Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era
Abstract
:1. Introduction
2. Materials and Methods
3. Pathogenesis
3.1. Genetic Alterations
3.2. Microenvironment
4. Diagnosis, Risk Assessment, and Prognosis
5. Selecting the Right Treatment: How to Treat CLL?
6. Treatment of CLL
6.1. Cytostatic Agents
6.2. Monoclonal Antibodies
6.3. Chemoimmunotherapy
6.4. Agents Targeting the Signaling in CLL Cells and in Their Microenvironment
6.4.1. PI3K Inhibitors: Idelalisib, Duvelisib, and Umbralisib
6.4.2. BTK Inhibitors: Ibrutinib, Acalabrutinib, Zanubritinib, and Pirtobrutinib
Ibrutinib
Acalabrutinib
Zanubrutinib
Pirtobrutinib
6.5. BCL-2 Inhibitors
6.6. Lenalidomide
6.7. Other Therapies: Allogeneic Transplantation and CAR-T
7. Selection of First-Line Treatment of Symptomatic Patients according to Clinical Guidelines and Expert Consensus
7.1. Treatment of Patients with del(17p) and/or TP53 Mutation
7.2. Treatment of Patients with No TP53 Aberrations or del 17p
7.2.1. Mutated IGHV
7.2.2. Unmutated IGHV
8. Rescue Treatment in Relapsed/Refractory Patients
9. Treatment Resistance
10. Where Are We Going in the Therapeutic Approach to CLL?
11. Take-Home Message
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hampel, P.J.; Parikh, S.A. Chronic lymphocytic leukemia treatment algorithm 2022. Blood Cancer J. 2022, 12, 161. [Google Scholar] [CrossRef] [PubMed]
- Mukkamalla, S.K.R.; Taneja, A.; Malipeddi, D.; Master, S.R. Chronic Lymphocytic Leukemia; StatPearls Publishing: Treasure Island, FL, USA, 2020. Available online: https://pubmed.ncbi.nlm.nih.gov/29261864/ (accessed on 15 July 2023).
- Reinart, N.; Nguyen, P.H.; Boucas, J.; Rosen, N.; Kvasnicka, H.M.; Heukamp, L.; Rudolph, C.; Ristovska, V.; Velmans, T.; Mueller, C.; et al. Delayed development of chronic lymphocytic leukemia in the absence of macrophage migration inhibitory factor. Blood 2013, 121, 812–821. [Google Scholar] [CrossRef] [PubMed]
- The Surveillance E, and End Results (SEER) Program of the National Cancer Institute. Cancer Stat Facts: Leukemia—Chronic LymphocyticLeukemia (CLL). 2021. Available online: https://seer.cancer.gov/statfacts/html/clyl.html (accessed on 15 July 2023).
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Döhner, H.; Hillmen, P.; Keating, M.; Montserrat, E.; Chiorazzi, N.; et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood 2018, 131, 2745–2760. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2019, 69, 7–34. [Google Scholar] [CrossRef] [PubMed]
- Kay, N.E.; Hampel, P.J.; Van Dyke, D.L.; Parikh, S.A. CLL update 2022: A continuing evolution in care. Blood Rev. 2022, 54, 100930. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M.; Al-Sawaf, O. Chronic lymphocytic leukemia: 2022 update on diagnostic and therapeutic procedures. Am. J. Hematol. 2021, 96, 1679–1705. [Google Scholar] [CrossRef] [PubMed]
- Chiorazzi, N.; Chen, S.S.; Rai, K.R. Chronic Lymphocytic Leukemia. Cold Spring Harb. Perspect. Med. 2021, 11, a035220. [Google Scholar] [CrossRef]
- Fabbri, G.; Dalla-Favera, R. The molecular pathogenesis of chronic lymphocytic leukaemia. Nat. Rev. Cancer 2016, 16, 145–162. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Seifert, M.; Sellmann, L.; Bloehdorn, J.; Wein, F.; Stilgenbauer, S.; Dürig, J.; Küppers, R. Cellular origin and pathophysiology of chronic lymphocytic leukemia. J. Exp. Med. 2012, 209, 2183–2198. [Google Scholar] [CrossRef]
- Knisbacher, B.A.; Lin, Z.; Hahn, C.K.; Nadeu, F.; Duran-Ferrer, M.; Stevenson, K.E.; Tausch, E.; Delgado, J.; Barbera-Mourelle, A.; Taylor-Weiner, A.; et al. Molecular map of chronic lymphocytic leukemia and its impact on outcome. Nat. Genet. 2022, 54, 1664–1667. [Google Scholar] [CrossRef] [PubMed]
- Puente, X.S.; Beà, S.; Valdés-Mas, R.; Villamor, N.; Gutiérrez-Abril, J.; Martín-Subero, J.I.; Munar, M.; Rubio-Pérez, C.; Jares, P.; Aymerich, M. Non-coding recurrent mutations in chronic lymphocytic leukaemia. Nature 2015, 526, 519–524. [Google Scholar] [CrossRef]
- Kulis, M.; Martin-Subero, J.I. Integrative epigenomics in chronic lymphocytic leukaemia: Biological insights and clinical applications. Br. J. Haematol. 2023, 200, 280–290. [Google Scholar] [CrossRef] [PubMed]
- Zenz, T.; Vollmer, D.; Trbusek, M.; Smardova, J.; Benner, A.; Soussi, T.; Helfrich, H.; Heuberger, M.; Hoth, P.; Fuge, M.; et al. TP53 mutation profile in chronic lymphocytic leukemia: Evidence for a disease specific profile from a comprehensive analysis of 268 mutations. Leukemia 2010, 24, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J.; Synnott, N.C.; Crown, J. Mutant p53 as a target for cancer treatment. Eur. J. Cancer 2017, 83, 258–265. [Google Scholar] [CrossRef]
- Norbury, C.J.; Zhivotovsky, B. DNA damage-induced apoptosis. Oncogene 2004, 23, 2797–2808. [Google Scholar] [CrossRef]
- Buccheri, V.; Barreto, W.G.; Fogliatto, L.M.; Capra, M.; Marchiani, M.; Rocha, V. Prognostic and therapeutic stratification in CLL: Focus on 17p deletion and p53 mutation. Ann. Hematol. 2018, 97, 2269–2278. [Google Scholar] [CrossRef]
- Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al. COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 2018, 45, D777. [Google Scholar] [CrossRef]
- Nguyen-Khac, F. “Double-Hit” Chronic Lymphocytic Leukemia, Involving the TP53 and MYC Genes. Front. Oncol. 2022, 11, 826245. [Google Scholar] [CrossRef]
- Maher, N.; Mouhssine, S.; Matti, B.F.; Alwan, A.F.; Gaidano, G. Treatment Refractoriness in Chronic Lymphocytic Leukemia: Old and New Molecular Biomarkers. Int. J. Mol. Sci. 2023, 24, 10374. [Google Scholar] [CrossRef]
- Mansouri, L.; Thorvaldsdottir, B.; Sutton, L.A.; Karakatsoulis, G.; Meggendorfer, M.; Parker, H.; Nadeu, F.; Brieghel, C.; Laidou, S.; Moia, R.; et al. Different prognostic impact of recurrent gene mutations in chronic lymphocytic leukemia depending on IGHV gene somatic hypermutation status: A study by ERIC in HARMONY. Leukemia 2023, 37, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Al Jamal, I.; Parquet, M.; Guiyedi, K.; Aoufouchi, S.; Le Guillou, M.; Rizzo, D.; Pollet, J.; Dupont, M.; Boulin, M.; Faumont, N.; et al. IgH 3′RR recombination uncovers a non-germinal center imprint and c-MYC-dependent IgH rearrangement in unmutated chronic lymphocytic leukemia. Haematologica, 2023; advance online publication. [Google Scholar] [CrossRef]
- Medina, A.; Ramírez, A.; Hérnandez, J.A.; Loscertales, J.; Serna, J.; Andreu, R.; Yáñez, L.; Terol, M.J.; González, M.; Delgado, J.; et al. Guia Nacional de Leucemia Linfática Crónica y Linfoma Linfocítico. 2020. Available online: https://www.sehh.es/images/stories/recursos/2020/05/18/Guia-Clinica-LLC-abril-2020.pdf (accessed on 25 July 2023).
