

Correction

Correction: Yadav et al. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression. Pharmaceutics 2022, 14, 1326

Neera Yadav 1,2, Amit Kumar Tripathi 3, Amna Parveen 1,*, Shama Parveen 2 and Monisha Banerjee 2,*

- College of Pharmacy, Gachon University, #191, Hambakmoeiro, Yeonsu-gu, Incheon 21936, Republic of Korea; vadavneera21@gachon.ac.kr
- Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India; shamaparveen1192@gmail.com
- ³ Electrophysiology Lab, School of Biomedical Engineering, Banaras Hindu University, Varanasi 221005, India; amitbt2008@gmail.com
- * Correspondence: amnaparvin@gmail.com (A.P.); monishabanerjee30@gmail.com (M.B.); Tel.: +82-32-820-4932 (A.P.); +91-799-120-0576 (M.B.)

Additional Affiliation

In the published publication [1], there was an error regarding the affiliation for Neera Yadav. In addition to affiliation 1, the updated affiliation should include: Molecular and Human Genetics Lab, Department of Zoology, University of Lucknow, Lucknow 226007, India.

Addition of Two Authors

Shama Parveen and Monisha Banerjee (the corresponding author) were not included as authors in the original publication [1]. The corrected Author Contributions statement appears here. Neera Yadav did not act as the corresponding author any more.

Shama Parveen: investigation, formal analysis, methodology;

Monisha Banerjee: project administration, funding acquisition, resources, supervision, writing—review and editing.

Addition of Acknowledgement

The authors also acknowledge Ratan Singh Ray, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, India, for the synthesis of nanoparticles; Birbal Sahni Institute of Palaeosciences (BSIP), Lucknow, for the SEM facility; Centre of Excellence, Higher Education Government of Uttar Pradesh for the cell culture facility at the Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow, Lucknow-226007, India.

The authors state that the scientific conclusions are unaffected. This correction was approved by the Academic Editor and Editor-in-Chief. The original publication has also been updated.

Citation: Yadav, N.; Tripathi, A.K.; Parveen, A.; Parveen, S.; Banerjee, M. Correction: Yadav et al. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression. *Pharmaceutics* 2022, 14, 1326. *Pharmaceutics* 2024, 16, 124. https://doi.org/10.3390/pharmaceutics16010124

Received: 12 December 2023 Accepted: 25 December 2023 Published: 18 January 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

Pharmaceutics **2024**, 16, 124

Reference

1. Yadav, N.; Tripathi, A.K.; Parveen, A.; Parveen, S.; Banerjee, M. PLGA-Quercetin Nano-Formulation Inhibits Cancer Progression via Mitochondrial Dependent Caspase-3,7 and Independent FoxO1 Activation with Concomitant PI3K/AKT Suppression. *Pharmaceutics* 2022, 14, 1326. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.