Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis
Abstract
:1. Introduction
2. Etiology, Risk Factors, and Prognostic Factors
3. Roles of T Cells, B Cells, and Myeloid Cells in Multiple Sclerosis Pathophysiologies
3.1. T Lymphocytes
3.2. B Lymphocytes
3.3. Myeloid Cells
4. Disease-Modifying Therapies
4.1. Low-Efficacy Disease-Modifying Therapies
4.1.1. Interferon Beta
4.1.2. Glatiramer Acetate
4.1.3. Teriflunomide
4.2. Moderate-Efficacy Disease-Modifying Therapies
Dimethyl Fumarate
4.3. Moderate- to High-Efficacy Disease-Modifying Therapies
4.3.1. Sphingosine-1-Phosphate Receptor Modulators
Fingolimod
Siponimod
Ozanimod
Ponesimod
4.3.2. Cladribine
4.4. High-Efficacy Disease-Modifying Therapies
4.4.1. Natalizumab
4.4.2. Alemtuzumab
4.4.3. B-Cell-Depleting Therapies: Rituximab, Ocrelizumab, and Ofatumumab
4.5. Use of Disease-Modifying Therapies in Multiple Sclerosis
4.5.1. Escalation Strategy
4.5.2. Early High-Efficacy Therapy (HET)
4.5.3. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis
4.5.4. De-Escalation and Therapy Suspension
4.5.5. Pregnancy, Lactation and DMT for Multiple Sclerosis Patients
Author Contributions
Funding
Conflicts of Interest
References
- Thompson, A.J.; Baranzini, S.E.; Geurts, J.; Hemmer, B.; Ciccarelli, O. Multiple Sclerosis. Lancet 2018, 391, 1622–1636. [Google Scholar] [CrossRef]
- Lucchinetti, C.F.; Brück, W.; Parisi, J.; Scheithauer, B.; Rodriguez, M.; Lassmann, H. Heterogeneity of multiple sclerosis lesions: Implication for the pathogenesis of demyelination. Ann. Neurol. 2000, 47, 707–717. [Google Scholar] [CrossRef]
- Frohman, E.M.; Racke, M.K.; Raine, C.S. Multiple sclerosis- the plaques and its pathogenesis. N. Engl. J. Med. 2006, 354, 942–955. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef]
- Müller, J.; Cagol, A.; Lorscheider, J.; Tsagkas, C.; Benkert, P.; Yaldizli, Ö.; Kuhle, J.; Derfuss, T.; Sormani, M.P.; Thompson, A.; et al. Harmonizing Definitions for Progression Independent of Relapse Activity in Multiple Sclerosis: A Systematic Review. JAMA Neurol. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Mahad, D.H.; Trapp, B.D.; Lassmann, H. Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol. 2015, 14, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Machado-Santos, J.; Saji, E.; Tröscher, A.R.; Paunovic, M.; Liblau, R.; Gabriely, G.; Bien, C.G.; Bauer, J.; Lassmann, H. The compartmentalized inflammatory response in the multiple sclerosis brain is composed of tissue-resident CD8+ T lymphocytes and B cells. Brain 2018, 141, 2066–2082. [Google Scholar] [CrossRef] [PubMed]
- Kutzelnigg, A.; Lucchinetti, C.F.; Stadelmann, C.; Brück, W.; Rauschka, H.; Bergmann, M.; Schmidbauer, M.; Parisi, J.E.; Lassmann, H. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain 2005, 128, 2705–2712. [Google Scholar] [CrossRef]
- Howell, O.W.; Reeves, C.A.; Nicholas, R.; Carassiti, D.; Radotra, B.; Gentleman, S.M.; Serafini, B.; Aloisi, F.; Roncaroli, F.; Magliozzi, R.; et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 2011, 134, 2755–2771. [Google Scholar] [CrossRef]
- Reich, D.S.; Lucchinetti, C.F.; Calabresi, P.A. Multiple Sclerosis. N. Engl. J. Med. 2018, 378, 169–180. [Google Scholar] [CrossRef]
- Baranzini, S.E.; Oksenberg, J.R. The genetics of multiple sclerosis from 0 to 200 in 50 years. Trends Genet. 2017, 33, 960–970. [Google Scholar] [CrossRef]
- Wang, J.; Jelcic, I.; Mühlenbruch, L.; Haunerdinger, V.; Toussaint, N.C.; Zhao, Y.; Cruciani, C.; Faigle, W.; Naghavian, R.; Foege, M.; et al. HLA-DR15 molecules jointly shape an autoreactive T cell repertoire in multiple sclerosis. Cell 2020, 183, 1264–1281. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 2013, 45, 1353–1360. [Google Scholar] [CrossRef] [PubMed]
- International Multiple Sclerosis Genetics Consortium. Multiple sclerosis genomic map implicates peripheral immune cells and microglia susceptibility. Science 2019, 365, eaav7188. [Google Scholar] [CrossRef] [PubMed]
- Olsson, T.; Barcellos, L.F.; Alfredsson, L. Interactions between genetic, lifestyle and environmental risk factors for multiple sclerosis. Nat. Rev. Neurol. 2017, 13, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Pri. 2018, 4, 43. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.-P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein-Barr virus in multiple sclerosis: Theory and emerging immunotherapies. Trends Mol. Med. 2020, 26, 296–310. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Lanz, T.V.; Brewer, R.C.; Ho, P.P.; Moon, J.S.; Jude, K.M.; Fernandez, D.; Fernandes, R.A.; Gomez, A.M.; Nadj, G.S.; Bartley, C.M.; et al. Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Nature 2022, 603, 321–327. [Google Scholar] [CrossRef]
- Bar-Or, A.; Li, R. Cellular immunology of relapsing multiple sclerosis: Interactions, checks, and balances. Lancet Neurol. 2021, 20, 470–483. [Google Scholar] [CrossRef]
- Rotstein, D.; Montalban, X. Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat. Rev. Neurol. 2019, 15, 287–300. [Google Scholar] [CrossRef]
- Kebir, H.; Kreymborg, K.; Ifergan, I.; Dodelet-Devillers, A.; Cayrol, R.; Bernard, M.; Giuliani, F.; Arbour, N.; Becher, B.; Prat, A.; et al. Human Th17 lymphocytes promote blood-brain-barrier disruption and central nervous system inflammation. Nat. Med. 2007, 13, 1173–1175. [Google Scholar] [CrossRef] [PubMed]
