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Abstract: The tumor microenvironment (TME) is pivotal in tumor growth and metastasis, aligning
with the “Seed and Soil” theory. Within the TME, tumor-associated macrophages (TAMs) play a
central role, profoundly influencing tumor progression. Strategies targeting TAMs have surfaced
as potential therapeutic avenues, encompassing interventions to block TAM recruitment, eliminate
TAMs, reprogram M2 TAMs, or bolster their phagocytic capabilities via specific pathways. Nano-
materials including inorganic materials, organic materials for small molecules and large molecules
stand at the forefront, presenting significant opportunities for precise targeting and modulation of
TAMs to enhance therapeutic efficacy in cancer treatment. This review provides an overview of the
progress in designing nanoparticles for interacting with and influencing the TAMs as a significant
strategy in cancer therapy. This comprehensive review presents the role of TAMs in the TME and
various targeting strategies as a promising frontier in the ever-evolving field of cancer therapy. The
current trends and challenges associated with TAM-based therapy in cancer are presented.

Keywords: tumor-associated macrophage; suppressive immune environment; tumor proliferation
and metastasis; nanomedicine; targeted delivery systems

1. Introduction

The “Seed and Soil” theory of cancer proposes that successful cancer growth and
metastasis depend not only on the intrinsic characteristics of cancer cells (the “seed”) but
also on the specific tumor microenvironment (TME) (the “soil”) [1]. The TME is a complex
system consisting of immune cells, stromal cells, and heterogeneous cancer cells [2]. Among
the cellular components, macrophages play a crucial role and can account for 30–50% of
the tumor mass [3]. Macrophages (Mø) are recruited to the TME chemo-attractants like
chemokine (C-C motif ligand) 2 and 5 (CCL2, CCL5) [4]. The presence of anti-inflammatory
cytokines such as IL-4, IL-10, colony-stimulating factor (CSF), and TGF-β promotes the
differentiation of recruited Mø into TAMs, which, in turn, enhance tumor cell growth [5,6].
The macrophages in the TME are termed tumor-associated macrophages (TAM), which
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include M1 and M2 phenotypes [7,8]. M1 macrophages have anti-tumor properties, while
M2 macrophages are pro-tumoral in nature [7,8].

High levels of infiltration of M2 TAMs within tumors have been linked to unfavorable
survival outcomes [9]. M2 TAMs provide trophic support to cancer cells by supplying
growth factors and nutrients, contributing to cancer cell survival and proliferation. TAMs
also facilitate tumor invasion and metastasis through the degradation of the extracellular
matrix via the secretion of enzymes like MMPs [10,11]. Molecules including cytokines
such as interleukin-10 (IL-10) and transforming growth factor-beta (TGF-β) inhibit the
activity of cytotoxic immune cells and promote regulatory immune cell populations [12,13].
Additionally, TAMs secrete factors that promote angiogenesis, such as vascular endothelial
growth factor (VEGF) and matrix metalloproteinases (MMPs), facilitating the formation of
new blood vessels to nourish the growing tumor [14,15]. As a feedback, tumor cells release
factors like IL-12, IL-4, hypoxia-inducible factor (HIF)-1α, and HIF-2α to sustain the M2
TAM phenotype [16,17]. Thus, the targeting of TAMs (improvement of cancer “soil”) is
beneficial in the cancer treatment.

The strategy for targeting TAMs involves blocking chemokines and growth factors that
attract TAMs to the tumor site [18], elimination of M2 TAMs, or impairing TAM function
with therapeutics [19], Additionally, TAMs are often polarized into two main subtypes:
M1 (anti-tumoral) and M2 (pro-tumoral). Reprogramming M2 TAMs into anti-tumor
M1-TAMs is a promising strategy [7,8]. Recently, boosting TAMs’ phagocytic capacity
with immunotherapeutic strategies has raised attention [20]. The CD47-SIRPα pathway
on tumor cells prevents phagocytosis by binding to macrophage SIRPα, serving as a “do
not eat me” signal. Inhibiting this pathway with CD47 antibodies and engineered SIRPα
proteins improve macrophage phagocytosis, promoting CD8 T cell activity and suppressing
Treg cells [21,22]. The CD-Siglec axis involves CD24-Siglec interactions, inhibiting innate
immune reactions [23,24]. Blockade of Siglec-15 with the monoclonal antibody NC318
enhances CD8+ T and NK cell infiltration [25]. Targeting MHC class I/LILRB1 interaction
and LILRB2 facilitates macrophage activation. PD-L1/L2 inhibition, along with CD47 and
PD-L1 antibodies [26], synergistically enhances anti-tumor immunity, offering potential
breakthroughs in cancer therapy [25].

After selecting the appropriate therapeutics, the design of appropriate drug delivery
systems to overcome barriers are important. Given the enhanced permeability and reten-
tion EPR effects, nanoparticles are emerging as powerful tools for targeting and regulating
TAMs [27]. Nanoparticles can be tailored to have TAM-favored size (10~500 nm) and shapes
that mimic pathogens, making Nps more attractive to macrophages’ uptake [27]. To further
effectively target TAMs, active targeting strategies involving modifying nanomedicines
with specific ligands that are unique to M2 TAM macrophages have surfaced as a rev-
enue [28,29]. This review provides readers with comprehensive knowledge of Nps-based
TAM strategies in cancer therapy by concentrating on strategies involving nanoparticles or
nanomedicines targeting TAMs.

