Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Formulation of Insulin-Loaded Sodium-Alginate Microparticles
2.2.2. Bradford Assay
2.2.3. Encapsulation Efficiency and Drug-Loading Capacity
2.2.4. Swelling Behavior
2.2.5. Morphology
2.2.6. In Vitro Dissolution
2.2.7. Enzymatic Stability
2.2.8. Caco-2 Cell Culture
2.2.9. Caco-2 Cell Viability Assay
2.2.10. Permeability Experiments
2.2.11. Transepithelial Electrical Resistance Measurements
2.2.12. Statistical Analysis
3. Results
3.1. Formulation of Insulin-Loaded Sodium-Alginate Microparticles
3.2. Encapsulation Efficiency and Drug-Loading Capacity
3.3. Swelling Behavior
3.4. Morphology
3.5. In Vitro Dissolution
3.6. Enzymatic Stability
3.7. Caco-2 Cell Viability Assay
3.8. Permeability Experiments
3.9. Transepithelial Electrical Resistance Measurements
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petersmann, A.; Müller-Wieland, D.; Müller, U.A.; Landgraf, R.; Nauck, M.; Freckmann, G.; Heinemann, L.; Schleicher, E. Definition, Classification and Diagnosis of Diabetes Mellitus. Exp. Clin. Endocrinol. Diabetes 2019, 127, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Khafagy, E.-S.; Morishita, M.; Onuki, Y.; Takayama, K. Current Challenges in Non-Invasive Insulin Delivery Systems: A Comparative Review. Adv. Drug Deliv. Rev. 2007, 59, 1521–1546. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.Y.; Martinez, J.; Dass, C.R. Oral Delivery of Insulin for Treatment of Diabetes: Status Quo, Challenges and Opportunities. J. Pharm. Pharmacol. 2016, 68, 1093–1108. [Google Scholar] [CrossRef] [PubMed]
- Peyrot, M.; Rubin, R.R.; Kruger, D.F.; Travis, L.B. Correlates of Insulin Injection Omission. Diabetes Care 2010, 33, 240–245. [Google Scholar] [CrossRef] [PubMed]
- Iyer, H.; Khedkar, A.; Verma, M. Oral Insulin—A Review of Current Status. Diabetes Obes. Metab. 2010, 12, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Spoorthi Shetty, S.; Halagali, P.; Johnson, A.P.; Spandana, K.M.A.; Gangadharappa, H.V. Oral Insulin Delivery: Barriers, Strategies, and Formulation Approaches: A Comprehensive Review. Int. J. Biol. Macromol. 2023, 242, 125114. [Google Scholar] [CrossRef] [PubMed]
- Gedawy, A.; Martinez, J.; Al-Salami, H.; Dass, C.R. Oral Insulin Delivery: Existing Barriers and Current Counter-Strategies. J. Pharm. Pharmacol. 2018, 70, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Choudhry, I.; Namdev, A.; Mishra, S.; Soni, S.; Hurkat, P.; Jain, A.; Jain, D. Oral Insulin: Myth or Reality. Curr. Diabetes Rev. 2018, 14, 497–508. [Google Scholar] [CrossRef]
- Karsdal, M.A.; Riis, B.J.; Mehta, N.; Stern, W.; Arbit, E.; Christiansen, C.; Henriksen, K. Lessons Learned from the Clinical Development of Oral Peptides. Br. J. Clin. Pharmacol. 2015, 79, 720–732. [Google Scholar] [CrossRef]
- Choonara, B.F.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. A Review of Advanced Oral Drug Delivery Technologies Facilitating the Protection and Absorption of Protein and Peptide Molecules. Biotechnol. Adv. 2014, 32, 1269–1282. [Google Scholar] [CrossRef]