- Van Langelaar, J.; van der Vuurst de Vries, R.M.; Janssen, M.; Wierenga-Wolf, A.F.; Spilt, I.M.; Siepman, T.A.; Dankers, W.; Verjans, G.M.G.M.; de Vries, H.E.; Lubberts, E.; et al. T helper 17.1 cells associate with multiple sclerosis disease activity: Perspectives for early intervention. Brain 2018, 141, 1334–1349. [Google Scholar] [CrossRef] [PubMed]
- Venken, K.; Hellings, N.; Thewissen, M.; Somers, V.; Hensen, K.; Rummens, J.L.; Medaer, R.; Hupperts, R.; Stinissen, P. Compromised CD4+CD25high regulatory T cell function in patients with relapsing-remitting multiple sclerosis is correlated with a reduced frequency of FOXP3-positive cells and reduced FOXP3 expression at the single-cell level. Immunology 2008, 123, 418–428. [Google Scholar] [CrossRef] [PubMed]
- Kitz, A.; Singer, E.; Hafler, D. Regulatory T cells from discovery to autoimmunity. Cold Spring Harb. Perspect. Med. 2018, 14, a029041. [Google Scholar] [CrossRef]
- Lassmann, H. Multiple sclerosis pathology. Cold Spring Harb. Perspect. Med. 2018, 8, a028936. [Google Scholar] [CrossRef]
- Annibali, V.; Ristori, G.; Angelini, D.F.; Serafini, B.; Mechelli, R.; Cannoni, S.; Romano, S.; Paolillo, A.; Abderrahim, H.; Diamantini, A.; et al. CD161highCD8+T cells bear potential in multiple sclerosis. Brain 2011, 134, 542–554. [Google Scholar] [CrossRef]
- Mexhitaj, I.; Nyirenda, M.H.; Li, R.; O’Mahony, J.; Rezk, A.; Rozenberg, A.; Moore, C.S.; Johnson, T.; Sadovnick, D.; Collins, D.L.; et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain 2019, 142, 617–632. [Google Scholar] [CrossRef]
- Hauser, S.L.; Waubant, E.; Arnold, D.L.; Vollmer, T.; Antel, J.; Fox, R.J.; Bar-Or, A.; Panzara, M.; Sarkar, N.; Agarwal, S.; et al. B-Cell Depletion with Rituximab in Relapsing–Remitting Multiple Sclerosis. N. Engl. J. Med. 2008, 358, 676–688. [Google Scholar] [CrossRef]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- Bar-Or, A.; Fawaz, L.; Fan, B.; Darlington, P.J.; Rieger, A.; Ghorayeb, C.; Calabresi, P.A.; Waubant, E.; Hauser, S.L.; Zhang, J.; et al. Abnormal B cell cytokines responses a trigger of T cell-mediated disease in MS? Ann. Neurol. 2010, 67, 452–461. [Google Scholar] [CrossRef]
- Li, R.; Rezk, A.; Miyazaki, Y.; Hilgenberg, E.; Touil, H.; Shen, P.; Moore, C.S.; Michel, L.; Althekair, F.; Rajasekharan, S.; et al. Proinflammatory GM-CSF-producing B cells in multiple sclerosis and B cell depletion therapy. Sci. Transl. Med. 2015, 7, 310ra166. [Google Scholar] [CrossRef]
- Barr, T.A.; Shen, P.; Brown, S.; Lampropoulou, V.; Roch, T.; Lawrie, S.; Fan, B.; O’Connor, R.A.; Anderton, S.M.; Bar-Or, A.; et al. B cell depletion therapy ameliorates autoimmune disease through ablation of IL-6-producing B cells. J. Exp. Med. 2012, 209, 1001–1010. [Google Scholar] [CrossRef] [PubMed]
- Jelcic, I.; Al Nimer, F.; Wang, J.; Lentsch, V.; Planas, R.; Jelcic, I.; Madjovski, A.; Ruhrmann, S.; Faigle, W.; Frauenknecht, K.; et al. Memory B cells activate brain-homing autoreactive CD4+ T cells in multiple sclerosis. Cell 2018, 175, 85–100. [Google Scholar] [CrossRef] [PubMed]
- Claes, N.; Fraussen, J.; Vanheusden, M.; Hellings, N.; Stinissen, P.; Van Wijmeersch, B.; Hupperts, R.; Somers, V. Age-associated B cells with proinflammatory characteristics are expanding in a proportion of multiple sclerosis patients. J. Immunol. 2016, 197, 4576–4583. [Google Scholar] [CrossRef] [PubMed]
- Van Langelaar, J.; Rijvers, L.; Janssen, M.; Wierenga-Wolf, A.F.; Melief, M.J.; Siepman, T.A.; de Vries, H.E.; Unger, P.A.; van Ham, S.M.; Hintzen, R.Q.; et al. Induction of brain-inflitrating T-bet-expressing B cells in multiple sclerosis. Ann. Neurol. 2019, 86, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Yong, V.W. When encephalitogenic T cells collaborate with microglia in multiple sclerosis. Nat. Rev. Neurol. 2019, 15, 704–717. [Google Scholar] [CrossRef]
- Lloyd, A.F.; Miron, V.E. The pro-remyelination properties of microglia in the central nervous system. Nat. Rev. Neurol. 2019, 15, 447–458. [Google Scholar] [CrossRef]
- Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol. 2015, 15, 545–558. [Google Scholar] [CrossRef]
- Charabati, M.; Wheeler, M.A.; Weiner, H.L.; Quintana, F.J. Multiple sclerosis: Neuroimmune crosstalk and therapeutic targeting. Cell 2023, 186, 1309–1327. [Google Scholar] [CrossRef]
- IIaria, C.; Derfuss, T.; Galli, E. Update on treatment in multiple sclerosis. Presse Med. 2021, 50, 104068. [Google Scholar]
- Simpson, A.; Mowry, E.M.; Newsome, S. Early aggressive treatment approaches for multiple sclerosis. Curr. Treat. Options Neurol. 2021, 23, 19. [Google Scholar] [CrossRef] [PubMed]
- Freeman, L.; Freeman, L.; Longbrake, E.E.; Coyle, P.K.; Hendin, B.; Vollmer, T. High-efficacy therapies for treatment-naïve individuals with relapsing-remitting multiple sclerosis. CNS Drugs 2022, 36, 1285–1299. [Google Scholar] [CrossRef]
- Calabresi, P.A.; Kieseier, B.C.; Arnold, D.L.; Balcer, L.J.; Boyko, A.; Pelletier, J.; Liu, S.; Zhu, Y.; Seddighzadeh, A.; Hung, S.; et al. Pegylated interferon β-1a for relapsing remitting multiple sclerosis (ADVANCE): A randomized phase 3, double-blind study. Lancet Neurol. 2014, 13, 657–665. [Google Scholar] [CrossRef] [PubMed]