- Lau, R.; Niu, M.Y.; Pratt, M.A. cIAP2 represses IKKα/β-mediated activation of MDM2 to prevent p53 degradation. Cell Cycle 2012, 11, 4009–4019. [Google Scholar] [CrossRef] [PubMed]
- Nadeu, F.; Delgado, J.; Royo, C.; Baumann, T.; Stankovic, T.; Pinyol, M.; Jares, P.; Navarro, A.; Martín-García, D.; Beà, S.; et al. Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in chronic lymphocytic leukemia. Blood 2016, 127, 2122–2130. [Google Scholar] [CrossRef] [PubMed]
- Sadria, R.; Motamed, N.; Saberi Anvar, M.; Mehrabani Yeganeh, H.; Poopak, B. Prognostic correlation of NOTCH1 and SF3B1 mutations with chromosomal abnormalities in chronic lymphocytic leukemia patients. Cancer Rep. 2023, 6, e1757. [Google Scholar] [CrossRef] [PubMed]
- Rosati, E.; Baldoni, S.; De Falco, F.; Del Papa, B.; Dorillo, E.; Rompietti, C.; Albi, E.; Falzetti, F.; Di Ianni, M.; Sportoletti, P. NOTCH1 Aberrations in Chronic Lymphocytic Leukemia. Front. Oncol. 2018, 8, 229. [Google Scholar] [CrossRef]
- Rossi, D.; Rasi, S.; Spina, V.; Fangazio, M.; Monti, S.; Greco, M.; Ciardullo, C.; Famà, R.; Cresta, S.; Bruscaggin, A.; et al. Different impact of NOTCH1 and SF3B1 mutations on the risk of chronic lymphocytic leukemia transformation to Richter syndrome. Br. J. Haematol. 2012, 158, 426–429. [Google Scholar] [CrossRef]
- Rio-Machin, A. ATM serine/threonine kinase germline mutations in chronic lymphocytic leukaemia come in different flavours. Br. J. Haematol. 2022, 199, 307–309. [Google Scholar] [CrossRef]
- Tiao, G.; Improgo, M.R.; Kasar, S.; Poh, W.; Kamburov, A.; Landau, D.A.; Tausch, E.; Taylor-Weiner, A.; Cibulskis, C.; Bahl, S.; et al. Rare germline variants in ATM are associated with chronic lymphocytic leukemia. Leukemia 2017, 31, 2244–2247. [Google Scholar] [CrossRef]
- Puente, X.S.; Pinyol, M.; Quesada, V.; Conde, L.; Ordóñez, G.R.; Villamor, N.; Escaramis, G.; Jares, P.; Beà, S.; González-Díaz, M.; et al. Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia. Nature 2011, 475, 101–105. [Google Scholar] [CrossRef]
- Quesada, V.; Conde, L.; Villamor, N.; Ordóñez, G.R.; Jares, P.; Bassaganyas, L.; Ramsay, A.J.; Beà, S.; Pinyol, M.; Martínez-Trillos, A.; et al. Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia. Nat. Genet. 2011, 44, 47–52. [Google Scholar] [CrossRef]
- Martínez-Trillos, A.; Pinyol, M.; Navarro, A.; Aymerich, M.; Jares, P.; Juan, M.; Rozman, M.; Colomer, D.; Delgado, J.; Giné, E.; et al. Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia patients with favorable outcome. Blood 2014, 123, 3790–3796. [Google Scholar] [CrossRef]
- Baliakas, P.; Hadzidimitriou, A.; Agathangelidis, A.; Rossi, D.; Sutton, L.A.; Kminkova, J.; Scarfo, L.; Pospisilova, S.; Gaidano, G.; Stamatopoulos, K.; et al. Prognostic relevance of MYD88 mutations in CLL: The jury is still out. Blood 2015, 126, 1043–1044. [Google Scholar] [CrossRef]
- Bosch, F.; Dalla-Favera, R. Chronic lymphocytic leukaemia: From genetics to treatment. Nat. Rev. Clin. Oncol. 2019, 16, 684–701. [Google Scholar] [CrossRef]
- Mhibik, M.; Wiestner, A.; Sun, C. Harnessing the effects of BTKi on T cells for effective immunotherapy against CLL. Int. J. Mol. Sci. 2019, 21, 68. [Google Scholar] [CrossRef]
- Idris, S.Z.; Hassan, N.; Lee, L.J.; Md Noor, S.; Osman, R.; Abdul-Jalil, M.; Nordin, A.J.; Abdullah, M. Increased regulatory T cells in acute lymphoblastic leukaemia patients. Hematology 2016, 21, 206–212. [Google Scholar] [CrossRef]
- Andreescu, M.; Berbec, N.; Tanase, A.D. Assessment of Impact of Human Leukocyte Antigen-Type and Cytokine-Type Responses on Outcomes after Targeted Therapy Currently Used to Treat Chronic Lymphocytic Leukemia. J. Clin. Med. 2023, 12, 2731. [Google Scholar] [CrossRef]
- Huang, R.; Tsuda, H.; Takatsuki, K. Interleukin-2 prevents programmed cell death in chronic lymphocytic leukemia cells. Int. J. Hematol. 1993, 58, 83–92. [Google Scholar]
- Coscia, M.; Pantaleoni, F.; Riganti, C.; Vitale, C.; Rigoni, M.; Peola, S.; Castella, B.; Foglietta, M.; Griggio, V.; Drandi, D. IGHV unmutated CLL B cells are more prone to spontaneous apoptosis and subject to environmental prosurvival signals than mutated CLL B cells. Leukemia 2011, 25, 828–837. [Google Scholar] [CrossRef]
- Wang, H.Q.; Jia, L.; Li, Y.T.; Farren, T.; Agrawal, S.G.; Liu, F.T. Increased autocrine interleukin-6 production is significantly associated with worse clinical outcome in patients with chronic lymphocytic leukemia. J. Cell. Physiol. 2019, 234, 13994–14006. [Google Scholar] [CrossRef]
- Arruga, F.; Gyau, B.B.; Iannello, A.; Vitale, N.; Vaisitti, T.; Deaglio, S. Immune Response Dysfunction in Chronic Lymphocytic Leukemia: Dissecting Molecular Mechanisms and Microenvironmental Conditions. Int. J. Mol. Sci. 2020, 21, 1825. [Google Scholar] [CrossRef]
- Jaffe, E.S.; Harris, N.L.; Stein, H.; Isaacson, P.G. Classification of lymphoid neoplasms: The microscope as a tool for disease discovery. Blood J. Am. Soc. Hematol. 2008, 112, 4384–4399. [Google Scholar] [CrossRef]
- Alhakeem, S.S.; McKenna, M.K.; Oben, K.Z.; Noothi, S.K.; Rivas, J.R.; Hildebrandt, G.C.; Fleischman, R.A.; Rangnekar, V.M.; Muthusamy, N.; Bondada, S. Chronic Lymphocytic Leukemia-Derived IL-10 Suppresses Antitumor Immunity. J. Immunol. 2018, 200, 4180–4189. [Google Scholar] [CrossRef]
- Jadidi-Niaragh, F.; Ghalamfarsa, G.; Memarian, A.; Asgarian-Omran, H.; Razavi, S.M.; Sarrafnejad, A.; Shokri, F. Downregulation of IL-17-producing T cells is associated with regulatory T cell expansion and disease progression in chronic lymphocytic leukemia. Tumour Biol. 2013, 34, 929–940. [Google Scholar] [CrossRef]
- Foa, R.; Massaia, M.; Cardona, S.; Tos, A.G.; Bianchi, A.; Attisano, C.; Guarini, A.; di Celle, P.F.; Fierro, M.T. Production of tumor necrosis factor-alpha by B-cell chronic lymphocytic leukemia cells: A possible regulatory role of TNF in the progression of the disease. Blood 1990, 76, 393–400. [Google Scholar] [CrossRef]
- Mo, X.D.; Zhang, X.H.; Xu, L.P.; Wang, Y.; Yan, C.H.; Chen, H.; Chen, Y.H.; Han, W.; Wang, F.R.; Wang, J.Z. IFN-α is effective for treatment of minimal residual disease in patients with acute leukemia after allogeneic hematopoietic stem cell transplantation: Results of a registry study. Biol. Blood Marrow Transplant. 2017, 23, 1303–1310. [Google Scholar] [CrossRef]
- Tsukada, N.; Burger, J.A.; Zvaifler, N.J.; Kipps, T.J. Distinctive features of “nurselike” cells that differentiate in the context of chronic lymphocytic leukemia. Blood 2002, 99, 1030–1037. [Google Scholar] [CrossRef]
- Petrova, V.; Annicchiarico-Petruzzelli, M.; Melino, G.; Amelio, I. The hypoxic tumour microenvironment. Oncogenesis 2018, 7, 10. [Google Scholar] [CrossRef]
- Serra, S.; Vaisitti, T.; Audrito, V.; Bologna, C.; Buonincontri, R.; Chen, S.S.; Arruga, F.; Brusa, D.; Coscia, M.; Jaksic, O.; et al. Adenosine signaling mediates hypoxic responses in the chronic lymphocytic leukemia microenvironment. Blood Adv. 2016, 1, 47–61. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Harris, N.L.; Jaffe, E.S.; Pileri, S.A.; Stein, H.; Thiele, J.; Vardiman, J.W. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues; WHO Press: Geneve, Switzerland, 2008. [Google Scholar]
- Hallek, M.; Cheson, B.D.; Catovsky, D.; Caligaris-Cappio, F.; Dighiero, G.; Dohner, H.; Hillmen, P.; Keating, M.J.; Montserrat, E.; Rai, K.R.; et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: A report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer InstituteWorking Group 1996 guidelines. Blood 2008, 111, 5446–5456. [Google Scholar] [CrossRef]
- Moreau, E.J.; Matutes, E.; A’Hern, R.P.; Morilla, A.M.; Morilla, R.M.; Owusu-Ankomah, K.A.; Seon, B.K.; Catovsky, D. Improvement of the chronic lymphocytic leukemia scoring system with the monoclonal antibody SN8 (CD79b). Am. J. Clin. Pathol. 1997, 108, 378–382. [Google Scholar] [CrossRef]
- Rosenquist, R.; Niemann, C.U.; Kern, W.; Westerman, D.; Trneny, M.; Mulligan, S.; Doubek, M.; Pospisilova, S.; Hillmen, P.; Oscier, D.; et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytom. B Clin. Cytom. 2018, 94, 121–128. [Google Scholar]
- Sorigue, M.; Raya, M.; Vergara, S.; Junca, J. Concordance between flow cytometry CLL scores. Int. J. Lab. Hematol. 2021, 43, 743–751. [Google Scholar] [CrossRef]
- Eichhorst, B.; Robak, T.; Montserrat, E.; Ghia, P.; Niemann, C.U.; Kater, A.P.; Gregor, M.; Cymbalista, F.; Buske, C.; Hillmen, P.; et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 23–33. [Google Scholar] [CrossRef]
- Malcikova, J.; Tausch, E.; Rossi, D.; Sutton, L.A.; Soussi, T.; Zenz, T.; Kater, A.P.; Niemann, C.U.; Gonzalez, D.; Davi, F.; et al. ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia-update on methodological approaches and results interpretation. Leukemia 2018, 32, 1070–1080. [Google Scholar] [CrossRef]
- Ghia, P.; Stamatopoulos, K.; Belessi, C.; Moreno, C.; Stilgenbauer, S.; Stevenson, F.; Davi, F.; Rosenquist, R. European Research Initiative on CLL. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007, 21, 1–3. [Google Scholar] [CrossRef]
- Rai, K.R.; Sawitsky, A.; Cronkite, E.P.; Chanana, A.D.; Levy, R.N.; Pasternack, B.S. Clinical staging of chronic lymphocytic leukemia. Blood 1975, 46, 219–234. [Google Scholar] [CrossRef]
