Chiang, C.W.; Kumar, S. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: From bench to clinics. Front. Mol. Biosci. 2023, 10, 1214489. [Google Scholar] [CrossRef]
- Coluzzi, F.; Scerpa, M.S.; Rocco, M.; Fornasari, D. The Impact of P-Glycoprotein on Opioid Analgesics: What’s the Real Meaning in Pain Management and Palliative Care? Int. J. Mol. Sci. 2022, 23, 14125. [Google Scholar] [CrossRef]
- Khan, M.I.; Hossain, M.I.; Hossain, M.K.; Rubel, M.H.K.; Hossain, K.M.; Mahfuz, A.M.U.B.; Anik, M.I. Recent progress in nanostructured smart drug delivery systems for cancer therapy: A review. ACS Appl. Bio Mater. 2022, 5, 971–1012. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, S.; Tan, C.; Wei, Q.; Xiong, S. Simultaneously Inhibiting P-gp Efflux and Drug Recrystallization Enhanced the Oral Bioavailability of Nintedanib. Current Pharmaceutical Biotechnology. Curr. Pharm. Biotechnol. 2023, 24, 1972–1982. [Google Scholar] [CrossRef] [PubMed]
- Muheem, A.; Nehal, N.; Sartaj, A.; Baboota, S.; Ali, J. Importance of P-gp inhibitors and nanoengineered approaches for effective delivery of anti-retroviral drugs across barriers in HIV management. J. Drug Deliv. Sci. Technol. 2023, 87, 104791. [Google Scholar]
- Ahamed, J.; Gowda, B.J.; Almalki, W.H.; Gupta, N.; Sahebkar, A.; Kesharwani, P. Recent advances in nanoparticle-based approaches for the treatment of brain tumors: Opportunities and challenges. Eur. Polym. J. 2023, 193, 112111. [Google Scholar] [CrossRef]
- Attia, M.S.; Elsebay, M.T.; Yahya, G.; Chopra, H.; Marzouk, M.; Yehya, A.; Abdelkhalek, A.S. Pharmaceutical polymers and P-glycoprotein: Current Trends and Possible Outcomes in Drug Delivery. Mater. Today Commun. 2023, 34, 105318. [Google Scholar] [CrossRef]
- Nguyen, T.T.L.; Duong, V.A.; Maeng, H.J. Pharmaceutical formulations with P-glycoprotein inhibitory effect as promising approaches for enhancing oral drug absorption and bioavailability. Pharmaceutics 2021, 13, 1103. [Google Scholar] [CrossRef]
- Wande, D.P.; Qiu, Y.; Chen, S.; Yao, L.; Xu, Y.; Yao, J.; Xiong, H. Modified chitosan nanogel-polymersomes for oral co-delivery of oxaliplatin and rapamycin for synergistic chemotherapy. J. Drug Deliv. Sci. Technol. 2022, 77, 103852. [Google Scholar] [CrossRef]
- Mu, Y.; Fu, Y.; Li, J.; Yu, X.; Li, Y.; Wang, Y.; Wu, X.; Zhang, K.; Kong, M.; Feng, C.; et al. Multifunctional quercetin conjugated chitosan nano-micelles with P-gp inhibition and permeation enhancement of anticancer drug. Carbohydr. Polym. 2019, 203, 10–18. [Google Scholar] [CrossRef]
- Nielsen, R.B.; Larsen, B.S.; Holm, R.; Pijpers, I.; Snoeys, J.; Nielsen, U.G.; Tho, I.; Nielsen, C.U. Increased bioavailability of a P–gp substrate: Co–release of etoposide and zosuquidar from amorphous solid dispersions. Int. J. Pharm. 2023, 642, 123094. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Zabermawi, N.M.; Zabermawi, N.M.; Burollus, M.A.; Shafi, M.E.; Alagawany, M.; Yehia, N.; Askar, A.M.; Alsafy, S.A.; Noreldin, A.E.; et al. Nutritional aspects and health benefits of bioactive plant compounds against infectious diseases: A review. Food Rev. Int. 2023, 39, 2138–2160. [Google Scholar] [CrossRef]
- Verma, D.H.; Meshram, D.A.A.; Geetanjali, D. A critical review on mechanism of herbal drugs Cissus quadrangularis, Mimosa pudia and Boswellia serrata in bone healing for osteoporosis (Asthikshaya) and bone fracture and pain. J. Surv. Fish. Sci. 2023, 10, 2827–2831. [Google Scholar]
- Bharathi, R.; Ganesh, S.S.; Harini, G.; Vatsala, K.; Anushikaa, R.; Aravind, S.; Selvamurugan, N. Chitosan-based scaffolds as drug delivery systems in bone tissue engineering. Int. J. Biol. Macromol. 2022, 222, 132–153. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.Z.; Kavin, T.; Jia, H.; Karthivashan, G.; Vigneswari, S.; Santhanam, R. Drug delivery approaches to improve the efficiency of phytoderivatives against UV induced damage—A review. J. Drug Deliv. Sci. Technol. 2023, 87, 104793. [Google Scholar]