- Maher, S.; Brayden, D.; Casettari, L.; Illum, L. Application of Permeation Enhancers in Oral Delivery of Macromolecules: An Update. Pharmaceutics 2019, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Jones, L.S.; Bam, N.B.; Randolph, T.W. Surfactant-Stabilized Protein Formulations: A Review of Protein-Surfactant Interactions and Novel Analytical Methodologies. In Therapeutic Protein and Peptide Formulation and Delivery; American Chemical Society: Washington, DC, USA, 1997; pp. 206–222. [Google Scholar]
- Mansoor, S.; Kondiah, P.P.D.; Choonara, Y.E.; Pillay, V. Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers 2019, 11, 1380. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, C.; Ren, S.; Pan, J.; Wang, Y.; Shen, Y.; Zeng, Z.; Cui, H.; Zhao, X. Versatile Oral Insulin Delivery Nanosystems: From Materials to Nanostructures. Int. J. Mol. Sci. 2022, 23, 3362. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Tang, G.; Hua, D.; Xiong, R.; Han, J.; Jiang, S.; Zhang, Q.; Huang, C. Stimuli-Responsive Bio-Based Polymeric Systems and Their Applications. J. Mater. Chem. B 2019, 7, 709–729. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Chen, L.; Duan, X.; Li, X.; Ren, H. Microparticles Based on Alginate/Chitosan/Casein Three-dimensional System for Oral Insulin Delivery. Polym. Adv. Technol. 2021, 32, 4352–4361. [Google Scholar] [CrossRef]
- Li, J.; Wu, H.; Jiang, K.; Liu, Y.; Yang, L.; Park, H.J. Alginate Calcium Microbeads Containing Chitosan Nanoparticles for Controlled Insulin Release. Appl. Biochem. Biotechnol. 2021, 193, 463–478. [Google Scholar] [CrossRef] [PubMed]
- Sarmento, B.; Ribeiro, A.; Veiga, F.; Sampaio, P.; Neufeld, R.; Ferreira, D. Alginate/Chitosan Nanoparticles Are Effective for Oral Insulin Delivery. Pharm. Res. 2007, 24, 2198–2206. [Google Scholar] [CrossRef]
- Chen, Y.; Song, H.; Huang, K.; Guan, X. Novel Porous Starch/Alginate Hydrogels for Controlled Insulin Release with Dual Response to PH and Amylase. Food Funct. 2021, 12, 9165–9177. [Google Scholar] [CrossRef]
- George, A.; Shah, P.A.; Shrivastav, P.S. Natural Biodegradable Polymers Based Nano-Formulations for Drug Delivery: A Review. Int. J. Pharm. 2019, 561, 244–264. [Google Scholar] [CrossRef]
- Xie, J.; Li, A.; Li, J. Advances in PH-Sensitive Polymers for Smart Insulin Delivery. Macromol. Rapid Commun. 2017, 38, 1700413. [Google Scholar] [CrossRef]
- Wang, X.; Sun, H.; Mu, T. Materials and Structure of Polysaccharide-Based Delivery Carriers for Oral Insulin: A Review. Carbohydr. Polym. 2024, 323, 121364. [Google Scholar] [CrossRef] [PubMed]
- Mccartney, F.; Jannin, V.; Brayden, D.J. Investigation of Labrasol ® ALF as an Intestinal Permeation Enhancer: Ussing Chambers and Intestinal Instillations Labrasol ® Increases P App of FITC Dextrans in MW-Dependent Fashion. 2019. Available online: https://www.researchgate.net/publication/332978723_Investigation_of_LabrasolR_ALF_as_an_intestinal_permeation_enhancer_Ussing_chambers_and_intestinal_instillations?channel=doi&linkId=5cd517ff299bf14d9586dd16&showFulltext=true (accessed on 6 November 2023).