- Dhib-Jalbut, S.; Marks, S. Interferon β mechanisms of action in multiple sclerosis. Neurology 2010, 74, S17–S24. [Google Scholar] [CrossRef] [PubMed]
- Elbers, G.C.; Reder, A.T.; Traboulsee, A.; Li, D.; Langdon, D.; Goodin, D.S.; Wolf, C.; Beckmann, K.; Konieczny, A.; Investigators of the 16-Year Long-Term Follow-Up Study. Long-term follow-up of the original interferon-beta1b trial in multiple sclerosis: Design and lessons from a 16-year observational study. Clin. Ther. 2009, 31, 1724–1736. [Google Scholar] [CrossRef]
- Reder, A.T.; Ebers, G.C.; Traboulsee, A.; Li, D.; Langdon, D.; Goodin, D.S.; Bogumil, T.; Beckmann, K.; Konieczny, A.; Investigators of the 16-Year Long-Term Follow-Up Study. Cross-sectional study assessing long-term safety of interferon-β1b for relapsing remitting MS. Neurology 2010, 74, 1877–1885. [Google Scholar] [CrossRef]
- Goodin, D.S.; Reder, A.T.; Ebers, G.C.; Cutter, G.; Kremenchutzky, M.; Oger, J.; Langdon, D.; Rametta, M.; Beckmann, K.; DeSimone, T.M.; et al. Survival in MS: A randomized cohort study of 21 years after the start of the pivotal IFNβ1b trial. Neurology 2012, 78, 1315–1322. [Google Scholar] [CrossRef]
- PRISMS Study Group. Randomized double-blind placebo-controlled study of interferon β1-a in relapsing/remitting multiple sclerosis PRISM (Prevention of Relapses and Disability by Interferon β-1a Subcutaneously in Multiple Sclerosis) Study Group. Lancet 1998, 352, 1498–1504. [Google Scholar] [CrossRef]
- PRISMS Study Group and the University of British Columbia. PRISM-4: Long-term efficacy of interferon-β1a in relapsing MS. Neurology 2001, 56, 1628–1636. [Google Scholar] [CrossRef]
- Kappos, L.; Traboulsee, A.; Constantinescu, C.; Erälinna, J.P.; Forrestal, F.; Jongen, P.; Pollard, J.; Sandberg-Wollheim, M.; Sindic, C.; Stubinski, B.; et al. Long-term subcutaneous interferon β-1a therapy in patients with relapsing-remitting MS. Neurology 2006, 67, 944–953. [Google Scholar] [CrossRef]
- Uitdehagg, B.; Constantinescu, C.; Cornelisse, P.; Jeffery, D.; Kappos, L.; Li, D.; Sandberg-Wollheim, M.; Traboulsee, A.; Verdun, E.; Rivera, V.; et al. Impact of exposure to interferon β-1a on outcomes in patients with relapsing remitting multiple sclerosis. Exploratory analyses from the PRISMS long-term follow-up study. Ther. Adv. Neurol. Disord. 2011, 4, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kieseier, B.C.; Arnold, D.L.; Balcer, L.J.; Boyko, A.A.; Pelletier, J.; Liu, S.; Zhu, Y.; Seddighzadeh, A.; Hung, S.; Deykin, A.; et al. Peginterferon β-1a in multiple sclerosis: 2-year results from ADVANCE. Mult. Scler. J. 2015, 21, 1025–1035. [Google Scholar] [CrossRef]
- Arnold, D.L.; Calabresi, P.A.; Kieseier, B.C.; Sheikh, S.I.; Deykin, A.; Zhu, Y.; Liu, S.; You, X.; Sperling, B.; Hung, S. Effect of peginterferon β-1a on MRI measures and achieving no evidence of disease activity: Results from a randomized controlled trial in relapsing-remitting multiple sclerosis. BMC Neurol. 2014, 14, 240. [Google Scholar] [CrossRef]
- Chan, S.; Kingwell, E.; Oger, J.; Yoshida, E.; Tremlett, H. High-dose frequency β-interferon increase the risk of liver test abnormalities in multiple sclerosis: A longitudinal study. Mult. Scler. J. 2010, 17, 361–367. [Google Scholar] [CrossRef]
- Reder, A.T.; Oger, J.F.; Kappos, L.; O’Connor, P.; Rametta, M. Short-term and long-term safety and tolerability of interferon β-1b in multiple sclerosis. Mult. Scler. J. Relat. Disord. 2014, 3, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Thiel, S.; Langer-Gould, A.; Rockhoff, M.; Haghikia, A.; Queisser-Wahrendorf, A.; Gold, R.; Hellwig, K. Interferon-beta exposure during first trimester is safe in women with multiple sclerosis- a prospective cohort study from the German multiple sclerosis and pregnancy registry. Mult. Scler. J. 2016, 22, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Pozzilli, C.; Pugliatti, M.; ParadigMS Group. An overview of pregnancy-related issues in patients with multiple sclerosis. Eur. J. Neurol. 2015, 22, 34–39. [Google Scholar] [CrossRef]
- Krysko, K.M.; Bove, R.; Dobson, R.; Jokubaitis, V.; Hellwig, K. Treatment of women with multiple sclerosis planning pregnancy. Curr. Treat. Options Neurol. 2021, 23, 11. [Google Scholar] [CrossRef]
- Jakimovski, D.; Kolb, C.; Ramanathan, M.; Zivadinov, R.; Weinstock-Guttman, B. Interferon β for Multiple Sclerosis; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2018. [Google Scholar] [CrossRef]
- Lalive, P.H.; Neuhaus, O.; Benkhoucha, M.; Burger, D.; Hohlfeld, R.; Zamvil, S.S.; Weber, M.S. Glatiramer Acetate in the Treatment of Multiple Sclerosis. CNS Drugs 2011, 25, 401–414. [Google Scholar] [CrossRef]
- Johnson, K.P.; Brooks, B.R.; Cohen, J.A.; Ford, C.C.; Goldstein, J.; Lisak, R.P.; Myers, L.W.; Panitch, H.S.; Rose, J.W.; Schiffer, R.B. Copolymer 1 reduces relapse rate and improves disability in relapsing-remitting multiple sclerosis: Results of a phase III multicenter, double-blind, placebo-controlled trial. Neurology 1995, 45, 1268–1276. [Google Scholar] [CrossRef]