- Huanbutta, K.; Burapapadh, K.; Sriamornsak, P.; Sangnim, T. Practical Application of 3D Printing for Pharmaceuticals in Hospitals and Pharmacies. Pharmaceutics 2023, 15, 1877. [Google Scholar] [CrossRef] [PubMed]
- Chelu, M.; Musuc, A.M.; Popa, M.; Calderon Moreno, J. Aloe vera-based hydrogels for wound healing: Properties and therapeutic effects. Gels 2023, 9, 539. [Google Scholar] [CrossRef]
- Raghunath, I.; Koland, M.; Vadakkepushpakath, A.N.; Kumar, L.; Shenoy, S.C.S. Herbal bioenhancers with nanocarriers: A promising approach for oral peptide delivery. Int. J. Pharm. Investig. 2022, 13, 7. [Google Scholar] [CrossRef]
- Bai, Y.; Niu, Y.; Qin, S.; Ma, G. A new biomaterial derived from Aloe vera—Acemannan from basic studies to clinical application. Pharmaceutics 2023, 15, 1913. [Google Scholar] [CrossRef]
- Patri, G.; Sheetal, K.; Pradhan, P.K.; Agrawal, P.; Lata, S. Comparative evaluation of the antibacterial efficacy of herbal agents as intracanal medicaments individually or in combination with chitosan: An in vitro RTPCR study. J. Int. Oral Health 2023, 15, 89. [Google Scholar] [CrossRef]
- Khan, A.; Andleeb, A.; Azam, M.; Tehseen, S.; Mehmood, A.; Yar, M. Aloe vera and ofloxacin incorporated chitosan hydrogels show antibacterial activity, stimulate angiogenesis and accelerate wound healing in full thickness rat model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2023, 111, 331–342. [Google Scholar] [CrossRef]
- Ajaz, N.; Bukhsh, M.; Kamal, Y.; Rehman, F.; Irfan, M.; Khalid, S.H.; Asghar, S.; Rizg, W.Y.; Bukhary, S.M.; Hosny, K.M.; et al. Development and evaluation of pH sensitive semi-interpenetrating networks: Assessing the impact of itaconic acid and aloe vera on network swelling and cetirizine release. Front. Bioeng. Biotechnol. 2023, 11, 1173883. [Google Scholar] [CrossRef]
- Yin, J.; Xu, L. Batch preparation of electrospun polycaprolactone/chitosan/aloe vera blended nanofiber membranes for novel wound dressing. Int. J. Biol. Macromol. 2020, 160, 352–363. [Google Scholar] [CrossRef]
- Ibrahim, R.M.; Mahdy, N.E.; Abdel-Baki, P.M.; El Badawy, S.A.; Ali, S.E.; Ibrahim, M.A.; Khattab, M.S.; Farroh, K.Y.; Emam, S.R. Chemical characterization, in vitro and in vivo evaluation of chitosan-aloe marlothii gel loaded nanoparticles on acetaminophen-induced hepatitis in mice. S. Afr. J. Bot. 2023, 157, 1–9. [Google Scholar] [CrossRef]
- De Matteis, V.; Cascione, M.; Costa, D.; Martano, S.; Manno, D.; Cannavale, A.; Mazzotta, S.; Paladini, F.; Martino, M.; Rinaldi, R. Aloe vera silver nanoparticles addition in chitosan films: Improvement of physicochemical properties for eco-friendly food packaging material. J. Mater. Res. Technol. 2023, 24, 1015–1033. [Google Scholar] [CrossRef]
- Darwish, M.M.; Elneklawi, M.S.; Mohamad, E.A. Aloe vera coated dextran sulfate/chitosan nanoparticles (Aloe Vera@DS/CS) encapsulating Eucalyptus essential oil with antibacterial potent property. J. Biomater. Sci. Polym. Ed. 2023, 34, 810–827. [Google Scholar] [CrossRef]
- Mohamad, E.A.; Gad, A.M.; Abd El-Rhman, R.H.; Darwish, M.M. Chitosan and Aloe vera decorated nanoparticulate system loaded with minoxidil as a suggested topical formulation for alopecia therapy. Adv. Nat. Sci. Nanosci. Nanotechnol. 2023, 14, 025002. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, D.; Li, S.; Chen, Z.; Liu, S.; Li, J. Silver@ quercetin nanoparticles with aggregation-induced emission for bioimaging in vitro and in vivo. Int. J. Mol. Sci. 2022, 23, 7413. [Google Scholar] [CrossRef]