- Tarsitano, M.; Cristiano, M.C.; Mancuso, A.; Barone, A.; Torella, D.; Paolino, D. Lipid-Based Formulations Containing Labrafil M2125-CS: A Deep Investigation on Nanosystem Stability. Nanomanufacturing 2022, 2, 41–52. [Google Scholar] [CrossRef]
- McCartney, F.; Jannin, V.; Chevrier, S.; Boulghobra, H.; Hristov, D.R.; Ritter, N.; Miolane, C.; Chavant, Y.; Demarne, F.; Brayden, D.J. Labrasol® Is an Efficacious Intestinal Permeation Enhancer across Rat Intestine: Ex Vivo and In Vivo Rat Studies. J. Control. Release 2019, 310, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Eaimtrakarn, S.; Rama Prasad, Y.V.; Ohno, T.; Konishi, T.; Yoshikawa, Y.; Shibata, N.; Takada, K. Absorption Enhancing Effect of Labrasol on the Intestinal Absorption of Insulin in Rats. J. Drug Target. 2002, 10, 255–260. [Google Scholar] [CrossRef]
- Dubray, O.; Jannin, V.; Demarne, F.; Pellequer, Y.; Lamprecht, A.; Béduneau, A. In-Vitro Investigation Regarding the Effects of Gelucire ® 44/14 and Labrasol® ALF on the Secretory Intestinal Transport of P-Gp Substrates. Int. J. Pharm. 2016, 515, 293–299. [Google Scholar] [CrossRef]
- Kósa, D.; Pető, Á.; Fenyvesi, F.; Váradi, J.; Vecsernyés, M.; Budai, I.; Németh, J.; Fehér, P.; Bácskay, I.; Ujhelyi, Z. Oral Bioavailability Enhancement of Melanin Concentrating Hormone, Development and In Vitro Pharmaceutical Assessment of Novel Delivery Systems. Pharmaceutics 2021, 14, 9. [Google Scholar] [CrossRef]
- Llana-Ruiz-Cabello, M.; Gutiérrez-Praena, D.; Pichardo, S.; Moreno, F.J.; Bermúdez, J.M.; Aucejo, S.; Cameán, A.M. Cytotoxicity and Morphological Effects Induced by Carvacrol and Thymol on the Human Cell Line Caco-2. Food Chem. Toxicol. 2014, 64, 281–290. [Google Scholar] [CrossRef]
- Kozlowska, J.; Prus, W.; Stachowiak, N. Microparticles Based on Natural and Synthetic Polymers for Cosmetic Applications. Int. J. Biol. Macromol. 2019, 129, 952–956. [Google Scholar] [CrossRef]
- Kielkopf, C.L.; Bauer, W.; Urbatsch, I.L. Bradford Assay for Determining Protein Concentration. Cold Spring Harb. Protoc. 2020, 2020, 102269. [Google Scholar] [CrossRef]
- Goldring, J.P.D. Measuring Protein Concentration with Absorbance, Lowry, Bradford Coomassie Blue, or the Smith Bicinchoninic Acid Assay before Electrophoresis. In Electrophoretic Separation of Proteins; Humana Press: New York, NY, USA, 2019; pp. 31–39. [Google Scholar]
- Somo, S.I.; Langert, K.; Yang, C.-Y.; Vaicik, M.K.; Ibarra, V.; Appel, A.A.; Akar, B.; Cheng, M.-H.; Brey, E.M. Synthesis and Evaluation of Dual Crosslinked Alginate Microbeads. Acta Biomater. 2018, 65, 53–65. [Google Scholar] [CrossRef]
- Martins, S.; Sarmento, B.; Souto, E.B.; Ferreira, D.C. Insulin-Loaded Alginate Microspheres for Oral Delivery—Effect of Polysaccharide Reinforcement on Physicochemical Properties and Release Profile. Carbohydr. Polym. 2007, 69, 725–731. [Google Scholar] [CrossRef]