- Binet, J.L.; Auquier, A.; Dighiero, G.; Chastang, C.; Piguet, H.; Goasguen, J.; Vaugier, G.; Potron, G.; Colona, P.; Oberling, F.; et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer 1981, 48, 198–204. [Google Scholar] [CrossRef]
- Pflug, N.; Bahlo, J.; Shanafelt, T.D.; Eichhorst, B.F.; Bergmann, M.A.; Elter, T.; Bauer, K.; Malchau, G.; Rabe, K.G.; Stilgenbauer, S.; et al. Development of a comprehensive prognostic index for patients with chronic lymphocytic leukemia. Blood 2014, 124, 49–62. [Google Scholar] [CrossRef]
- International CLL IPI Working Group. An international prognostic index for patients with chronic lymphocytic leukaemia (CLL-IPI): A meta-analysis of individual patient data. Lancet Oncol. 2016, 17, 779–790. [Google Scholar] [CrossRef]
- Cortese, D.; Sutton, L.A.; Cahill, N.; Smedby, K.E.; Geisler, C.; Gunnarsson, R.; Juliusson, G.; Mansouri, L.; Rosenquist, R. On the way towards a ‘CLL prognostic index’: Focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia 2014, 28, 710–713. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Jenkins, G.; Call, T.G.; Zent, C.S.; Slager, S.; Bowen, D.A.; Schwager, S.; Hanson, C.A.; Jelinek, D.F.; Kay, N.E. Validation of a new prognostic index for patients with chronic lymphocytic leukemia. Cancer 2009, 115, 363–372. [Google Scholar] [CrossRef]
- Wierda, W.G.; O’Brien, S.; Wang, X.; Faderl, S.; Ferrajoli, A.; Do, K.A.; Cortes, J.; Thomas, D.; Garcia-Manero, G.; Koller, C.; et al. Prognostic nomogram and index for overall survival in previously untreated patients with chronic lymphocytic leukemia. Blood 2007, 109, 4679–4685. [Google Scholar] [CrossRef]
- Gao, R.; Du, K.; Liang, J.; Xia, Y.; Wu, J.; Li, Y.; Pan, B.; Wang, L.; Li, J.; Xu, W. Low Serum Cholesterol Level Is a Significant Prognostic Factor That Improves CLL-IPI in Chronic Lymphocytic Leukaemia. Int. J. Mol. Sci. 2023, 24, 7396. [Google Scholar] [CrossRef]
- Yavasoglu, I.; Tombuloglu, M.; Kadikoylu, G.; Donmez, A.; Cagirgan, S.; Bolaman, Z. Cholesterol levels in patients with multiple myeloma. Ann. Hematol. 2008, 87, 223–228. [Google Scholar] [CrossRef]
- Lim, U.; Gayles, T.; Katki, H.A.; Stolzenberg-Solomon, R.; Weinstein, S.J.; Pietinen, P.; Taylor, P.R.; Virtamo, J.; Albanes, D. Serum high-density lipoprotein cholesterol and risk of non-hodgkin lymphoma. Cancer Res. 2007, 67, 5569–5574. [Google Scholar] [CrossRef]
- Yavasoglu, I.; Sargin, G.; Yilmaz, F.; Altindag, S.; Akgun, G.; Tombak, A.; Toka, B.; Dal, S.; Ozbas, H.; Cetin, G.; et al. Cholesterol Levels in Patients with Chronic Lymphocytic Leukemia. J. Natl. Med. Assoc. 2017, 109, 23–27. [Google Scholar] [CrossRef]
- Tresckow, J.V.; Eichhorst, B.; Bahlo, J.; Hallek, M. The Treatment of Chronic Lymphatic Leukemia. Dtsch. Arztebl. Int. 2019, 116, 41–46. [Google Scholar] [CrossRef]
- Hallek, M.; Shanafelt, T.D.; Eichhorst, B. Chronic lymphocytic leukaemia. Lancet 2018, 391, 1524–1537. [Google Scholar] [CrossRef]
- Rasi, S.; Khiabanian, H.; Ciardullo, C.; Terzi-di-Bergamo, L.; Monti, S.; Spina, V.; Bruscaggin, A.; Cerri, M.; Deambrogi, C.; Martuscelli, L.; et al. Clinical impact of small subclones harboring NOTCH1, SF3B1 or BIRC3 mutations in chronic lymphocytic leukemia. Haematologica 2016, 101, 135–138. [Google Scholar] [CrossRef]
- Huang, Y.J.; Kuo, M.C.; Chang, H.; Wang, P.N.; Wu, J.H.; Huang, Y.M.; Ma, M.C.; Tang, T.C.; Kuo, C.Y.; Shih, L.Y. Distinct immunoglobulin heavy chain variable region gene repertoire and lower frequency of del(11q) in Taiwanese patients with chronic lymphocytic leukaemia. Br. J. Haematol. 2019, 187, 82–92. [Google Scholar] [CrossRef]
- Kittai, A.S.; Lunning, M.; Danilov, A.V. Relevance of Prognostic Fac- tors in the Era of Targeted Therapies in CLL. Curr. Hematol. Malig. Rep. 2019, 14, 302–309. [Google Scholar] [CrossRef] [PubMed]
- Tadmor, T.; Levy, I. Richter Transformation in Chronic Lymphocytic Leukemia: Update in the Era of Novel Agents. Cancers 2021, 13, 5141. [Google Scholar] [CrossRef] [PubMed]
- Abrisqueta, P.; Nadeu, F.; Bosch-Schips, J.; Iacoboni, G.; Serna, A.; Cabirta, A.; Yáñez, L.; Quintanilla-Martínez, L.; Bosch, F. From genetics to therapy: Unraveling the complexities of Richter transformation in chronic lymphocytic leukemia. Cancer Treat. Rev. 2023, 120, 102619. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Cerri, M.; Capello, D.; Deambrogi, C.; Rossi, F.M.; Zucchetto, A.; De Paoli, L.; Cresta, S.; Rasi, S.; Spina, V.; et al. Biological and clinical risk factors of chronic lymphocytic leukaemia transformation to Richter syndrome. Br. J. Haematol. 2008, 142, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Hallek, M. Chronic lymphocytic leukemia: 2020 update on diagnosis, risk stratification and treatment. Am. J. Hematol. 2019, 94, 1266–1287. [Google Scholar] [CrossRef] [PubMed]
- Johnson, P.C.; Woyach, J.A.; Ulrich, A.; Marcotte, V.; Nipp, R.D.; Lage, D.E.; Nelson, A.M.; Newcomb, R.A.; Rice, J.; Lavoie, M.W.; et al. Geriatric assessment measures are predictive of outcomes in chronic lymphocytic leukemia. J. Geriatr. Oncol. 2023, 14, 101538. [Google Scholar] [CrossRef] [PubMed]
- Hurria, A.; Togawa, K.; Mohile, S.G.; Owusu, C.; Klepin, H.D.; Gross, C.P.; Lichtman, S.M.; Gajra, A.; Bhatia, S.; Katheria, V.; et al. Predicting chemotherapy toxicity in older adults with cancer: A prospective multicenter study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2011, 29, 3457–3465. [Google Scholar] [CrossRef]
- Giantin, V.; Valentini, E.; Iasevoli, M.; Falci, C.; Siviero, P.; De Luca, E.; Maggi, S.; Martella, B.; Orrù, G.; Crepaldi, G.; et al. Does the Multidimensional Prognostic Index (MPI), based on a Comprehensive Geriatric Assessment (CGA), ¿predict mortality in cancer patients? Results of a prospective observational trial. J. Geriatr. Oncol. 2013, 4, 208–217. [Google Scholar] [CrossRef]
- Goede, V.; Bahlo, J.; Chataline, V.; Eichhorst, B.; Dürig, J.; Stilgenbauer, S.; Kolb, G.; Honecker, F.; Wedding, U.; Hallek, M. Evaluation of geriatric assessment in patients with chronic lymphocytic leukemia: Results of the CLL9 trial of the German CLL study group. Leuk. Lymphoma 2016, 57, 789–796. [Google Scholar] [CrossRef]
- Molica, S.; Giannarelli, D.; Levato, L.; Mirabelli, R.; Levato, D.; Lentini, M.; Piro, E. A simple score based on geriatric assessment predicts survival in elderly newly diagnosed chronic lymphocytic leukemia patients. Leuk. Lymphoma 2019, 60, 845–847. [Google Scholar] [CrossRef]
- Huang, L.W.; Sheng, Y.; Andreadis, C.; Logan, A.C.; Mannis, G.N.; Smith, C.C.; Gaensler, K.M.L.; Martin, T.G.; Damon, L.E.; Steinman, M.A.; et al. Functional Status as Measured by Geriatric Assessment Predicts Inferior Survival in Older Allogeneic Hematopoietic Cell Transplantation Recipients. Biol. Blood Marrow Transplant. 2020, 26, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.A.; DuMontier, C.; Murillo, A.; Hshieh, T.T.; Bean, J.F.; Soiffer, R.J.; Stone, R.M.; Abel, G.A.; Driver, J.A. Gait speed, grip strength, and clinical outcomes in older patients with hematologic malignancies. Blood 2019, 134, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Klepin, H.D.; Geiger, A.M.; Tooze, J.A.; Kritchevsky, S.B.; Williamson, J.D.; Pardee, T.S.; Ellis, L.R.; Powell, B.L. Geriatric assessment predicts survival for older adults receiving induction chemotherapy for acute myelogenous leukemia. Blood 2013, 121, 4287–4294. [Google Scholar] [CrossRef] [PubMed]
- Arguello-Tomas, M.; Albiol, N.; Moreno, C. Frontline therapy in Chronic Lymphocytic Leukemia. Acta Haematol. 2023. [Google Scholar] [CrossRef] [PubMed]
- Scheepers, E.R.M.; Vondeling, A.M.; Thielen, N.; van der Griend, R.; Stauder, R.; Hamaker, M.E. Geriatric assessment in older patients with a hematologic malignancy: A systematic review. Haematologica 2020, 105, 1484–1493. [Google Scholar] [CrossRef] [PubMed]
- CLL Trialists Collaborative Group. Chemotherapeutic options in chronic lymphocytic leukemia. J. Natl. Cancer Inst. 1999, 91, 861–868. [Google Scholar] [CrossRef]
- Gribben, J.G.; O’Brien, S. Update on therapy of chronic lymphocytic leukemia. J. Clin. Oncol. 2011, 29, 544–550. [Google Scholar] [CrossRef]
- CLL Trialists’ Collaborative Group. Systematic review of purine analog treatment for chronic lymphocytic leukemia: Lessons for future trials. Haematologica 2012, 97, 428–436. [Google Scholar] [CrossRef]
- Niederle, N.; Megdenberg, D.; Balleisen, L.; Heit, W.; Knauf, W.; Weiß, J.; Freier, W.; Hinke, A.; Ibach, S.; Eimermacher, H. Bendamustine compared to fludarabine as second-line treatment in chronic lymphocytic leukemia. Ann. Hematol. 2013, 92, 653–660. [Google Scholar] [CrossRef]
- Bauer, K.; Rancea, M.; Roloff, V.; Elter, T.; Hallek, M.; Engert, A.; Skoetz, N. Rituximab, ofatumumab and other monoclonal anti-CD20 antibodies for chronic lymphocytic leukaemia. Cochrane Database Syst. Rev. 2012, 11, CD008079. [Google Scholar] [CrossRef]
- Cartron, G.; de Guibert, S.; Dilhuydy, M.S.; Morschhauser, F.; Leblond, V.; Dupuis, J.; Mahe, B.; Bouabdallah, R.; Lei, G.; Wenger, M.; et al. Obinutuzumab (GA101) in relapsed/refractory chronic lymphocytic leukemia: Final data from the phase 1/2 GAUGUIN study. Blood 2014, 124, 2196–2202. [Google Scholar] [CrossRef]