- Comi, G.; Filippi, M.; Wolinsky, J.S. European/Canadian multicenter, double-blind, randomized, placebo-controlled study of the effects of glatiramer acetate on magnetic resonance imaging–measured disease activity and burden in patients with relapsing multiple sclerosis. European/Canadian Glatiramer Acetate Study Group. Ann. Neurol. 2001, 49, 290–297. [Google Scholar]
- Khan, O.; Rieckmann, P.; Boyko, A.; Selmaj, K.; Zivadinov, R. Three times weekly glatiramer acetate in relapsing–remitting multiple sclerosis. Ann. Neurol. 2013, 73, 705–713. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Martinelli, V.; Rodegher, M.; Moiola, L.; Bajenaru, O.; Carra, A.; Elovaara, I.; Fazekas, F.; Hartung, H.P.; Hillert, J.; et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): A randomised, double-blind, placebo-controlled trial. Lancet 2009, 374, 1503–1511. [Google Scholar] [CrossRef]
- Comi, G.; Martinelli, V.; Rodegher, M.; Moiola, L.; Leocani, L.; Bajenaru, O.; Carra, A.; Elovaara, I.; Fazekas, F.; Hartung, H.P.; et al. Effects of early treatment with glatiramer acetate in patients with clinically isolated syndrome. Mult. Scler. J. 2013, 19, 1074–1083. [Google Scholar] [CrossRef] [PubMed]
- Sandberg-Wollheim, M.; Neudorfer, O.; Grinspan, A.; Weinstock-Guttman, B.; Haas, J.; Izquierdo, G.; Riley, C.; Ross, A.P.; Baruch, P.; Drillman, T.; et al. Pregnancy Outcomes from the Branded Glatiramer Acetate Pregnancy Database. Int. J. MS Care 2018, 20, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, A.; Pachner, A.; Menguy-Vacheron, F.; Kaplan, J.; Wiendl, H. Teriflunomide and its mechanisms of action in multiple sclerosis. Drugs 2014, 74, 659–674. [Google Scholar] [CrossRef]
- O’Connor, P.; Wolinsky, J.S.; Confavreux, C.; Comi, G.; Kappos, L.; Olsson, T.P.; Benzerdjeb, H.; Truffinet, P.; Wang, L.; Miller, A.; et al. Randomized trial of oral teriflunomide for relapsing remitting multiple sclerosis. N. Engl. J. Med. 2011, 365, 1293–1303. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; O’Connor, P.; Comi, G.; Freedman, M.S.; Miller, A.E.; Olsson, T.P.; Wolinsky, J.S.; Bagulho, T.; Delhay, J.L.; Dukovic, D.; et al. Oral teriflunomide for patients with relapsing remitting multiple sclerosis (TOWER): A randomized, double-blind, placebo-controlled, phase 3 trial. Lancet Neurol. 2014, 13, 247–256. [Google Scholar] [CrossRef]
- Vermersch, P.; Gold, R.; Meca-Lallana, J.; Thangavelu, K.; Truffinet, P.; Mandel, M.; Cavalier, S.; Coyle, P. Treatment satisfaction with teriflunomide in patients switching from a prior disease-modifying therapy: Results from the Phase 3 TENERE extension and Phase 4 Teri-PRO clinical trials. In Proceedings of the 70th AN of AAN 2018, Los Angeles, CA, USA, 21–27 April 2018. [Google Scholar]
- Kappos, L.; Burcklen, M.; Freedman, M.S.; Fox, R.; Havrdova, E.K.; Hennessy, B.; Hohlfeld, R.; Lublin, F.; Montalban, X.; Pozzilli, C. Efficacy and safety of ponesimod compared to teriflunomide in patients with relapsing remitting multiple sclerosis: Results of the randomized, active-controlled, double-blind, parallel-group Phase 3 OPTIMUM study. In Proceedings of the 35th Congress of ECTRIMS 2019, Stockholm, Sweden, 11–13 September 2019. [Google Scholar]
- Hauser, S.L.; Bar-Or, A.; Cohen, J.A.; Comi, G.; Correale, J.; Coyle, P.K.; Cross, A.H.; de Seze, J.; Leppert, D.; Montalban, X.; et al. Ofatumumab versus Teriflunomide in Multiple Sclerosis. N. Engl. J. Med. 2020, 383, 546–557. [Google Scholar] [CrossRef]
- Radue, E.W.; Sprenger, T.; Gaetano, L.; Mueller-Lenke, N.; Cavalier, S.; Thangavelu, K.; Panzara, M.A.; Donaldson, J.E.; Woodward, F.M.; Wuerfel, J.; et al. Teriflunomide slows BVL in relapsing MS: A reanalysis of the TEMSO MRI data set using SIENA. Neurol. Neuroimmunol. Neuroinflamm. 2017, 4, e390. [Google Scholar] [CrossRef] [PubMed]
- Zivadinov, R.; Dwyer, M.G.; Carl, E.; Poole, E.M.; Cavalier, S.; Briassouli, P.; Bergsland, N. Slowing of brain atrophy with teriflunomide and delayed conversion to clinically definite MS. Ther. Adv. Neurol. Disord. 2020, 13, 17562864209970754. [Google Scholar] [CrossRef] [PubMed]
- Miller, A. An updated review of teriflunomide’s use in multiple sclerosis. Neurodegener. Dis. Manag 2021, 11, 387–409. [Google Scholar]
- Aubagio (Teriflunomide) Prescribing Information; Genzyme Corp: Cambridge, MA, USA, 2019.
- FDA. Aubagio [Package Insert]; Genzyme Corporation: Cambridge, MA, USA, 2012. [Google Scholar]
- Linker, R.A.; Lee, D.H.; Ryan, S.; van Dam, A.M.; Conrad, R.; Bista, P.; Zeng, W.; Hronowsky, X.; Buko, A.; Chollate, S.; et al. Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 2011, 134, 678–692. [Google Scholar] [CrossRef]
- Gold, R.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Giovannoni, G.; Selmaj, K.; Tornatore, C.; Sweetser, M.T.; Yang, M.; Sheikh, S.I.; et al. Placebo-Controlled Phase 3 Study of Oral BG-12 for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2012, 367, 1098–1107. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.J.; Miller, D.H.; Phillips, J.T.; Hutchinson, M.; Havrdova, E.; Kita, M.; Yang, M.; Raghupathi, K.; Novas, M.; Sweetser, M.T.; et al. Placebo-Controlled Phase 3 Study of Oral BG-12 or Glatiramer in Multiple Sclerosis. N. Engl. J. Med. 2012, 367, 1087–1097. [Google Scholar] [CrossRef]
- Jordan, A.L.; Yang, J.; Fisher, C.J.; Racke, M.K.; Mao-Draayer, Y. Progressive multifocal leukoencephalopathy in dimethyl fumarate-treated multiple sclerosis patients. Mult. Scler. J. 2022, 28, 7–15. [Google Scholar] [CrossRef]