- Frenț, O.D.; Duteanu, N.; Teusdea, A.C.; Ciocan, S.; Vicaș, L.; Jurca, T.; Muresan, M.; Pallag, A.; Ianasi, P.; Marian, E. Preparation and Characterization of Chitosan-Alginate Microspheres Loaded with Quercetin. Polymers 2022, 14, 490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Pei, X.; Peng, X.; Gou, D.; Fan, X.; Zheng, X.; Song, C.; Zhou, Y.; Cui, S. Dual Crosslinking of Folic Acid-Modified Pectin Nanoparticles for Enhanced Oral Insulin Delivery. Biomater. Adv. 2022, 135, 212746. [Google Scholar] [CrossRef] [PubMed]
- Sambuy, Y.; De Angelis, I.; Ranaldi, G.; Scarino, M.L.; Stammati, A.; Zucco, F. The Caco-2 Cell Line as a Model of the Intestinal Barrier: Influence of Cell and Culture-Related Factors on Caco-2 Cell Functional Characteristics. Cell Biol. Toxicol. 2005, 21, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Pető, Á.; Kósa, D.; Haimhoffer, Á.; Fehér, P.; Ujhelyi, Z.; Sinka, D.; Fenyvesi, F.; Váradi, J.; Vecsernyés, M.; Gyöngyösi, A.; et al. Nicotinic Amidoxime Derivate BGP-15, Topical Dosage Formulation and Anti-Inflammatory Effect. Pharmaceutics 2021, 13, 2037. [Google Scholar] [CrossRef] [PubMed]
- Konsoula, R.; Barile, F.A. Correlation of in Vitro Cytotoxicity with Paracellular Permeability in Caco-2 Cells. Toxicol. Vitr. 2005, 19, 675–684. [Google Scholar] [CrossRef]
- Józsa, L.; Nemes, D.; Pető, Á.; Kósa, D.; Révész, R.; Bácskay, I.; Haimhoffer, Á.; Vasvári, G. Recent Options and Techniques to Assess Improved Bioavailability: In Vitro and Ex Vivo Methods. Pharmaceutics 2023, 15, 1146. [Google Scholar] [CrossRef]
- Lopez-Escalera, S.; Wellejus, A. Evaluation of Caco-2 and Human Intestinal Epithelial Cells as In Vitro Models of Colonic and Small Intestinal Integrity. Biochem. Biophys. Rep. 2022, 31, 101314. [Google Scholar] [CrossRef]
- ISO 10993-5; Biological Evaluation of Medical Devices. ISO: Geneva, Switzerland, 2009.
- Yuan, H.; Guo, C.; Liu, L.; Zhao, L.; Zhang, Y.; Yin, T.; He, H.; Gou, J.; Pan, B.; Tang, X. Progress and Prospects of Polysaccharide-Based Nanocarriers for Oral Delivery of Proteins/Peptides. Carbohydr. Polym. 2023, 312, 120838. [Google Scholar] [CrossRef]
- Holler, S.; Porcelli, C.; Ieropoulos, I.A.; Hanczyc, M.M. Transport of Live Cells Under Sterile Conditions Using a Chemotactic Droplet. Sci. Rep. 2018, 8, 8408. [Google Scholar] [CrossRef]
- Lavrič, G.; Oberlintner, A.; Filipova, I.; Novak, U.; Likozar, B.; Vrabič-Brodnjak, U. Functional Nanocellulose, Alginate and Chitosan Nanocomposites Designed as Active Film Packaging Materials. Polymers 2021, 13, 2523. [Google Scholar] [CrossRef]
- Sermkaew, N.; Wiwattanapatapee, R. Effect of Alginate and Surfactant on Physical Properties of Oil Entrapped Alginate Bead Formulation of Curcumin. Int. J. Med. Pharm. Sci. Eng. 2013, 7, 479–483. [Google Scholar]
- Phan, V.H.G.; Mathiyalagan, R.; Nguyen, M.-T.; Tran, T.-T.; Murugesan, M.; Ho, T.-N.; Huong, H.; Yang, D.C.; Li, Y.; Thambi, T. Ionically Cross-Linked Alginate-Chitosan Core-Shell Hydrogel Beads for Oral Delivery of Insulin. Int. J. Biol. Macromol. 2022, 222, 262–271. [Google Scholar] [CrossRef] [PubMed]
- Chuang, J.-J.; Huang, Y.-Y.; Lo, S.-H.; Hsu, T.-F.; Huang, W.-Y.; Huang, S.-L.; Lin, Y.-S. Effects of PH on the Shape of Alginate Particles and Its Release Behavior. Int. J. Polym. Sci. 2017, 2017, 3902704. [Google Scholar] [CrossRef]