- Ruhela, G.; Dhama, P.; Shanker, K.; Ding, X.; Sharma, A. Exploration of metabolomics of Phyllanthus emblica: From Ayurveda food to modern prospectives in quality control. Food Chem. Adv. 2023, 3, 100330. [Google Scholar] [CrossRef]
- Sun, N.; Jiang, X.; Meng, Q.; Jiang, H.; Yuan, Z.; Zhang, J. Preparation of nanoparticles loaded with quercetin and effects on bacterial biofilm and LPS-induced oxidative stress in Dugesia japonica. Appl. Biochem. Biotechnol. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Essa, D.; Kondiah, P.P.D.; Kumar, P.; Choonara, Y.E. Design of chitosan-coated, quercetin-loaded PLGA nanoparticles for enhanced PSMA-specific activity on LnCap prostate cancer cells. Biomedicines 2023, 11, 1201. [Google Scholar] [CrossRef]
- Bhadraiah, A.; Reddy, G.D.; Bharavi, K.; Devi, V.R.; Kumar, P.R. Albendazole encapsulation along with quercetin in chitosan-alginate microspheres enhances bioavailability and sustained release in broilers. Pharma Innov. J. 2023, 12, 3717–3723. [Google Scholar]
- Carrasco-Sandoval, J.; Aranda, M.; Henríquez-Aedo, K.; Fernández, M.; López-Rubio, A.; Fabra, M.J. Impact of molecular weight and deacetylation degree of chitosan on the bioaccessibility of quercetin encapsulated in alginate/chitosan-coated zein nanoparticles. Int. J. Biol. Macromol. 2023, 242, 124876. [Google Scholar] [CrossRef]
- Soliman, A.G.; Mahmoud, B.; Eldin, Z.E.; El-Shahawy, A.A.G.; Abdel-Gabbar, M. Optimized synthesis characterization and protective activity of quercetin and quercetin–chitosan nanoformula against cardiotoxicity that was induced in male Wister rats via anticancer agent: Doxorubicin. Cancer Nanotechnol. 2023, 14, 10. [Google Scholar]
- Elmowafy, M.; Shalaby, K.; Elkomy, M.H.; Alsaidan, O.A.; Gomaa, H.A.; Hendawy, O.M.; Abdelgawad, M.A.; Ali, H.M.; Ahmed, Y.M.; El-Say, K.M. Exploring the potential of quercetin/aspirin-loaded chitosan nanoparticles coated with Eudragit L100 in the treatment of induced-colorectal cancer in rats. Drug Deliv. Transl. Res. 2023, 13, 2568–2588. [Google Scholar]
- Hannan, A.; Akhtar, B.; Sharif, A.; Anjum, F.; Pasha, I.; Khan, A.; Akhtar, M.F.; Saleem, A. Quercetin-loaded chitosan nanoparticles ameliorate adjuvant-induced arthritis in rats by regulating anti-oxidant enzymes and downregulating pro- and inflammatory cytokines. Inflammopharmacology 2023, 31, 287–300. [Google Scholar] [CrossRef] [PubMed]
- Sabzini, M.; Pourmadadi, M.; Yazdian, F.; Khadiv-Parsi, P.; Rashedi, H. Development of chitosan/halloysite/graphitic carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells. Int. J. Biol. Macromol. 2023, 226, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Stepanić, V.; Kučerová-Chlupáčová, M. Review and chemoinformatic analysis of ferroptosis modulators with a focus on natural plant products. Molecules 2023, 28, 475. [Google Scholar]
- Liu, W.; Cui, X.; Zhong, Y.; Ma, R.; Liu, B.; Xia, Y. Phenolic metabolites as therapeutic in inflammation and neoplasms: Molecular pathways explaining their efficacy. Pharmacol. Res. 2023, 193, 106812. [Google Scholar] [CrossRef]
- Kirboğa, K.K.; Tekİn, B.; Demİr, M. Applications of turmeric starch and curcumin. Bayburt Üniversitesi Fen Bilim. 2023, 6, 96–122. [Google Scholar]
- Sourour, I.; Bedhiafi, T.; Sahir, F.; Hijji, Y.; Uddin, S.; Merhi, M.; Dermime, S.; Billa, N. Studies on Anti-Colon Cancer Potential of Nanoformulations of Curcumin and Succinylated Curcumin in Mannosylated Chitosan. Int. J. Biol. Macromol. 2023, 235, 123827. [Google Scholar]
- Abduh, M.S. Anticancer Analysis of CD44 Targeted Cyclosporine Loaded Thiolated Chitosan Nanoformulations for Sustained Release in Triple-Negative Breast Cancer. PREPRINT (Version 3). Available online: https://www.researchsquare.com/article/rs-2927895/v3 (accessed on 24 August 2023).