- Gold, R.; Arnold, D.L.; Bar-Or, A.; Fox, R.J.; Kappos, L.; Chen, C.; Parks, B.; Miller, C. Safety and efficacy of delayed-release dimethyl fumarate in patients with relapsing-remitting multiple sclerosis: 9 years’ follow-up of DEFINE, CONFIRM, and ENDORSE. Ther. Adv. Neurol. Disord. 2020, 13, 175628642091500. [Google Scholar] [CrossRef]
- Varyte, G.; Arlauskienė, A.; Ramašauskaitė, D. Pregnancy and multiple sclerosis: An update. Curr. Opin. Obstet. Gynecol. 2021, 33, 378–383. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; O’Connor, P.; Polman, C.; Hohlfeld, R.; Calabresi, P.; Selmaj, K.; Agoropoulou, C.; Leyk, M.; Zhang-Auberson, L.; et al. A placebo-controlled trial of oral fingolimod in relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 387–401. [Google Scholar] [CrossRef]
- Calabresi, P.A.; Radue, E.W.; Goodin, D.; Jeffery, D.; Rammohan, K.W.; Reder, A.T.; Vollmer, T.; Agius, M.A.; Kappos, L.; Stites, T.; et al. Safety and efficacy of fingolimod in patients with relapsing remitting multiple sclerosis (FREEDOM II): A double-blind randomized, placebo-controlled, phase 3 trial. Lancet Neurol. 2014, 13, 545–556. [Google Scholar] [CrossRef]
- Cohen, J.A.; Barkhof, F.; Comi, G.; Hartung, H.P.; Khatri, B.O.; Montalban, X.; Pelletier, J.; Capra, R.; Gallo, P.; Izquierdo, G.; et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010, 362, 402–415. [Google Scholar] [CrossRef]
- Fischer-Barnicol, B.; Oechtering, J.; Kuhle, J.; Lorscheider, J.; Kappos, L.; Derfuss, T. Combination of teriflunomide and interferon as follow-up therapy after fingolimod-associated PML. Neurology 2021, 8, 1–5. [Google Scholar] [CrossRef]
- Kappos, L.; Bar-Or, A.; Cree, B.A.C.; Fox, R.J.; Giovannoni, G.; Gold, R.; Vermersch, P.; Arnold, D.L.; Arnould, S.; Scherz, T.; et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): A double-blind, randomized, phase 3. Lancet 2018, 391, 1263–1273. [Google Scholar] [CrossRef] [PubMed]
- Selmaj, K.; Li, D.K.; Hartung, H.P.; Hemmer, B.; Kappos, L.; Freedman, M.S.; Stüve, O.; Rieckmann, P.; Montalban, X.; Ziemssen, T.; et al. Siponimod for patients with relapsing-remitting multiple sclerosis (BOLD): An adaptive, dose-ranging, randomized, phase 2 study. Lancet Neurol. 2013, 12, 756–767. [Google Scholar] [CrossRef] [PubMed]
- Lamb, Y.N. Ozanimod: First approval. Drugs 2020, 80, 841–848. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.A.; Comi, G.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (RADIANCE): A multicenter, randomized, 24-month, phase 3 trial. Lancet Neurol. 2019, 18, 1021–1033. [Google Scholar] [CrossRef] [PubMed]
- Comi, G.; Kappos, L.; Selmaj, K.W.; Bar-Or, A.; Arnold, D.L.; Steinman, L.; Hartung, H.P.; Montalban, X.; Kubala Havrdová, E.; Cree, B.A.C.; et al. Safety and efficacy of ozanimod versus interferon beta-1a in relapsing multiple sclerosis (SUNBEAM): A multicenter, randomized, minimum 12-month, phase 3 trial. Lancet Neurol. 2019, 18, 1009–1020. [Google Scholar] [CrossRef]
- Derfuss, T.; Mehling, M.; Papadopoulou, A.; Bar-Or, A.; Cohen, J.A.; Kappos, L. Advances in oral immunomodulating therapies in relapsing multiple sclerosis. Lancet Neurol. 2020, 19, 336–347. [Google Scholar] [CrossRef]
- Giovannoni, G. Cladribine to Treat Relapsing Forms of Multiple Sclerosis. Neurotherapeutics 2017, 14, 874–887. [Google Scholar] [CrossRef]
- Giovannoni, G.; Comi, G.; Cook, S.; Rammohan, K.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Chang, P.; Hamlett, A.; Musch, B.; et al. A Placebo-Controlled Trial of Oral Cladribine for Relapsing Multiple Sclerosis. N. Engl. J. Med. 2010, 362, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G.; Soelberg Sorensen, P.; Cook, S.; Rammohan, K.; Rieckmann, P.; Comi, G.; Dangond, F.; Adeniji, A.K.; Vermersch, P. Safety and efficacy of cladribine tablets in patients with relapsing–remitting multiple sclerosis: Results from the randomized extension trial of the CLARITY study. Mult. Scler. J. 2018, 24, 1594–1604. [Google Scholar] [CrossRef]
- Comi, G.; Cook, S.; Giovannoni, G.; Rieckmann, P.; Sørensen, P.S.; Vermersch, P.; Galazka, A.; Nolting, A.; Hicking, C.; Dangond, F. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult. Scler. Relat. Disord. 2019, 29, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Pakpoor, J.; Disanto, G.; Altmann, D.R.; Pavitt, S.; Turner, B.P.; Marta, M.; Juliusson, G.; Baker, D.; Chataway, J.; Schmierer, K. No evidence for higher risk of cancer in patients with multiple sclerosis taking cladribine. Neurol. Neuroimmunol. Neuroinflammation 2015, 2, e158. [Google Scholar] [CrossRef]
- Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. A randomized placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 354, 899–910. [Google Scholar] [CrossRef]
- Rudick, R.A.; Stuart, W.H.; Calabresi, P.A.; Confavreux, C.; Galetta, S.L.; Radue, E.W.; Lublin, F.D.; Weinstock-Guttman, B.; Wynn, D.R.; Lynn, F.; et al. Natalizumab plus interferon beta-1b for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 354, 911–923. [Google Scholar] [CrossRef] [PubMed]
- TYSABRI (Natalizumab) [Package Insert] 10/2022 MEDICA Document Number: MH-0133; Biogen, Inc.: Cambridge, MA, USA, 2022.