- Byrd, J.C.; Brown, J.R.; O’Brien, S.; Barrientos, J.C.; Kay, N.E.; Reddy, N.M.; Coutre, S.; Tam, C.S.; Mulligan, S.P.; Jaeger, U.; et al. Ibrutinib versus ofatumumab in previously treated chronic lymphoid leukemia. N. Engl. J. Med. 2014, 371, 213–223. [Google Scholar] [CrossRef]
- Wierda, W.G.; Kipps, T.J.; Mayer, J.; Stilgenbauer, S.; Williams, C.D.; Hellmann, A.; Robak, T.; Furman, R.R.; Hillmen, P.; Trneny, M.; et al. Ofatumumab as single-agent CD20 immunotherapy in fludarabine-refractory chronic lymphocytic leukemia. J. Clin. Oncol. 2010, 28, 1749–1755. [Google Scholar] [CrossRef]
- Sawas, A.; Farber, C.M.; Schreeder, M.T.; Khalil, M.Y.; Mahadevan, D.; Deng, C.; Amengual, J.E.; Nikolinakos, P.G.; Kolesar, J.M.; Kuhn, J.G.; et al. A phase 1/2 trial of ublituximab, a novel anti-CD20 monoclonal antibody, in patients with B-cell non-Hodgkin lymphoma or chronic lymphocytic leukaemia previously exposed to rituximab. Br. J. Haematol. 2017, 177, 243–253. [Google Scholar] [CrossRef]
- Osterborg, A.; Dyer, M.J.; Bunjes, D.; Pangalis, G.A.; Bastion, Y.; Catovsky, D.; Mellstedt, H. Phase II multicenter study of human CD52 antibody in previously treated chronic lymphocytic leukemia. European Study Group of CAMPATH-1H Treatment in Chronic Lymphocytic Leukemia. J. Clin. Oncol. 1997, 15, 1567–1574. [Google Scholar] [CrossRef]
- Keating, M.J.; Flinn, I.; Jain, V.; Binet, J.L.; Hillmen, P.; Byrd, J.; Albitar, M.; Brettman, L.; Santabarbara, P.; Wacker, B.; et al. Therapeutic role of alemtuzumab (Campath-1H) in patients who have failed fludarabine: Results of a large international study. Blood 2002, 99, 3554–3561. [Google Scholar] [CrossRef]
- Hillmen, P.; Pitchford, A.; Bloor, A.; Broom, A.; Young, M.; Kennedy, B.; Walewska, R.; Furtado, M.; Preston, G.; Neilson, J.R.; et al. Ibrutinib and rituximab versus fludarabine, cyclophosphamide, and rituximab for patients with previously untreated chronic lymphocytic leukaemia (FLAIR): Interim analysis of a multicentre, open label, randomised, phase 3 trial. Lancet Oncol. 2023, 24, 535–552. [Google Scholar] [CrossRef]
- Fischer, K.; Bahlo, J.; Fink, A.M.; Goede, V.; Herling, C.D.; Cramer, P.; Langerbeins, P.; von Tresckow, J.; Engelke, A.; Maurer, C.; et al. Long-term remissions after FCR chemoimmunotherapy in previously untreated patients with CLL: Updated results of the CLL8 trial. Blood 2016, 127, 208–215. [Google Scholar] [CrossRef]
- Kutsch, N.; Bahlo, J.; Robrecht, S.; Franklin, J.; Zhang, C.; Maurer, C.; De Silva, N.; Lange, E.; Weide, R.; Kiehl, M.G.; et al. Long Term Follow-up Data and Health-Related Quality of Life in Frontline Therapy of Fit Patients Treated with FCR Versus BR (CLL10 Trial of the GCLLSG). Hemasphere 2020, 4, e336. [Google Scholar] [CrossRef]
- Michallet, A.S.; Letestu, R.; Le Garff-Tavernie, M.; Campos, L.; Ticchioni, M.; Dilhuydy, M.S.; Morisset, S.; Rouille, V.; Mahé, B.; Laribi, K.; et al. Bruno A fixed-duration immunochemotherapy approach in CLL: 5.5-year results from the phase 2 ICLL-07 FILO trial. Blood Adv. 2023, 7, 3936–3945. [Google Scholar] [CrossRef] [PubMed]
- Von Tresckow, J.; Niemann, C.; Arnon, P.K.; Jasmin, B.; Moritz, F.; Anna-Maria, F.; Michael, G.; Thornton, P.; Tamar Tadmor, T.; Fischer, K.; et al. The GAIA (CLL13) trial: An international intergroup phase III study for frontline therapy in chronic lymphocytic leukemia (CLL). J. Clin. Oncol. 2018, 36 (Suppl. S15), TPS7582. [Google Scholar]
- Robak, T.; Hellmann, A.; Kloczko, J.; Loscertales, J.; Lech-Maranda, E.; Pagel, J.M.; Mato, A.; Byrd, J.C.; Awan, F.T.; Hebart, H.; et al. Randomized phase 2 study of otlertuzumab and bendamustine versus bendamustine in patients with relapsed chronic lymphocytic leukaemia. Br. J. Haematol. 2017, 176, 618–628. [Google Scholar] [CrossRef]
- Furman, R.R.; Sharman, J.P.; Coutre, S.E.; Cheson, B.D.; Pagel, J.M.; Hillmen, P.; Barrientos, J.C.; Zelenetz, A.D.; Kipps, T.J.; Flinn, I.; et al. Idelalisib and Rituximab in Relapsed Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2014, 370, 997–1007. [Google Scholar] [CrossRef]
- FDA. Copiktra (Duvelisib): Drug Safety Communication—FDA Warns about Possible Increased Risk of Death and Serious Side Effects. 2022. Available online: https://www.fda.gov/safety/medical-product-safety-information/copiktra-duvelisib-drug-safety-communication-fda-warns-about-possible-increased-risk-death-and (accessed on 30 September 2023).
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ, γ, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef]
- Davids, M.S.; Kim, H.T.; Nicotra, A.; Savell, A.; Francoeur, K.; Hellman, J.M.; Bazemore, J.; Miskin, H.P.; Sportelli, P.; Stampleman, L.; et al. Umbralisib in combination with ibrutinib in patients with relapsed or refractory chronic lymphocytic leukaemia or mantle cell lymphoma: A multicentre phase 1-1b study. Lancet Haematol. 2019, 6, 38–47. [Google Scholar] [CrossRef]
- Gribben, J.G.; Jurczak, W.; Jacobs, R.W.; Grosicki, S.; Giannopoulos, K.; Wrobel, T.; Zafar, S.F.; Cultrera, J.L.; Kambhampati, S.; Danilov, A.; et al. Umbralisib plus ublituximab (U2) is superior to obinutuzumab plus chlorambucil (O+Chl) in patients with treatment Naïve (TN) and relapsed/refractory (R/R) chronic lymphocytic leukemia (CLL): Results from the phase 3 Unity-CLL study. Blood 2020, 136, 37–39. [Google Scholar] [CrossRef]
- Gribben, J.G.; Bosch, F.; Cymbalista, F.; Geisler, C.H.; Ghia, P.; Hillmen, P.; Moreno, C.; Stilgenbauer, S. Optimising outcomes for patients with chronic lympho- cytic leukaemia on ibrutinib therapy: European recommendations for clinical practice. Br. J. Haematol. 2018, 180, 666–679. [Google Scholar] [CrossRef]
- Barr, P.M.; Owen, C.; Robak, T.; Tedeschi, A.; Bairey, O.; Burger, J.A.; Hillmen, P.; Coutre, S.E.; Dearden, C.; Grosicki, S.; et al. Up to 8-year follow-up from RESONATE-2: First-line ibrutinib treatment for patients with chronic lymphocytic leukemia. Blood Adv. 2022, 6, 3440–3450. [Google Scholar] [CrossRef]
- Byrd, J.C.; Furman, R.R.; Coutre, S.E.; Flinn, I.W.; Burger, J.A.; Blum, K.; Sharman, J.P.; Wierda, W.; Zhao, W.; Heerema, N.A.; et al. Ibrutinib Treatment for First-Line and Relapsed/Refractory Chronic Lymphocytic Leukemia: Final Analysis of the Pivotal Phase Ib/II PCYC-1102 Study. Clin. Cancer Res. 2020, 26, 3918–3927. [Google Scholar] [CrossRef]
- Moreno, C.; Greil, R.; Demirkan, F.; Tedeschi, A.; Anz, B.; Larratt, L.; Simkovic, M.; Novak, J.; Strugov, V.; Gill, D.; et al. First-line treatment of chronic lymphocytic leukemia with ibrutinib plus obinutuzumab versus chlorambucil plus obinutuzumab: Final analysis of the randomized, phase III iLLUMINATE trial. Haematologica 2022, 107, 2108–2120. [Google Scholar] [CrossRef]
- Shanafelt, T.D.; Wang, X.V.; Hanson, C.A.; Paietta, E.M.; O’Brien, S.; Barrientos, J.; Jelinek, D.F.; Braggio, E.; Leis, J.F.; Zhang, C.C.; et al. Long-term outcomes for ibrutinib-rituximab and chemoimmunotherapy in CLL: Updated results of the E1912 trial. Blood 2022, 140, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Ruppert, A.S.; Booth, A.M.; Ding, W.; Bartlett, N.L.; Brander, D.M.; Coutre, S.; Brown, J.R.; Nattam, S.; Larson, R.A.; Erba, H.; et al. Adverse event burden in older patients with CLL receiving bendamustine plus rituximab or ibrutinib regimens: Alliance A041202. Leukemia 2021, 35, 2854–2861. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, S.; Furman, R.R.; Coutre, S.E.; Sharman, J.P.; Burger, J.A.; Blum, K.A.; Grant, B.; Richards, D.A.; Coleman, M.; Wierda, W.; et al. Ibrutinib as initial therapy for elderly patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: An open-label, multicentre, phase 1b/2 trial. Lancet Oncol. 2014, 15, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Farooqui, M.Z.; Valdez, J.; Martyr, S.; Aue, G.; Saba, N.; Niemann, C.U.; Herman, S.E.; Tian, X.; Marti, G.; Soto, S.; et al. Ibrutinib for previously untreated and relapsed or refractory chronic lymphocytic leukaemia with TP53 aberrations: A phase 2, single-arm trial. Lancet Oncol. 2015, 16, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Burger, J.A.; O’Brien, S. Evolution of CLL treatment—From chemoimmunotherapy to targeted and individualized therapy. Nat. Rev. Clin. Oncol. 2018, 15, 510–527. [Google Scholar] [CrossRef]
- Delgado, J.; Josephson, F.; Camarero, J.; Garcia-Ochoa, B.; Lopez-Anglada, L.; Prieto-Fernandez, C.; van Hennik, P.B.; Papadouli, I.; Gisselbrecht, C.; Enzmann, H.; et al. EMA Review of Acalabrutinib for the Treatment of Adult Patients with Chronic Lymphocytic Leukemia. Oncologist 2021, 26, 242–249. [Google Scholar] [CrossRef]
- Sharman, J.P.; Egyed, M.; Jurczak, W.; Skarbnik, A.; Pagel, J.M.; Flinn, I.W.; Kamdar, M.; Munir, T.; Walewska, R.; Corbett, G.; et al. Acalabrutinib with or without obinutuzumab versus chlorambucil and obinutuzmab for treatment-naive chronic lymphocytic leukaemia (ELEVATE TN): A randomised, controlled, phase 3 trial. Lancet 2020, 395, 1278–1291. [Google Scholar] [CrossRef]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Šimkovič, M.; Kriachok, I.; Illés, Á.; de la Serna, J.; Dolan, S.; Campbell, P.; et al. Acalabrutinib Versus Investigator’s Choice in Relapsed/Refractory Chronic Lymphocytic Leukemia: Final ASCEND Trial Results. Hemasphere 2022, 6, e801. [Google Scholar] [CrossRef]