- Dash, R.; Yadav, M.; Biswal, J.; Chandra, A.; Goel, V.K.; Sharma, T.; Prusty, S.K.; Mohapatra, S. Modeling of chitosan modified PLGA atorvastatin-curcumin conjugate (AT-CU) nanoparticles, overcoming the barriers associated with PLGA: An approach for better management of atherosclerosis. Int. J. Pharm. 2023, 640, 123009. [Google Scholar] [CrossRef]
- Zarepour, A.; Egil, A.C.; Cokol Cakmak, M.; Esmaeili Rad, M.; Cetin, Y.; Aydinlik, S.; Ozaydin Ince, G.; Zarrabi, A. Fabrication of a dual-drug-loaded smart niosome-g-chitosan polymeric platform for lung cancer treatment. Polymers 2023, 15, 298. [Google Scholar] [CrossRef]
- Teng, L.; Zhang, Y.; Chen, L.; Shi, G. Fabrication of a curcumin encapsulated bioengineered nano-cocktail formulation for stimuli-responsive targeted therapeutic delivery to enhance anti-inflammatory, anti-oxidant, and anti-bacterial properties in sepsis management. J. Biomater. Sci. Polym. Ed. 2023, 34, 1–25. [Google Scholar]
- Kousar, K.; Naseer, F.; Abduh, M.S.; Kakar, S.; Gul, R.; Anjum, S.; Ahmad, T. Green synthesis of hyaluronic acid coated, thiolated chitosan nanoparticles for CD44 targeted delivery and sustained release of cisplatin in cervical carcinoma. Front. Pharmacol. 2022, 13, 1073004. [Google Scholar] [CrossRef] [PubMed]
- Montoya-Hinojosa, E.I.; Salazar-Sesatty, H.A.; Alvizo-Baez, C.A.; Terrazas-Armendariz, L.D.; Luna-Cruz, I.E.; Alcocer-González, J.M.; Villarreal-Treviño, L.; Flores-Treviño, S. Antibiofilm and antimicrobial activity of curcumin-chitosan nanocomplexes and trimethoprim-sulfamethoxazole on Achromobacter, Burkholderia, and Stenotrophomonas isolates. Expert Rev. Anti-Infect. Ther. 2023, 21, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Alhasan, A.H.; Haneen, O.M.A.R.; Alhindi, Y.; Almalik, A.; Alghamdi, W.M. Immune Suppressing Nanoparticles for Robust Sensitization of Drug-Resistant Cancer. U.S. Patent Application No. 17/969,587, 10 August 2023. [Google Scholar]
- Hong, Y.; Zhao, B.; Gu, Z.; Cheng, L.; Li, Z.; Li, C.; Ban, X. Method for Preparing High-load Oral Paclitaxel Capsule for Slow Release in Colon. U.S. Patent Application No. 18/190,372, 27 July 2023. [Google Scholar]
- Choi, D.R.; Nguyen, T.T.T.; Lee, J.S.; Hettilage, S.D.S. Eye Drops Containing Chitosan Nanoparticles in Which Pdrn Is Encapsulated, and Preparation Method Therefor. U.S. Patent Application No. 17/437,290, 26 May 2022. [Google Scholar]
- Park, J.O.; Kim, C.S.; Choi, E.P.; Go, G.J.; Song, H.W.; Chang, Y.J.; Yoo, A. Chitosan Porous Structure-Based Magnetically Actuated Microrobot. U.S. Patent Application No. 17/413,993, 29 September 2022. [Google Scholar]
- Md, S.; Abdullah, S.T.; Alhakamy, N.A. In Situ Gelling Composition as a pH-Selective and Mucoadhesive Sustained Release Drug Delivery System. U.S. Patent 11,260,025, 1 March 2022. [Google Scholar]
- Sun, C.C.; Liu, D.M. Synergistic Anti-Viral Pharmaceutical Composition Containing Targeting Nanoparticles. U.S. Patent Application No. 17/926,663, 27 July 2023. [Google Scholar]
- Gao, J.; Hsu, E.; Cheung, A. Dually Derivatized Chitosan Nanoparticles and Methods of Making and Using the Same for Gene Transfer In Vivo. U.S. Patent 11,623,011, 11 April 2023. [Google Scholar]
- Suresh, S.; Rao, V.U.S.; Murthy, S.N.; Shivakumar, H.N. Cisplatin Nanoparticle Composition, Method for the Preparation Thereof. U.S. Patent Application No. 17/796,088, 23 March 2023. [Google Scholar]