- Ho, P.R.; Koendgen, H.; Campbell, N.; Haddock, B.; Richman, S.; Chang, I. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: A retrospective analysis of data from four clinical studies. Lancet Neurol. 2017, 16, 925–933. [Google Scholar] [CrossRef]
- Calabresi, P.A.; Giovannoni, G.; Confavreux, C.; Galetta, S.L.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; O’Connor, P.W.; Phillips, J.T.; et al. The incidence and significance of anti-natalizumab antibodies: Results from the AFFIRM and SENTINEL. Neurology 2007, 69, 1391–1403. [Google Scholar] [CrossRef]
- Sorenson, P.S.; Koch-Henriksen, N.; Petersen, T.; Ravnborg, M.; Oturai, A.; Sellebjerg, F. Recurrence or rebound of clinical relapses after discontinuation of natalizumab therapy in highly active MS patients. J. Neurol. 2014, 261, 1170–1177. [Google Scholar] [CrossRef]
- Kappos, L.; Radue, E.W.; Comi, G.; Montalban, X.; Butzkueven, H.; Wiendl, H.; Giovannoni, G.; Hartung, H.P.; Derfuss, T.; Naegelin, Y.; et al. Switching from natalizumab to fingolimod: A randomized, placebo-controlled study in RRMS. Neurology 2015, 85, 29–39. [Google Scholar] [CrossRef]
- Coles, A.J.; Fox, E.; Vladic, A.; Gazda, S.K.; Brinar, V.; Selmaj, K.W.; Koromets, A.; Stolyarov, I.; Bass, A.; Sullivan, H.; et al. Alemtuzumab more effective than interferon-1a at 5-year follow-up of CAMMS223 Clinical Trial. Neurology 2012, 78, 1069–1078. [Google Scholar] [CrossRef] [PubMed]
- Freedman, M.S. Insights into the Mechanisms of the Therapeutic Efficacy of Alemtuzumab in Multiple Sclerosis. J. Clin. Cell. Immunol. 2013, 4, 1000152. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.; Compston, A.; Selmaj, K.; Lake, S.; Moran, S.; Margolin, D.; Norris, K.; Tandon, P.K. Alemtuzumab vs. Interferon Beta-1a in Early Multiple Sclerosis. N. Engl. J. Med. 2008, 359, 1786–1801. [Google Scholar]
- Cohen, J.A.; Coles, A.J.; Arnold, D.L.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; Fisher, E.; et al. Alemtuzumab versus interferon beta 1a as first-line treatment for patients with relapsing-remitting multiple sclerosis: A randomised controlled phase 3 trial. Lancet 2012, 380, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.J.; Twyman, C.L.; Arnold, D.L.; Cohen, J.A.; Confavreux, C.; Fox, E.J.; Hartung, H.P.; Havrdova, E.; Selmaj, K.W.; Weiner, H.L.; et al. Alemtuzumab for patients with relapsing multiple sclerosis after disease-modifying therapy: A randomised controlled phase 3 trial. Lancet 2012, 380, 1829–1839. [Google Scholar] [CrossRef] [PubMed]
- Coles, A.J.; Cohen, J.A.; Fox, E.J.; Giovannoni, G.; Hartung, H.P.; Havrdova, E.; Schippling, S.; Selmaj, K.W.; Traboulsee, A.; Compston, D.A.S.; et al. Alemtuzumab CARE-MS II 5-year follow-up. Neurology 2017, 89, 1117–1126. [Google Scholar] [CrossRef] [PubMed]
- Wray, S.; Havrdova, E.; Snydman, D.R.; Arnold, D.L.; Cohen, J.A.; Coles, A.J.; Hartung, H.P.; Selmaj, K.W.; Weiner, H.L.; Daizadeh, N.; et al. Infection risk with alemtuzumab decreases over time: Pooled analysis of 6-year data from the CAMMS223, CARE-MS I, and CARE-MS II studies and the CAMMS03409 extension study. Mult. Scler. J. 2019, 25, 1605–1617. [Google Scholar] [CrossRef]
- McCarthy, C.L.; Tuohy, O.; Compston, D.A.S.; Kumararatne, D.S.; Coles, A.J.; Jones, J.L. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology 2013, 81, 872–876. [Google Scholar] [CrossRef]
- Frischer, J.M.; Bramow, S.; Dal-Bianco, A.; Lucchinetti, C.F.; Rauschka, H.; Schmidbauer, M.; Laursen, H.; Sorensen, P.S.; Lassmann, H. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain 2009, 132, 1175–1189. [Google Scholar] [CrossRef]
- Meyer, S.; Evers, M.; Jansen, J.H.M.; Buijs, J.; Broek, B.; Reitsma, S.E.; Moerer, P.; Amini, M.; Kretschmer, A.; Ten Broeke, T.; et al. New insights in Type I and II CD 20 antibody mechanisms-of-action with a panel of novel CD 20 antibodies. Br. J. Haematol. 2018, 180, 808–820. [Google Scholar] [CrossRef]
- Hawker, K.; O’Connor, P.; Freedman, M.S.; Calabresi, P.A.; Antel, J.; Simon, J.; Hauser, S.; Waubant, E.; Vollmer, T.; Panitch, H.; et al. Rituximab in patients with primary progressive multiple sclerosis: Results of a randomized double-blind placebo-controlled multicenter trial. Ann. Neurol. 2009, 66, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Margoni, M.; Preziosa, P.; Filippi, M.; Rocca, M.A. Anti-CD20 therapies for multiple sclerosis: Current status and future perspectives. J. Neurol. 2022, 269, 1316–1334. [Google Scholar] [CrossRef] [PubMed]
- Cencioni, M.T.; Mattoscio, M.; Magliozzi, R.; Bar-Or, A.; Muraro, P.A. B cells in multiple sclerosis—From targeted depletion to immune reconstitution therapies. Nat. Rev. Neurol. 2021, 17, 399–414. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Comi, G.; de Seze, J.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; et al. Ocrelizumab versus Placebo in Primary Progressive Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 209–220. [Google Scholar] [CrossRef]
- Bar-Or, A.; Grove, R.A.; Austin, D.J.; Tolson, J.M.; VanMeter, S.A.; Lewis, E.W.; Derosier, F.J.; Lopez, M.C.; Kavanagh, S.T.; Miller, A.E.; et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis. Neurology 2018, 90, e1805–e1814. [Google Scholar] [CrossRef]
- Alping, P.; Askling, J.; Burman, J.; Fink, K.; Fogdell-Hahn, A.; Gunnarsson, M.; Hillert, J.; Langer-Gould, A.; Lycke, J.; Nilsson, P.; et al. Cancer Risk for Fingolimod, Natalizumab, and Rituximab in Multiple Sclerosis Patients. Ann. Neurol. 2020, 87, 688–699. [Google Scholar] [CrossRef] [PubMed]
- Gelfand, J.M.; Cree, B.A.C.; Hauser, S.L. Ocrelizumab and Other CD20+ B-Cell-Depleting Therapies in Multiple Sclerosis. Neurotherapeutics 2017, 14, 835–841. [Google Scholar] [CrossRef]
- Lorscheider, J.; Benkert, P.; Lienert, C.; Hänni, P.; Derfuss, T.; Kuhle, J.; Kappos, L.; Yaldizli, Ö. Comparative analysis of natalizumab versus fingolimod as second-line treatment in relapsing-remitting multiple sclerosis. Mult. Scler. J. 2018, 24, 777–785. [Google Scholar] [CrossRef]