- Ghia, P.; Pluta, A.; Wach, M.; Lysak, D.; Kozak, T.; Simkovic, M.; Kaplan, P.; Kraychok, I.; Illes, A.; de la Serna, J.; et al. ASCEND: Phase III, Randomized Trial of Acalabrutinib Versus Idelalisib Plus Rituximabor Bendamustine Plus Rituximab in Relapsedor Refractory Chronic Lymphocytic Leukemia. J. Clin. Oncol. 2020, 38, 2849–2861. [Google Scholar] [CrossRef]
- Seymour, J.F.; Byrd, J.C.; Ghia, P.; Kater, A.P.; Chanan-Khan, A.; Furman, R.R.; O’Brien, S.; Brown, J.R.; Munir, T.; Mato, A.; et al. Detailed safety profile of acalabrutinib vs ibrutinib in previously treated chronic lymphocytic leukemia in the ELEVATE-RR trial. Blood 2023, 142, 687–699. [Google Scholar] [CrossRef]
- Ryan, C.E.; Davids, M.S.; Hermann, R.; Shahkarami, M.; Biondo, J.; Abhyankar, S.; Alhasani, H.; Sharman, J.P.; Mato, A.R.; Roeker, L.E. MAJIC: A phase III trial of acalabrutinib + venetoclax versus venetoclax + obinutuzumab in previously untreated chronic lymphocytic leukemia or small lymphocytic lymphoma. Future Oncol. 2022, 18, 3689–3699. [Google Scholar] [CrossRef]
- Tam, C.S.; Giannopoulos, K.; Jurczak, W.; Šimkovič, M.; Shadman, M.; Österborg, A.; Laurenti, L.; Walker, P.; Opat, S.; Chan, H.; et al. SEQUOIA: Results of a Phase 3 Randomized Study of Zanubrutinib versus Bendamustine + Rituximab (BR) in Patients with Treatment-Naïve (TN) Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma (CLL/SLL). Blood 2021, 138, 396. [Google Scholar] [CrossRef]
- Hillmen, P.; Brown, J.R.; Eichhorst, B.F.; Lamanna, N.; O’Brien, S.M.; Qiu, L.; Salmi, T.; Hilger, J.; Wu, K.; Cohen, A.; et al. ALPINE: Zanubrutinib versus ibrutinib in relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma. Future Oncol. 2020, 16, 517–523. [Google Scholar] [CrossRef]
- Xu, W.; Yang, S.; Zhou, K.; Pan, L.; Li, Z.; Zhou, J.; Gao, S.; Zhou, D.; Hu, J.; Feng, R.; et al. Treatment of relapsed/refractory chronic lymphocytic leukemia/small lymphocytic lymphoma with the BTK inhibitor zanubrutinib: Phase 2, single-arm, multicenter study. J. Hematol. Oncol. 2020, 13, 48. [Google Scholar] [CrossRef]
- Mato, A.R.; Shah, N.N.; Jurczak, W.; Cheah, C.Y.; Pagel, J.M.; Woyach, J.A.; Fakhri, B.; Eyre, T.A.; Lamanna, N.; Patel, M.R.; et al. Pirtobrutinib in relapsed or refractory B-cell malignancies (BRUIN): A phase 1/2 study. Lancet 2021, 397, 892–901. [Google Scholar] [CrossRef]
- Souers, A.J.; Leverson, J.D.; Boghaert, E.R.; Ackler, S.L.; Catron, N.D.; Chen, J.; Dayton, B.D.; Ding, H.; Enschede, S.H.; Fairbrother, W.J.; et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013, 19, 202–208. [Google Scholar] [CrossRef]
- Al-Sawaf, O.; Zhang, C.; Tandon, M.; Sinha, A.; Fink, A.M.; Robrecht, S.; Samoylova, O.; Liberati, A.M.; Pinilla-Ibarz, J.; Opat, S.; et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020, 21, 1188–1200. [Google Scholar] [CrossRef]
- Fischer, K.; Al-Sawaf, O.; Bahlo, J.; Fink, A.-M.; Tandon, M.; Dixon, M.; Robrecht, S.; Warburton, S.; Humphrey, K.; Samoylova, O.; et al. Venetoclax and Obinutuzumab in Patients with CLL and Coexisting Conditions. N. Engl. J. Med. 2019, 380, 2225–2236. [Google Scholar] [CrossRef]
- Wierda, W.G.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Opat, S.; Tedeschi, A.; Badoux, X.C.; Kuss, B.J.; Jackson, S.; Moreno, C.; et al. Ibrutinib Plus Venetoclax for First-Line Treatment of Chronic Lymphocytic Leukemia: Primary Analysis Results from the Minimal Residual Disease Cohort of the Randomized Phase II CAPTIVATE Study. J. Clin. Oncol. 2021, 39, 3853–3865. [Google Scholar] [CrossRef] [PubMed]
- Kater, A.P.; Seymour, J.F.; Hillmen, P.; Eichhorst, B.; Langerak, A.W.; Owen, C.; Verdugo, M.; Wu, J.; Punnoose, E.A.; Jiang, Y.; et al. Fixed Duration of Venetoclax-Rituximab in Relapsed/Refractory Chronic Lymphocytic Leukemia Eradicates Minimal Residual Disease and Prolongs Survival: Post-Treatment Follow-Up of the MURANO Phase III Study. J. Clin. Oncol. 2019, 37, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Tam, C.S.; Allan, J.N.; Siddiqi, T.; Kipps, T.J.; Jacobs, R.W.; Opat, S.; Barr, P.M.; Tedeschi, A.; Trentin, L.; Bannerji, R.; et al. Fixed-duration ibrutinib plus venetoclax for first-line treatment of CLL: Primary analysis of the CAPTIVATE FD cohort. Blood 2022, 139, 3278–3289. [Google Scholar] [CrossRef] [PubMed]
- Huber, H.; Tausch, E.; Schneider, C.; Edenhofer, S.; von Tresckow, J.; Robrecht, S.; Giza, A.; Zhang, C.; Fürstenau, M.; Dreger, P.; et al. Final analysis of the CLL2-GIVe trial: Obinutuzumab, ibrutinib, and venetoclax for untreated CLL with del(17p)/TP53mut. Blood 2023, 142, 961–972. [Google Scholar] [CrossRef]
- Eichhorst, B.; Niemann, C.U.; Kater, A.P.; Fürstenau, M.; von Tresckow, J.; Zhang, C.; Robrecht, S.; Gregor, M.; Juliusson, G.; Thornton, P.; et al. First-Line Venetoclax Combinations in Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 1739–1754. [Google Scholar] [CrossRef]
- Acebes-Huerta, A.; Huergo-Zapico, L.; Gonzalez-Rodriguez, A.P.; Fernandez-Guizan, A.; Payer, A.R.; López-Soto, A.; Gonzalez, S. Lenalidomide induces immunomodulation in chronic lymphocytic leukemia and enhances antitumor immune responses mediated by NK and CD4 T cells. Biomed. Res. Int. 2014, 2014, 265840. [Google Scholar] [CrossRef]
- Chanan-Khan, A.; Miller, K.C.; Musial, L.; Lawrence, D.; Padmanabhan, S.; Takeshita, K.; Porter, C.W.; Goodrich, D.W.; Bernstein, Z.P.; Wallace, P.; et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: Results of a phase II study. J. Clin. Oncol. 2006, 24, 5343–5349. [Google Scholar] [CrossRef]
- Ferrajoli, A.; Lee, B.N.; Schlette, E.J.; O’Brien, S.M.; Gao, H.; Wen, S.; Wierda, W.G.; Estrov, Z.; Faderl, S.; Cohen, E.N.; et al. Lenalidomide induces com- plete and partial remissions in patients with relapsed and refractory chronic lymphocytic leukemia. Blood 2008, 111, 5291–5297. [Google Scholar] [CrossRef]
- Chanan-Khan, A.A.; Zaritskey, A.; Egyed, M.; Vokurka, S.; Semochkin, S.; Schuh, A.; Kassis, J.; Simpson, D.; Zhang, J.; Purse, B.; et al. Lenalidomide mainte- nance therapy in previously treated chronic lymphocytic leukaemia (CONTINUUM): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Haematol. 2017, 4, e534–e543. [Google Scholar] [CrossRef]
- Katz, O.B.; Yehudai-Ofir, D.; Zuckerman, T. Cellular therapy in chronic lymphocytic leukemia: Have we advanced in the last decade? Acta Haematol. 2023, 146, 1. [Google Scholar] [CrossRef]
- Kharfan-Dabaja, M.A.; Kumar, A.; Hamadani, M.; Stilgenbauer, S.; Ghia, P.; Anasetti, C.; Dreger, P.; Montserrat, E.; Perales, M.A.; Alyea, E.P.; et al. Clinical practice recommendations for use of allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia on behalf of the guidelines committee of the American society for blood and marrow transplantation. Biol. Blood Marrow Transplant. 2016, 22, 2117–2125. [Google Scholar] [CrossRef]
- van Gelder, M.; de Wreede, L.C.; Bornhäuser, M.; Niederwieser, D.; Karas, M.; Anderson, N.S.; Gramatzki, M.; Dreger, P.; Michallet, M.; Petersen, E.; et al. Long-term survival of patients with CLL after allogeneic transplantation: A report from the European society for blood and marrow transplantation. Bone Marrow Transplant. 2017, 52, 372–380. [Google Scholar] [CrossRef]
- Andersen, N.S.; Bornhäuser, M.; Gramatzki, M.; Dreger, P.; Vitek, A.; Karas, M.; Michallet, M.; Moreno, C.; van Gelder, M.; Henseler, A.; et al. Reduced intensity conditioning regimens including alkylating chemotherapy do not alter survival outcomes after allogeneic hematopoietic cell transplantation in chronic lymphocytic leukemia compared to low-intensity non-myeloablative conditioning. J. Cancer Res. Clin. Oncol. 2019, 145, 2823–2834. [Google Scholar] [CrossRef]
- Poon, M.L.; Fox, P.S.; Samuels, B.I.; O’Brien, S.; Jabbour, E.; Hsu, Y.; Gulbis, A.; Korbling, M.; Champlin, R.; Abruzzo, L.V.; et al. Allogeneic stem cell transplant in patients with chronic lymphocytic leukemia with 17p deletion: Consult-transplant versus consult- no-transplant analysis. Leuk. Lymphoma 2015, 56, 711–715. [Google Scholar] [CrossRef]
- Turtle, C.J.; Hay, K.A.; Hanafi, L.A.; Li, D.; Cherian, S.; Chen, X.; Wood, B.; Lozanski, A.; Byrd, J.C.; Heimfeld, S.; et al. Durable molecular remissions in chronic lymphocytic leukemia treated with CD19-specific chimeric antigen receptor-modified T cells after failure of Ibrutinib. J. Clin. Oncol. 2017, 35, 3010–3020. [Google Scholar] [CrossRef]
- Wierda, W.G.; Dorritie, K.A.; Munoz, J.; Stephens, D.M.; Solomon, S.R.; Gillenwater, H.H.; Gong, L.; Yang, L.; Ogasawara, K.; Thorpe, B.S.; et al. Transcend CLL 004: Phase 1 cohort of lisocabtagene maraleucel (lisocel) in combination with ibrutinib for patients with relapsed/refractory (R/R) chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL). Blood 2020, 136, 39–40. [Google Scholar] [CrossRef]
- Grupo Español de Leucemia Linfocítica Crónica (GELLLC). Guías de Tratamiento LLC. 2023. Available online: https://www.gellc.es/images/pdf/GUIA_GELLC_04_2023.pdf (accessed on 28 September 2023).