- Salehi, T.; Raeisi Estabragh, M.A.; Salarpour, S.; Ohadi, M.; Dehghannoudeh, G. Absorption Enhancer Approach for Protein Delivery by Various Routes of Administration: A Rapid Review. J. Drug Target. 2023, 31, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Ukai, H.; Morishita, M.; Katsumi, H. Approaches to Improve Intestinal and Transmucosal Absorption of Peptide and Protein Drugs. Pharmacol. Ther. 2020, 211, 107537. [Google Scholar] [CrossRef]
- Maher, S.; Heade, J.; McCartney, F.; Waters, S.; Bleiel, S.B.; Brayden, D.J. Effects of Surfactant-Based Permeation Enhancers on Mannitol Permeability, Histology, and Electrogenic Ion Transport Responses in Excised Rat Colonic Mucosae. Int. J. Pharm. 2018, 539, 11–22. [Google Scholar] [CrossRef]
- Déat-Lainé, E.; Hoffart, V.; Garrait, G.; Beyssac, E. Whey Protein and Alginate Hydrogel Microparticles for Insulin Intestinal Absorption: Evaluation of Permeability Enhancement Properties on Caco-2 Cells. Int. J. Pharm. 2013, 453, 336–342. [Google Scholar] [CrossRef]
- Kumar, P.; Nagarajan, A.; Uchil, P.D. Analysis of Cell Viability by the MTT Assay. Cold Spring Harb. Protoc. 2018, 2018, 95505. [Google Scholar] [CrossRef]
Composition | Sodium-Alginate Solution | Labrasol ALF | Labrafil M2125 CS |
---|---|---|---|
Insulin beads | 20 mL | - | - |
Insulin beads + Labrasol ALF | 20 mL | 0.1% (v/v%) | - |
Insulin beads + Labrafil M2125 CS | 20 mL | - | 0.1% (v/v%) |
Combination | 20 mL | 0.1% v/v% | 0.1% (v/v%) |
Composition | LC (±SD; %) |
---|---|
Insulin beads | 1.45 ± 0.15 |
Insulin beads + Labrasol ALF | 1.49 ± 0.14 |
Insulin beads + Labrafil M2125 CS | 1.34 ± 0.03 |
Combination | 1.28 ± 0.09 |
Composition | Diameter of Lyophilized Microspheres (±SD; µm) |
---|---|
Insulin beads | 277.8 ± 11.95 |
Insulin beads + Labrasol ALF | 292.9 ± 9.56 |
Insulin beads + Labrafil M2125 CS | 296.3 ± 10.19 |
Combination | 298.4 ± 8.21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bácskay, I.; Papp, B.; Pártos, P.; Budai, I.; Pető, Á.; Fehér, P.; Ujhelyi, Z.; Kósa, D. Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration. Pharmaceutics 2024, 16, 46. https://doi.org/10.3390/pharmaceutics16010046
Bácskay I, Papp B, Pártos P, Budai I, Pető Á, Fehér P, Ujhelyi Z, Kósa D. Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration. Pharmaceutics. 2024; 16(1):46. https://doi.org/10.3390/pharmaceutics16010046
Chicago/Turabian StyleBácskay, Ildikó, Boglárka Papp, Péter Pártos, István Budai, Ágota Pető, Pálma Fehér, Zoltán Ujhelyi, and Dóra Kósa. 2024. "Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration" Pharmaceutics 16, no. 1: 46. https://doi.org/10.3390/pharmaceutics16010046
APA StyleBácskay, I., Papp, B., Pártos, P., Budai, I., Pető, Á., Fehér, P., Ujhelyi, Z., & Kósa, D. (2024). Formulation and Evaluation of Insulin-Loaded Sodium-Alginate Microparticles for Oral Administration. Pharmaceutics, 16(1), 46. https://doi.org/10.3390/pharmaceutics16010046