- Weideman, A.M.; Tapia-Maltos, M.A.; Johnson, K.; Greenwood, M.; Bielekova, B. Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front. Neurol. 2017, 8, 577. [Google Scholar] [CrossRef]
- Hauser, S.L.; Kappos, L.; Arnold, D.L.; Bar-Or, A.; Brochet, B.; Naismith, R.T.; Traboulsee, A.; Wolinsky, J.S.; Belachew, S.; Koendgen, H.; et al. Five years of ocrelizumab in relapsing multiple sclerosis: OPERA studies open-label extension. Neurology 2020, 95, e1854–e1867. [Google Scholar] [CrossRef]
- Coles, A.J.; Arnold, D.L.; Bass, A.D.; Boster, A.L.; Compston, D.A.S.; Fernández, Ó.; Havrdová, E.K.; Nakamura, K.; Traboulsee, A.; Ziemssen, T.; et al. Efficacy and safety of alemtuzumab over 6 years: Final results of the 4-year CARE-MS extension trial. Ther. Adv. Neurol. Disord. 2021, 14, 1756286420982134. [Google Scholar] [CrossRef] [PubMed]
- Granqvist, M.; Boremalm, M.; Poorghobad, A.; Svenningsson, A.; Salzer, J.; Frisell, T.; Piehl, F. Comparative effectiveness of rituximab and other initial treatment choices for multiple sclerosis. JAMA Neurol. 2018, 75, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Burton, M.D.; Chalmer, T.A.; Sellebjerg, F.; Barzinji, I.; Danny, B.; Christensen, J.R.; Christensen, M.K.; Hansen, V.; Illes, Z.; Jensen, H.B.; et al. Initial high-efficacy disease-modifying therapy in multiple sclerosis: A nationwide cohort study. Neurology 2020, 95, e1041–e1051. [Google Scholar]
- Harding, K.; Williams, O.; Willis, M.; Hrastelj, J.; Rimmer, A.; Joseph, F.; Tomassini, V.; Wardle, M.; Pickersgill, T.; Robertson, N.; et al. Clinical outcomes of escalation vs early intensive disease-modifying therapy in patients with multiple sclerosis. JAMA Neurol. 2019, 76, 536–541. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.L.; Coles, A.; Horakova, D.; Havrdova, E.; Izquierdo, G.; Prat, A.; Girard, M.; Duquette, P.; Trojano, M.; Lugaresi, A.; et al. MSBase Study Group. Association of intiail disease-modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA 2019, 321, 175–187. [Google Scholar] [CrossRef]
- He, A.; Merkel, B.; Brown, J.W.L.; Zhovits Ryerson, L.; Kister, I.; Malpas, C.B.; Sharmin, S.; Horakova, D.; Kubala Havrdova, E.; Spelman, T.; et al. Timing of high-efficacy therapy for multiple sclerosis: A retrospective observational cohort study. Lancet Neurol. 2020, 19, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Iaffaldano, P.; Lucisano, G.; Caputo, F.; Paolicelli, D.; Patti, F.; Zaffaroni, M.; Brescia Morra, V.; Pozzilli, C.; De Luca, G.; Inglese, M.; et al. Long-term disability trajectories in relapsing multiple sclerosis patients treated with early intensive or escalation treatment strategies. Ther. Adv. Neurol. Disord. 2021, 14, 17562864211019574. [Google Scholar] [CrossRef]
- Banwell, B.; Giovannoni, G.; Hawkes, C.; Lublin, F. Editor’s welcome and a working definition for a multiple sclerosis cure. Mult. Scler. J. Relat. Disord. 2013, 2, 65–67. [Google Scholar] [CrossRef]
- Luna, G.; Alping, P.; Burman, J.; Fink, K.; Fogdell-Hahn, A.; Gunnarsson, M.; Hillert, J.; Langer-Gould, A.; Lycke, J.; Nilsson, P.; et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab and injectable therapies. JAMA Neurol. 2020, 77, 184–191. [Google Scholar] [CrossRef]
- Baroncini, D.; Ghezzi, A.; Annovazzi, P.O.; Colombo, B.; Martinelli, V.; Minonzio, G.; Moiola, L.; Rodegher, M.; Zaffaroni, M.; Comi, G.; et al. Natalizumab versus fingolimod in patients with relapsing-remitting multiple sclerosis non-responding to first-line injectable therapies. Mult. Scler. J. 2016, 22, 1315–1326. [Google Scholar] [CrossRef]
- Boremalm, M.; Juto, A.; Axelsson, M.; Novakova, L.; Frisell, T.; Svenningsson, A.; Lycke, J.; Piehl, F.; Salzer, J. Natalizumab, rituximab, and fingolimod as escalation therapy in multiple sclerosis. Eur. J. Neurol. 2019, 26, 1060–1067. [Google Scholar] [CrossRef]
- Alping, P.; Frisell, T.; Novakova, L.; Islam-Jakobsson, P.; Salzer, J.; Björck, A.; Axelsson, M.; Malmeström, C.; Fink, K.; Lycke, J.; et al. Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann. Neurol. 2016, 79, 950–958. [Google Scholar] [CrossRef]
- Kister, I.; Spelman, T.; Alroughani, R.; Lechner-Scott, J.; Duquette, P.; Grand’Maison, F.; Slee, M.; Lugaresi, A.; Barnett, M.; Grammond, P.; et al. Discontinuing disease-modifying therapy in MS after a prolonged relapse-free period: A propensity score-matched study. J. Neurol. Neurosurg. Psychiatry 2016, 87, 1133–1137. [Google Scholar] [CrossRef] [PubMed]
- Schwehr, N.A.; Kuntz, K.M.; Enns, E.A.; Shippee, N.D.; Kingwell, E.; Tremlett, H.; Carpenter, A.F.; Butler, M.; BeAMS Study group. Informing medication discontinuation decisions among older adults with relapsing-onset multiple sclerosis. Drugs Aging 2020, 37, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Coyle, P.K. Management of women with multiple sclerosis through pregnancy and after childbirth. Ther. Adv. Neurol. Disord. 2016, 9, 198–210. [Google Scholar] [CrossRef] [PubMed]
- Confavreux, C.; Hutchinson, M.; Hours, M.M.; Cortinovis-Tourniaire, P.; Moreau, T. Pregnancy in Multiple Sclerosis Group. Rate of pregnancy-related relapse in multiple sclerosis. N. Engl. J. Med. 1998, 339, 285–291. [Google Scholar] [CrossRef]
- Dobson, R.; Jokubaitis, V.G.; Giovannoni, G. Change in pregnancy-associated multiple sclerosis relapse rates over time: A meta-analysis. Mult. Scler. J. Relat. Disord. 2020, 44, 102241. [Google Scholar] [CrossRef]
- Meinl, L.; Havla, J.; Hohlfeld, R.; Kümpfel, T. Recurrence of disease activity during pregnancy after cessation of fingolimod in multiple sclerosis. Mult. Scler. J. Relat. Disord. 2018, 24, 991–994. [Google Scholar] [CrossRef]
- Novi, G.; Ghezzi, A.; Pizzorno, M.; Lapucci, C.; Bandini, F.; Annovazzi, P.; Mancardi, G.L.; Uccelli, A. Dramatic rebounds of MS during pregnancy following fingolimod withdrawal. Neurol. Neuroimmunol. Neuroinflammation 2017, 4, 1–3. [Google Scholar] [CrossRef]