- Owen, C.; Banerji, V.; Johnson, N.; Gerrie, A.; Aw, A.; Chen, C.; Robinson, S. Canadian evidence-based guideline for frontline treatment of chronic lymphocytic leukemia: 2022 update. Leuk. Res. 2023, 125, 107016. [Google Scholar] [CrossRef]
- Tse, E.; Kwong, Y.L.; Goh, Y.T.; Bee, P.C.; Ng, S.C.; Tan, D.; Caguioa, P.; Nghia, H.; Dumagay, T.; Norasetthada, L.; et al. Expert consensus on the management of chronic lymphocytic leukaemia in Asia. Clin. Exp. Med. 2023, 23, 2895–2907. [Google Scholar] [CrossRef]
- Shadman, M. Diagnosis and Treatment of Chronic Lymphocytic Leukemia: A Review. JAMA 2023, 329, 918–932. [Google Scholar] [CrossRef]
- Wendtner, C.M.; Al-Sawaf, O.; Binder, M.; Dreger, P.; Eichhorst, B.; Gregor, M.; Greil, R.; Hallek, M.; Holtkamp, U.; Knauf, W.U.; et al. Chronische Lymphatische Leukämie. 2023. Available online: https://www.onkopedia.com/de/onkopedia/guidelines/chronische-lymphatische-leukaemie-cll/@@guideline/html/index.html#ID0ECWAE (accessed on 28 September 2023).
- Wierda, W.G.; Brown, J.; Abramson, J.S.; Awan, F.; Bilgrami, S.F.; Bociek, G.; Brander, D.; Chanan-Khan, A.A.; Coutre, S.E.; Davis, R.S.; et al. NCCN Guidelines® Insights: Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma, Version 3.2022. J. Natl. Compr. Cancer Netw. 2022, 20, 622–634. [Google Scholar] [CrossRef]
- Islam, P. Current Treatment Options in Relapsed and Refractory Chronic Lymphocytic Leukemia/Small Lymphocytic Lymphoma: A Review. Curr. Treat. Options Oncol. 2023, 24, 1259–1273. [Google Scholar] [CrossRef]
- Odetola, O.; Ma, S. Relapsed/Refractory Chronic Lymphocytic Leukemia (CLL). Curr. Hematol. Malig. Rep. 2023, 18, 130–143. [Google Scholar] [CrossRef]
- Brown, J.R.; Eichhorst, B.; Hillmen, P.; Jurczak, W.; Kaźmierczak, M.; Lamanna, N.; O’Brien, S.M.; Tam, C.S.; Qiu, L.; Zhou, K.; et al. Zanubrutinib or Ibrutinib in Relapsed or Refractory Chronic Lymphocytic Leukemia. N. Engl. J. Med. 2023, 388, 319–332. [Google Scholar] [CrossRef] [PubMed]
- Hillmen, P.; Rawstron, A.C.; Brock, K.; Muñoz-Vicente, S.; Yates, F.J.; Bishop, R.; Boucher, R.; MacDonald, D.; Fegan, C.; McCaig, A.; et al. Ibrutinib Plus Venetoclax in Relapsed/Refractory Chronic Lymphocytic Leukemia: The CLARITY Study. J. Clin. Oncol. 2019, 37, 2722–2729, Erratum in J. Clin. Oncol. 2020, 38, 1644. [Google Scholar] [CrossRef] [PubMed]
- Roberts, A.W.; Davids, M.S.; Pagel, J.M.; Kahl, B.S.; Puvvada, S.D.; Gerecitano, J.F.; Kipps, T.J.; Anderson, M.A.; Brown, J.R.; Gressick, L.; et al. Targeting BCL-2 with Venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016, 374, 311–322. [Google Scholar] [CrossRef] [PubMed]
- Stilgenbauer, S.; Eichhorst, B.; Schetelig, J.; Coutre, S.; Seymour, J.F.; Munir, T.; Puvvada, S.D.; Wendtner, C.M.; Roberts, A.W.; Jurczak, W.; et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol. 2016, 17, 768–778. [Google Scholar] [CrossRef] [PubMed]
- Taghiloo, S.; Asgarian-Omran, H. Current Approaches of Immune Checkpoint Therapy in Chronic Lymphocytic Leukemia. Curr. Treat. Options Oncol. 2023, 24, 1408–1438. [Google Scholar] [CrossRef] [PubMed]
- Reiff, S.D.; Muhowski, E.M.; Guinn, D.; Lehman, A.; Fabian, C.A.; Cheney, C.; Mantel, R.; Smith, L.; Johnson, A.J.; Young, W.B.; et al. Noncovalent inhibition of C481S Bruton tyrosine kinase by GDC-0853: A new treatment strategy for ibrutinib-resistant CLL. Blood 2018, 132, 1039–1049. [Google Scholar] [CrossRef]
- Wang, E.; Mi, X.; Thompson, M.C.; Montoya, S.; Notti, R.Q.; Afaghani, J.; Durham, B.H.; Penson, A.; Witkowski, M.T.; Lu, S.X.; et al. Mechanisms of Resistance to Noncovalent Bruton’s Tyrosine Kinase Inhibitors. N. Engl. J. Med. 2022, 386, 735–743. [Google Scholar] [CrossRef]
- Nakhoda, S.; Vistarop, A.; Wang, Y.L. Resistance to Bruton tyrosine kinase inhibition in chronic lymphocytic leukaemia and non-Hodgkin lymphoma. Br. J. Haematol. 2023, 200, 137–149. [Google Scholar] [CrossRef]
- Burger, J.A.; Landau, D.A.; Taylor-Weiner, A.; Bozic, I.; Zhang, H.; Sarosiek, K.; Wang, L.; Stewart, C.; Fan, J.; Hoellenriegel, J.; et al. Clonal evolution in patients with chronic lymphocytic leukaemia developing resistance to BTK inhibition. Nat. Commun. 2016, 7, 11589. [Google Scholar] [CrossRef]
- Birkinshaw, R.W.; Gong, J.N.; Luo, C.S.; Lio, D.; White, C.A.; Anderson, M.A.; Blombery, P.; Lessene, G.; Majewski, I.J.; Thijssen, R.; et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019, 10, 2385. [Google Scholar] [CrossRef]
- Cuneo, A.; Foà, R. Relapsed/Refractory Chronic Lymphocytic Leukemia: Chemoimmunotherapy, Treatment until Progression with Mechanism-Driven Agents or Finite-Duration Therapy? Mediterr. J. Hematol. Infect. Dis. 2019, 11, e2019024. [Google Scholar] [CrossRef] [PubMed]
- Shadman, M.; Manzoor, B.S.; Sail, K.; Tuncer, H.H.; Allan, J.N.; Ujjani, C.; Emechebe, N.; Kamalakar, R.; Coombs, C.C.; Leslie, L.; et al. Treatment Discontinuation Patterns for Patients with Chronic Lymphocytic Leukemia in Real-World Settings: Results from a Multi-Center International Study. Clin. Lymphoma Myeloma Leuk. 2023, 23, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Davids, M.S.; Lampson, B.L.; Tyekucheva, S.; Wang, Z.; Lowney, J.; Pazienza, S.; Montegaard, J.; Patterson, V.; Weinstcok, M.; Crombie, J.L.; et al. Acalabrutinib, venetoclax, and Obinutuzumab as frontline treatment for chronic lymphocytic leukaemia: A single-arm, open-label, phase 2 study. Lancet Oncol. 2021, 22, 1391–1402. [Google Scholar] [CrossRef]
- Soumerai, J.D.; Mato, A.R.; Dogan, A.; Seshan, V.E.; Joffe, E.; Flaherty, K.; Carter, J.; Hochberg, E.; Barnes, J.A.; Hamilton, A.M.; et al. Zanubrutinib, Obinutuzumab, and venetoclax with minimal residual disease-driven discontinuation in previously untreated patients with chronic lymphocytic leukaemia or small lymphocytic lymphoma: A multicentre, single-arm, phase 2 trial. Lancet Haematol. 2021, 8, E879–E890. [Google Scholar] [CrossRef]
- Karr, M.; Roeker, L. A History of Targeted Therapy Development and Progress in Novel-Novel Combinations for Chronic Lymphocytic Leukemia (CLL). Cancers 2023, 15, 1018. [Google Scholar] [CrossRef]
Mutation | Prevalence | Location | Signaling Pathway | Prognosis | References |
---|---|---|---|---|---|
TP53 | 5–10% at the beginning of treatment 40–50% in refractory patients | Chromosome 17 | Resistance to apoptosis induced via DNA-damaging agents | Very poor prognosis | [17,18] |
BIRC3 | 2–6% | Chromosome 11 | NF-κB signaling | Poor prognosis | [26,27,28] |
NOTCH1 | 10–15% | Chromosome 9 | NF-κB signaling | Poor prognosis | [29,30,31] |
ATM | 10–12% | Chromosome 11 | Aberrations in DNA repair mechanisms | Poor prognosis | [32,33,34] |
SF3B1 | 5–10% | Chromosome 2 | Splicing RNAm | Poor prognosis | [35,36] |
MYD88 | 3% | Chromosome 3 | NF-κB signaling | Good prognosis | [36,37] |
Cytokine | Action | Mechanism | Ref. |
---|---|---|---|
Il-2 | Improves the function of CLL cells. | Promotes the differentiation and proliferation of CLL cells. | [41] |
Il-4 | Increases CLL cell survival and proliferation. Reduces apoptosis. | Activates JAK/STAT signaling pathway and enhances expression of antiapoptotic proteins. | [42] |
Il- 6 | Increases CLL cell survival and proliferation. | Activates JAK/STAT signaling pathway and enhances expression of antiapoptotic proteins. | [43] |
Il- 8 | Survival and chemoresistance of CLL cells. | Activates JAK/STAT signaling pathway. | [44] |
Il-9 | Stimulates growth and survival of CLL cells. | Activates the JAK/STAT pathway and the phosphatidylinositol phosphokinase subunit 3 (PI3K)/Akt/mTOR signaling pathway. | [45] |
Il- 10 | Suppresses anti-tumor immunity. | Reduce the production of effector CD4 and CD8 T cells. | [46] |
Il- 17 | Increases CLL cell survival and proliferation. | Activates the NF-κB pathway and increases the expression of antiapoptotic proteins. | [47] |
TNF-α | Induces apoptosis. | Attaches to the TNF receptor found on CLL cells, activating caspases to induce programmed cell death. | [48] |
IFN-γ | Inhibits proliferation. | Attaches to the IFN-γ receptor present on CLL cells, initiating the JAK-STAT pathway to hinder cell proliferation. | [49] |
Morphology and Immunophenotype | Test Genetic | Radiographic Imaging | Prognosis | Refs. | |
ESMO | Obligatory Diagnosis is usually possible through immunophenotyping peripheral blood only (III, A). LN biopsy and/or bone marrow biopsy may be helpful if immunophenotyping is not conclusive for the diagnosis of CLL (IV, A). | Del(17p), TP53mut, and IGHV status should be assessed before treatment (III, A). In the early and asymptomatic stage is not recommended (V, D). | It is not recommended in asymptomatic patients. Recommended for pulmonary symptomatic patients. Recommended before treatment with the BCL2 inhibitor to assess the tumor load and risk of tumor lysis syndrome. | Binet and Rai staging systems are relevant for treatment indication (III, A) | [58] |
iwCLL | Obligatory | Molecular cytogenetics (FISH) for del(13q), del(11q), del(17p), and add (12) in PB lymphocytes. (Desirable). Conventional karyotyping in PB lymphocytes (Desirable). TP53 mutation (needed to establish a prognostic profile in addition to the clinical staging). IGHV mutational status (needed to establish a prognostic profile in addition to the clinical staging). Serum β2-microglobulin (Desirable). | CT scan of chest, abdomen, and pelvis (Desirable) MRI and PET scans (NGI) Abdominal ultrasound (NGI) | Binet and Rai staging systems. CLL-IPI (Desirable). | [9] |