- Choi, W.I.; Kim, S.H.; Shin, Y.C.; Lee, J.H.; Kim, J.H.; Yun, Y.S. Nanocapsules Coated with Chitosan and Use Thereof. U.S. Patent Application No. 17/416,995, 24 February 2022. [Google Scholar]
- Kargapolov, Y.; Fomenko, V. New Method of Synthesis of Chitosan Derivatives and Uses Thereof. U.S. Patent Application No. 17/798,583, 30 March 2023. [Google Scholar]
S.No. | Patent Number | Title | Inventors | Year | Reference |
---|---|---|---|---|---|
1 | US20230248659A1 | Immune-suppressing nanoparticles for robust sensitization of drug-resistant cancer | Ali H. ALHASAN Haneen OMAR, Roa’ FARDOUS, Yasser ALHINDI, Abdulaziz Almalik, Waleed M. ALGHAMDI | 2022 | [117] |
2 | US20230233511A1 | Method for Preparing High-load Oral Paclitaxel Capsule for Slow Release in Colon | Yan Hong, Beibei Zhao, Zhengbiao Gu, Li Cheng, Zhaofeng Li, Caiming Li, Xiaofeng BAN | 2022 | [118] |
3 | US20220160624A1 | Eye drops containing chitosan nanoparticles in which pdrn is encapsulated, and the preparation method therefore | Dong Rack Choi, De Zoysa Pathmendrra Mahanama, Thi Thu Thao Nguyen, Ji Soo Lee, Sajith Dananjaya Sirimanna Hettilage | 2020 | [119] |
4 | US20220305243A1 | Chitosan porous structure-based magnetically actuated microrobot | Jong Oh Park, Chang Sei KIM, Eun Pyo CHOI, Gwang Jun GO, Hyeong Woo SONG, Yeong Jun CHANG, Ami Yoo | 2020 | [120] |
5 | US11260025B1 | In situ gelling composition as a pH-selective and mucoadhesive sustained release drug delivery system | Shadab Md, Samaa T. Abdullah, Nabil A. Alhakamy | 2021 | [121] |
6 | US20230233473A1 | Synergistic anti-viral pharmaceutical composition containing targeting nanoparticles | Chung Chin SUN, Dean Mo Liu | 2021 | [122] |
7 | US11623011B2 | Dually derivatized chitosan nanoparticles and methods of making and using the same for gene transfer in vivo | Jun Gao, Eric Hsu, Anthony Cheung | 2019 | [123] |
8 | US20230092662A1 | Cisplatin nanoparticle composition, method for the preparation thereof | Sarasija Suresh, Vishal Uchila Shishir Rao, S. Narasimha Murthy, H.N. Shivakumar | 2018 | [124] |
9 | US20220054425A1 | Nanocapsules coated with chitosan and use thereof | Won Il Choi, Sung Hyun Kim, Yong Chul Shin, Jeung Hoon Lee, Jin Hwa Kim, Young Sung Yun | 2019 | [125] |
10 | US20230096466A1 | New method of synthesis of chitosan derivatives and uses thereof | Yuriy Kargapolov, Vladislav FOMENKO | 2020 | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sangnim, T.; Dheer, D.; Jangra, N.; Huanbutta, K.; Puri, V.; Sharma, A. Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics 2023, 15, 2361. https://doi.org/10.3390/pharmaceutics15092361
Sangnim T, Dheer D, Jangra N, Huanbutta K, Puri V, Sharma A. Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics. 2023; 15(9):2361. https://doi.org/10.3390/pharmaceutics15092361
Chicago/Turabian StyleSangnim, Tanikan, Divya Dheer, Nitin Jangra, Kampanart Huanbutta, Vivek Puri, and Ameya Sharma. 2023. "Chitosan in Oral Drug Delivery Formulations: A Review" Pharmaceutics 15, no. 9: 2361. https://doi.org/10.3390/pharmaceutics15092361
APA StyleSangnim, T., Dheer, D., Jangra, N., Huanbutta, K., Puri, V., & Sharma, A. (2023). Chitosan in Oral Drug Delivery Formulations: A Review. Pharmaceutics, 15(9), 2361. https://doi.org/10.3390/pharmaceutics15092361