- Lapucci, C.; Baroncini, D.; Cellerino, M.; Boffa, G.; Callegari, I.; Pardini, M.; Novi, G.; Sormani, M.P.; Mancardi, G.L.; Ghezzi, A.; et al. Different MRI patterns in MS worsening after stopping fingolimod. Neurol. Neuroimmunol. Neuroinflammation 2019, 6, 1–8. [Google Scholar] [CrossRef]
- Das, G.; Damotte, V.; Gelfand, J.M.; Bevan, C.; Cree, B.A.C.; Do, L.; Green, A.J.; Hauser, S.L.; Bove, R. Rituximab before and during pregnancy: A systematic review, and a case series in MS and NMOSD. Neurol. Neuroimmunol. Neuroinflammation 2018, 5, e453. [Google Scholar] [CrossRef] [PubMed]
- Pakpoor, J.; Disanto, G.; Lacey, M.V.; Hellwig, K.; Giovannoni, G.; Ramagopalan, S.V. Breastfeeding and multiple sclerosis relapses: A meta-analysis. J. Neurol. 2012, 259, 2246–2248. [Google Scholar] [CrossRef] [PubMed]
- Almas, S.; Vance, J.; Baker, T.; Hale, T. Management of multiple sclerosis in the breastfeeding mother. Mult. Scler. J. Int. 2016, 2016, 6527458. [Google Scholar] [CrossRef] [PubMed]
Poor prognosis factors
|
Efficacy | DMT | * Reduction of ARR | Key Pharmacological Mechanisms | Important Adverse Effects | Risk of Malignancy on Long-Term Use | Safety for Pregnancy |
---|---|---|---|---|---|---|
Low | IFNβ | 32–35% (compared to placebo) | Reduce antigen presentation and T cell proliferation, shift Th1 to Th2 response, restore suppressor function | Deranged LFT, flu-like Sx, skin reaction, depression | Nil | Safe (non-teratogenic) |
Low | Glatiramer acetate | 29% (compared to placebo) | Alter T cell differentiation to induce proliferation of anti-inflammatory lymphocytes | Skin injection site reaction; lipoatrophy | Nil | Safe |
Low | Teriflunomide | 34% (compared to placebo) | Inhibit proliferation of autoreactive B and T lymphocytes | Nausea, diarrhea, hair loss, deranged LFT, infection | Nil | Contraindi-cated in pregnancy, need accelerated elimination and organ screening USG if accidental pregnancy |
Moderate | Dimethyl fumarate | 51% (compared to placebo) | Affect Nrf2 pathway activity, reduce release of inflammatory cytokines and activate antioxidant pathways (neuroprotective effects) | Flushing, gastrointestinal symptoms, lymphopenia, infection, low risk of PML (1 in 50,000); hypertension | Nil | Uncertain, inadequate data for conclusion |
Moderate to high | S1P receptor modulators | |||||
Fingolimod, | 54% (compared to placebo) | SIP receptor modulators: induce degradation of S1P receptors, trapping of lymphocytes in secondary lymphoid tissues | Headache, bradycardia, heart block, lymphopenia, infection especially herpes virus, PML (1 in 12,000), macular oedema, liver function derangement | Increased risk of malignancy (skin basal and Merkel cell carcinoma, melanoma) | Unsafe, increased risk of CA with exposure in first trimester, washout period of 2 months before pregnancy recommended | |
Siponimod | 55% (compared to placebo) | similar to fingolimod | Headache, bradycardia, heart block, lymphopenia, hypertension, liver function derangement | Uncertain | Uncertain, risk of CA with exposure in first trimester unknown, likely similar to fingolimod, washout period of 10 days before pregnancy recommended | |
Ozanimod | 48% (compared to IFNβ1a) | similar to fingolomod | URTI, UTI, liver function derangement, bradycardia, heart block, lymphopenia, hypertension, orthostatic hypotension, back pain | Uncertain | Uncertain | |
Moderate to high | Cladribine | 58% (compared to placebo) | Nucleoside analogue, induce apoptosis of lymphocytes, followed by repopulation of lymphocytes | Lymphopenia, infection (no case of PML reported) | Possible increased risk of malignancy | Uncertain, conception at least 6 months after last dose recommended |
High | Natalizumab | 69% (compared to placebo) | Bind to endothelial VCAM1 to prevent migration of lymphocytes to CNS | Infusion reaction, anti-drug antibody, infection, PML | Nil | Uncertain, SA and CA likely not elevated for exposure in first trimester |
High | Alemtuzumab | 52% (compared to IFNβ1a) | Depletion of lymphocytes, monocytes, NK cells followed by repopulation of lymphocytes | Infusion reaction, infections especially herpes virus (not PML), secondary autoimmunity, stroke, arterial dissection, hemophagocytosis | Possible increased risk of malignancy including melanoma, thyroid cancer | Uncertain conception at least 4 months after last dose |
High | Anti-CD 20 monoclonal antibodies | |||||
Ocrelizumab | 46% (compared to IFNβ1a) | Depletion of CD20+ B cells | Infusion reaction, infection, lymphopenia, hypogammaglobulinaemia | Possible increased risk of malignancy | Uncertain, low teratogenic risk, conception 2 months after last dose | |
Rituximab | 50% (compared to placebo) | Depletion of CD20+ B cells | Infusion reaction, infection, lymphopenia, hypogammaglobulinaemia | Nil | Uncertain, reduced B cell count in newborns, conception 1-3 months after last dose recommended | |
Ofatumumab | 59% (compared to teriflunomide) | Depletion of CD20+ B cells | Infection, lymphopenia, hypogammaglobulinaemia | Nil | Uncertain, conception 2 months after last dose recommended |
Disease-modifying therapies for relapsing multiple sclerosis. |
Continuous therapy:
Pulsed therapy:
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Chan, K.-H. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics 2024, 16, 120. https://doi.org/10.3390/pharmaceutics16010120
Lee C-Y, Chan K-H. Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics. 2024; 16(1):120. https://doi.org/10.3390/pharmaceutics16010120
Chicago/Turabian StyleLee, Chi-Yan, and Koon-Ho Chan. 2024. "Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis" Pharmaceutics 16, no. 1: 120. https://doi.org/10.3390/pharmaceutics16010120
APA StyleLee, C. -Y., & Chan, K. -H. (2024). Personalized Use of Disease-Modifying Therapies in Multiple Sclerosis. Pharmaceutics, 16(1), 120. https://doi.org/10.3390/pharmaceutics16010120