ERIC | Obligatory | Strongly needed TP53 gene before starting the first and each subsequent line of treatment. Analyzing exons 4–10 is a minimal requirement with Sanger sequencing or NGS. Strongly needed to interpret IGHV mutational analysis before starting the first line of treatment. Alignment and determination of homology with PAGE or GeneScan. | [59,60] |
Clinical Study | Type of Study | Eligible Patients | Treatment | Endpoints | Conclusion | Ref. |
---|---|---|---|---|---|---|
FLAIR | Open label Randomized Phase III Controlled | Age between 18 and 75 years WHO performance status of 2 or lower Previously untreated CLL | Ibrutinib + rituximab (IR) vs. FCR | PFS | BR demonstrated a notable enhancement in PFS. It did not result in a significant improvement in OS. | [102] |
CCL18 | Multicenter Phase II Prospective Non-randomized | 18 years old WHO performance status of 0 to 2 Life expectancy of at least 12 weeks Adequate renal and liver function | IR | Safety and efficacy of BR in previously untreated patients. | Apart from those with del(17p) who showed resistance to the treatment, the combination of BR is a safe and effective treatment for naïve CLL patients. | [103] |
CCL10 | Phase III Randomized Open label | Untreated fit patients with advanced CLL without del(17p) | FCR vs. BR | ORR | Smaller difference in median PFS between FCR and BR as well as no difference in OS. | [104] |
ICLL-07-Filo | Phase II | ≥18 years Binet stage C or Binet stage A and B with active disease. No prior treatment Absence of del(17p). | Obinutuzumab + ibrutinib followed by ibrutinib in patients achieving CR vs. FC-obinutuzumab in conjunction with ibrutinib. | PFS, OS, and minimal residual disease (MRD) in PB. | CIT with a set duration resulted in profound and lasting responses, leading to high survival rates. No distinctions were observed in the extent and persistence of MRD responses in PB based on the IGHV mutational status. | [105] |
Clinical Study | Type of Study | Eligible Patients | Treatment | Endpoints | Conclusion | Refs. |
---|---|---|---|---|---|---|
RESONATE-2 | Phase III, randomized, open label, multicenter. | CLL and small SLL patients (naïve or previously treated) and ineligible for purine analog therapy. | Ibrutinib vs. chlorambucil as first-line treatment | PFS, ORR, safety. | Ibrutinib demonstrated an extended OS. The extended RESONATE-2 data illustrate the advantages of initiating treatment with ibrutinib, even for patients exhibiting high risk. | [113,114] |
PCYC-1102 | Phase Ib/II study. | Patients receiving single-agent ibrutinib in first-line or r/r CLL/SLL. | Ibrutinib | Frequency and severity of AE | Ibrutinib demonstrated prolonged responses and sustained tolerability in first-line r/r CLL/SLL. Individuals who had a history of ≥4 prior therapies and those with del(17p) exhibited a higher frequency of progression. | [115] |
ILLUMINATE | Phase III, randomized, open label. | Untreated CLL/SLL patients. Aged ≥ 65 or <65 years. At least one of the following conditions: cumulative illness rating score > 6, creatinine clearance < 70 mL/min, del(17p), or TP53 mut. | Ibrutinib + obinutuzumab vs. chlorambucil + obinutuzumab as a first-line therapy | PFS | Ibrutinib + obinutuzumab for individuals with previously untreated CLL showed prolonged PFS compared to chlorambucil + Obinutuzumab. | [116] |
E1912 | Phase III, randomized. | CLL naïve patients aged 70 or less years. | Long-term efficacy ibrutinib + rituximab vs. FCR | PFS, OS | OS improvement in patients treated with ibrutinib + rituximab. This therapy provides better PFS compared to FCR in both IGHVm and IGHVum CLL patients. | [117] |
ALLIANCE A041202 | Phase III, randomized, open label. | Adults aged ≥ 65 years who had not received prior treatment for CLL. | BR vs. ibrutinib vs. ibrutinib + rituximab | PFS | Ibrutinib demonstrates superior PFS in older CLL patients compared to BR. However, the disparity in treatment duration complicates the comparison of AE. | [118,119] |
Clinical Study | Type of Study | Eligible Patients | Treatment | Endpoint | Conclusion | Refs. |
---|---|---|---|---|---|---|
ELEVATE-TN | Phase III, randomized, controlled. | Untreated patients aged ≥ 65 years. | Acalabrutinib + obinutuzumab, acalabrutinib or obinutuzumab + chlorambucil | PFS | Acalabrutinib, or acalabrutinib + obinutuzumab, demonstrated a significant enhancement in PFS compared to obinutuzumab + chlorambucil. Consider acalabrutinib monotherapy or in combination with obinutuzumab as treatment in naïve patients. | [123] |
ASCEND | Phase III, randomized, open label, multicenter. | Patients aged ≥ 18 years diagnosed with CLL who had undergone at least one systemic therapy before. | Acalabrutinib, Idelasib + rituximab (idR) or BR | PFS | Meaningful enhancement in PFS when comparing acalabrutinib monotherapy to IdR or BR treatment regimens. Acalabrutinib demonstrated tolerability and profile. These results support the use of acalabrutinib monotherapy as a treatment for patients with r/r CLL, including those presenting high risk. | [124,125] |
ELEVATE R/R | Phase III, randomized, international. multicenter, open label, non-inferiority. | Individuals who had undergone at least one previous therapy. ECOG ≤ 2 del(17) (p13.1) and/or del(11). | Acalabrutinib vs. ibrutinib | PFS | Acalabrutinib exhibited non-inferiority to ibrutinib in terms of PFS. There was a statistically significant reduction in the incidence of atrial fibrillation/flutter with acalabrutinib in patients with previously treated CLL. The incidence of hypertension was higher with ibrutinib. | [126] |
MAJIC | Phase III, prospective, multicenter, randomized, open label. | Adults with naïve CLL/SLL meeting indication for treatment. | Acalabrutinib + venetoclax (AV) vs. VO | PFS | Evaluation to see if MRD-guided limited AV treatment is comparable to MRD-guided limited VO treatment in terms of PFS. The study is still in progress. | [127] |
Clinical Study | Type of Study | Eligible Patients | Treatment | Endpoints | Conclusion | Ref. |
---|---|---|---|---|---|---|
SEQUOIA | Phase III, open-label, multicenter study | Previously untreated CLL or SLL ≥65 or ≥18 years ECOG 0 -2 | Zanubrutinib vs. BR | PFS | Zanubrutinib showed a notable improvement in PFS and safety profile compared to BR accompanied. These results lend support to zanubrutinib as a potential treatment option for untreated CLL and SLL. | [128] |
ALPINE | Head-to-head Phase III study | r/r CLL/SLL patients | Zanubrutinib vs. ibrutinib | ORR PFS OS | Zanubrutinib demonstrated superiority over ibrutinib in terms of PFS, OS, and safety profile. In patients with del17p, TP53mut, or both, those treated with zanubrutinib experienced PFS compared with ibrutinib. | [129] |
NCT03206918 | Phase II, single-arm, multicenter study | r/r CLL/SLL patients | Zanubrutinib | ORR PFS | Results showed that administering zanubrutinib twice daily led to a significant occurrence of lasting responses. Zanubrutinib presents the possibility of enhanced safety and tolerability compared to current treatment choices. | [130] |
Clinical Study | Type of Study | Eligible Patients | Treatment | Endpoints | Conclusion | Refs. |
---|---|---|---|---|---|---|
CCL14 | Phase III, multicenter, randomized, open label. | Untreated CLL ≥18 years. | VO vs. chlorambucil + Obinutuzumab. | PFS | 2 years post-treatment discontinuation, the combination of VO demonstrated a significant enhancement of PFS compared to chlorambucil + obinutuzumab. In cases where the use of BTKi is not feasible due to potential AE, VO remains a reasonable choice. | [133,134] |
CAPTIVATE | Phase II, randomized. | Previously untreated CLL patients age < 70 years. | 3 cycles of ibrutinib, followed by 12 cycles of ibrutinib or ibrutinib + venetoclax. Confirmed undetectable MRD (uMRD): placebo or ibrutinib. Not confirmed uMRD: ibrutinib or ibrutinib + venetoclax. | 1-year disease-free survival (DFS), uMRD status, and safety | The 95% 1-year DFS rate observed in patients randomly assigned to the placebo group, with confirmed uMRD, indicates the potential viability of a fixed-duration treatment using this all-oral, once-daily, chemotherapy-free regimen as a first line. | [135] |
MURANO | Phase III, open label, randomized. | Patients with r/r CLL. | Venetoclax + rituximb (VR) vs. BR in patients with r/r CLL. | PFS, safety, and MRD status | VR treatment provides a long-lasting clinical response and confers a survival benefit compared to BR therapy. | [136] |
GLOW | Phase III. | Patients aged ≤ 70 years with previously untreated CLL without del(17p) or tp53mut. | Fixed duration treatment ibrutinib + venetoclax. | Complete response (CR) rate, uMRD, PFS, OS, and safety | In older patients and/or those with comorbidities, the first-line treatment for CLL with ibrutinib + venetoclax exhibited superior PFS and achieved deeper and more enduring responses compared to chlorambucil–obinutuzumab. | [137] |
CLL2-GIVe | Phase II, open label, multicenter. | Previously untreated patients with high-risk CLL and del(17p)/TP53 mut. | Triple combination of obinutuzumab + ibrutinib + venetoclax. | CR rate at cycle 15, PFS, and OS | After a median observation period of 38.4 months, the study found a 79.9% PFS and a 92.6% OS at 36 months. The research suggests that the CLL2-GIVe regimen is a hopeful fixed-duration first-line treatment for patients with high-risk CLL. | [138,139] |
Guideline | Drugs | Additional Information | Ref. |
---|---|---|---|
Spanish group of CLL (SGCLL) | Acalabrutinib Zanubrutinib Ibrutinib Ibrutinib + Venetoclax VO | Treatments are placed in order of recommendation. | [151] |
Canadian Guideline | BTKi Ibrutinib Acalabrutinib | Favor ACAL for the best side effect profile. Indefinite therapy. | [152] |
VO | Improved PFS compared to CIT (chemoimmunotherapy). Less durable remission compared to BTKi. Finite therapy. | ||
Expert consensus on the management of CLL in Asia | BTKi Ibrutinib Acalabrutinib | Preferred first-line treatment of choice for patients with del17p or TP53 mutation. Patients who are intolerant to ibrutinib or who have relative contraindications to ibrutinib may still tolerate acalabrutinib. Second-generation BTKi, including acalabrutinib, may have a better safety profile than ibrutinib, especially in patients with high-risk disease characteristics. | [153] |
VO | BCL-2i can be considered in all CLL patients in need of therapy, including those with high-risk genomic features such as TP53 abnormalities. | ||
JAMA (Journal of the American Medical Association) First-line treatment | Indefinite treatment BTKi Acalabrutinib Ibrutinib Zanubrutinib | Second-generation BTKi (acalabrutinib and zanubrutinib) is preferred, given improved safety extrapolating from head-to-head trials in patients with relapse. Zanubrutinib had superior efficacy compared with ibrutinib. | [154] |
Fixed duration treatment VO | Consider continuation of venetoclax in patients with abnormal TP53, especially in patients with evidence of detectable disease at 12 months. | ||
ESMO | Ibrutinib or Acalabrutinib VO Venetoclax IdR | For the choice between VO versus ibrutinib or other BTKis, time-limited therapy would be preferred, but side effect profile and application mode must be considered. | [58] |
German Society for Haematology and Medical Oncology (DGHO) | Acalabrutinib Zanubrutinib Ibrutinib | Continuous use of BTKi, mainly acalabrutinib or zanubrutinib, is preferred. If acalabrutinib or zanubrutinib are contraindicated or unavailable, ibrutinib (+/− obinutuzumab) remains a therapeutic option. | [155] |
VO | |||
Ibrutinib + Venetoclax | Since August 2022, time-limited combination therapy (14 months) based on ibrutinib + venetoclax is also possible in the first line, which also includes patients with high-risk aberration. Based on the CAPTIVATE study. |
Guideline | Type of Patient | Drugs | Additional Information | Ref. |
---|---|---|---|---|
SGCLL | Assess CIT scheme adapted to age and/or comorbidities (FCR/BR or Chlorambucil-O) when it is not possible to administer recommended treatment | Ibrutinib + Venetoclax VO | Treatments are placed in order of recommendation. | [151] |
Acalabrutinib Zanubrutinib | ||||
Ibrutinib | ||||
Canadian Guideline | FIT patients | FCR | Longest remissions documented to date and possibility of cure. Finite therapy (only 6 months). | [152] |
VO | Highly effective therapy with very long remissions. | |||
BTKi (Acalabrutinib) | Long remissions. Indefinite therapy (high cost). | |||
UNFIT patients | VO | Preferred therapy. Finite therapy (only 12 months). | ||
Acalabrutinib | Indefinite therapy. Very high cost. | |||
CIT | Shorter remission than V-O. Finite duration therapy. | |||
Expert consensus on the management of CLL in Asia | FIT patients | BTKi | Fit patients < 65 years of age with IGHVm. Either FCR or other novel agents may be considered. Inform young patients about the risk of secondary malignancy and offer the option of CIT or novel agents (BTKi). | [153] |
CIT | ||||
UNFIT patients | VO | Both BTKi and BCL-2i have good clinical data to support their use. | ||
BTKi | ||||
ESMO | FIT patients | CIT: FCR or BR (patients > 65 years) | CIT is an alternative treatment used only if there is a reason for not using targeted therapies or when they are not available. | [58] |
UNFIT patients | VO CIT: Chlorambucil + Obinutuzumab, Ibrutinib, or Acalabrutinib | |||
DGHO | VO | If the genetic risk profile is favorable time-limited therapy with VO (12 cycles) should be preferred. If there are severe cardiac comorbidities, VO is primarily recommended. | [155] | |
Acalabrutinib +/− Obinutuzumab | If renal function is impaired or if all-oral therapy is desired, primary therapy with a second-generation BTKi. | |||
Zanubrutinib | ||||
Ibrutinib +/− Obinutuzumab | Higher cardiotoxicity of ibrutinib compared to second-generation BTKi. However, in the case of renal failure, preference should be given a BTKi. | |||
Ibrutinib + Venetoclax | Can be used in intermediate-risk patients (IGHVum) as a temporary therapy (15 cycles). |
Guideline | Type of Patient | Drugs | Additional Information | Ref. | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SGCLL | Acalabrutinib Ibrutinib + Venetoclax VO Zanubrutinib Ibrutinib | Same level of recommendation. To be evaluated according to patient profile. | [151] | |||||||
Canadian Guideline | FIT patients | Acalabrutinib | Better PFS (elevate R/R study) than Ibrutinib. Conflicting OS | [152] | ||||||
VO | Less PFS than BTKi | |||||||||
FCR Ineligible | Acalabrutinib | Improved PFS compared to CIT. | ||||||||
VO | Effective therapy expected to provide several years of treatment-free duration. Finite duration (12 months) | |||||||||
Acalabrutinib–Obinutuzumab | Improved OS compared to CIT. | |||||||||
Expert consensus on the management of CLL in Asia | FIT patients | BTKi | Could be used in preference to CIT. Lower toxicity. | [153] | ||||||
CIT | Can be used as a first-line treatment option. | |||||||||
UNFIT patients | VO | |||||||||
BTKi | May be considered the preferred first-line treatment of choice for this patient. | |||||||||
ESMO | FIT patients | Ibrutinib or CIT: FCR or BR (>65 years patients) | [58] | |||||||
UNFIT patients | VO, Ibrutinib–Acalabrutinib, CIT: Chlorambucil–Obinutuzumab | |||||||||
DGHO | Acalabrutinib +/− Obinutuzumab Zanubrutinib Ibrutinib +/− Obinutuzumab | Some studies (ALLIANCE and ILLUMINATE) with BTKi showed reduced PFS in the IGHVum group. Due to the cardiovascular toxicity profile, therapy with ibrutinib is primarily not recommended unless patients are young, fit, and have no prior cardiac disease. | [155] | |||||||
VO | Temporary therapy (12 cycles). CCL14 showed a significant difference in PFS in patients with unmutated IGHV status. However, the result of the CLL17 study on whether VO is inferior to long-term treatment with BTKi (including non-mutated patients) is still pending. | |||||||||
Ibrutinib + Venetoclax | Data from the GLOW study show shorter PFS for IGHVum at short follow-up for this group compared to the subgroup with IGHVm. | |||||||||
NCCN/iwCLL [13,156] | Front-line therapy | Acalabrutinib +/− obinutuzumab VO Zanubrutinib | These options are recommended across almost every subgroup of patients. | |||||||
Clinical trial available | Yes | With no clear evidence of a functional cure, it is important to enroll patients in clinical trials when available. | ||||||||
No | Check IGHV status | Mutated | Check CLL FISH | Only del 13q+ | Age < 65 | Yes | Discuss/consider FCRx6. This regimen is not preferred in the current era of targeted therapies for CLL and SLL. | |||
No | Check FISH/tp53 mutations. | |||||||||
Unmutated | Check CLL FISH/tp53 mutation. | del17+ or tp53mut | Acalabrutinib | Renal insufficiency. Extensive infections (except in cases of aspergillosis). | ||||||
Zanubrutinib | ||||||||||
Others | Consider comorbidities. | VO (12 mo) | Atrial fibrillation or hypertension. Need for anticoagulation. Preference for time-limited therapy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez Suárez, M.D.M.; Martín Roldán, A.; Alarcón-Payer, C.; Rodríguez-Gil, M.Á.; Poquet-Jornet, J.E.; Puerta Puerta, J.M.; Jiménez Morales, A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics 2024, 16, 55. https://doi.org/10.3390/pharmaceutics16010055
Sánchez Suárez MDM, Martín Roldán A, Alarcón-Payer C, Rodríguez-Gil MÁ, Poquet-Jornet JE, Puerta Puerta JM, Jiménez Morales A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics. 2024; 16(1):55. https://doi.org/10.3390/pharmaceutics16010055
Chicago/Turabian StyleSánchez Suárez, María Del Mar, Alicia Martín Roldán, Carolina Alarcón-Payer, Miguel Ángel Rodríguez-Gil, Jaime Eduardo Poquet-Jornet, José Manuel Puerta Puerta, and Alberto Jiménez Morales. 2024. "Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era" Pharmaceutics 16, no. 1: 55. https://doi.org/10.3390/pharmaceutics16010055
APA StyleSánchez Suárez, M. D. M., Martín Roldán, A., Alarcón-Payer, C., Rodríguez-Gil, M. Á., Poquet-Jornet, J. E., Puerta Puerta, J. M., & Jiménez Morales, A. (2024). Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics, 16(1), 55. https://doi.org/10.3390/pharmaceutics16010055