While significant progress has been made in the field of immunotherapy, the effective-
ness of these treatments in combating solid tumors has fallen short of expectations in clinical
applications [30]. The complexity and heterogeneity of TAM populations, particularly in
humans, pose challenges for developing targeted therapies, demanding robust biomarkers
for accurate patient stratification. Efficient delivery and specific targeting of TAM therapies
face hurdles due to the varied distribution of TAMs within the tumor microenvironment.
Modulating TAM activity can have systemic effects, emphasizing the need to understand
potential side effects and toxicities. Addressing these challenges requires integrated knowl-
edge in TAM biology, biomarker identification, and delivery systems. This review was
compiled from the published articles through November 2023 from various databases such
as PubMed, Google Scholar, and Web of Science. We searched the keywords including
“Tumor-associated macrophage, Suppressive immune environment, Tumor proliferation
and metastasis, Nanomedicine, Targeted delivery systems” and extracted the key points
and presented this review.
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2. The Role of TAMs in Tumor Immune Microenvironment (TIME)

TAMs are crucial components of the tumor immune microenvironment (TIME). Two
classic macrophages are the M1 and M2 phenotypes; among them, the M1 macrophage
represents the beneficial anti-tumor macrophage, while the M2 macrophage represents
the tumor-promoting macrophage. In the tumor region, the recruited monocyte is easily
differentiated into M2-type TAMs due to the abundance of Th2 cytokines (IL-4, IL-10, IL-13),
limiting antigen presentation and promoting immunosuppression [31]. This hinders the
immune system’s ability to recognize tumor cells. The interaction of TAMs with other cells
in the tumor microenvironment facilitates the immunosuppressive microenvironment [32].

On one side, M2 TAM favors immune suppressive cells. Cancer-associated fibroblasts
(CAFs) are located near TAMs, jointly forming the physical barrier around tumor cells
that hinders immune cell and therapeutic agent access [33]. Additionally, TAMs and
CAFs mutually stimulate each other’s functions, promoting immunosuppression and
fibrosis [34,35]. TAMs also interact with T regulatory cells (Tregs). TGF-β released by TAMs
induces Treg differentiation and function [36]. Conversely, Tregs suppress M1 TAMs and
enhance M2 TAMs, impacting CD8+ T cell function [37–39]. Thus, M2 TAMs and Treg are
generally regarded as immune suppressive cells in TME [37,38].

On the other hand, TAMs impair the function of immune active cells. TAMs in-
hibit natural killer (NK) cell activation by releasing HLA molecules and TGF-β [39,40].
Additionally, TAMs impair dendritic cell (DC) function via IL-6, nitric-oxide synthase 2
(NOS2), cyclooxygenase-2 (COX2) [41,42], VEGF [43–45], prostaglandin E2 (PGE2) [46,47],
and TGF-β [48,49]. M2 TAMs impair cytotoxic T cell (CTL) function through the produc-
tion of arginase 1 (Arg-1) and IL-10, affecting polyamines and proline metabolism [50,51].
TAMs also inhibit IL-12 production by DCs, limiting the anti-tumor response of CD8+
T cells [52,53]. TAMs express indoleamine-2,3-deoxygenase (IDO), which produces kynure-
nine and impairs the function of T cells as well as NK cells; the IDO also supports the
function of T regulatory (Treg) cells [41–43,54]. These interactions reflect the critical role of
TAMs in shaping the immune response in the tumor microenvironment (Figure 1).
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Figure 1. In the tumor niche, tumor cells release MCSF, IL4, and IL10, etc., to attract macrophage; then,
tumor-associated macrophages engage in intricate interactions with cancer-associated fibroblasts
(CAFs), T regulatory cells, natural killer cells to form an immunosuppressive tumor microenvironment
(TME). Understanding these interactions is crucial for developing targeted therapies to overcome
immunosuppression in the TME. (Images created with biorender.com, accessed on 17 July 2023).
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3. TAMs and Metastasis
3.1. TAMs, Angiogenesis, and Lymph-Angiogenesis

Angiogenesis is a crucial process in tumor progression, involving basement membrane
degradation, activation and proliferation of endothelial cells (ECs), and the formation of
capillary tubes and tube-like structures [44,45]. Hypoxia serves as a key driving factor
for angiogenesis [46], and TAMs can sense tumor hypoxia and produce various angio-
genic factors, including hypoxia-inducible factors (HIFs) [46], TGF-α, TGF-β, [47], vascular
endothelial growth factor (VEGF) [48,49], and matrix metalloproteinases [55,56]. Knock-
out of the HIF-1α gene in TAMs results in a reprogramming of M2 TAMs to M1 TAMs
and attenuates their pro-angiogenic abilities [57]. Additionally, TAMs promote tumor
cell aerobic glycolysis, leading to increased lactate levels that induce angiogenesis [58].
Angiopoietin-2 (Ang-2) recruits TIE2 receptor-expressing monocytes (TEM), facilitating
angiogenesis [59–61].

Lymph-angiogenesis is critical for the formation of tumor lymphatic vessels [62]. TAMs
produce pro-lymphangiogenic factors such as lymphatic vessel endothelial hyaluronan
receptor 1 (LYVE-1) and a glycoprotein YKL-40 to support tumor lymph-angiogenesis [63].
LYVE-1, a homolog of CD44 and a marker specific to lymphatic vessels [64], has been
identified in tissue-resident macrophages. LYVE-1 positive M2 TAM is crucial for the
development of dense vascular networks and supporting angiogenesis [65]. Additionally,
YKL-40, a chitinase-like protein, could activate FAK-MAPK signaling and increase the
expression of VEGFR1 and VEGFR2 [66]. Moreover, TAMs indirectly regulate lymph-
angiogenesis through the production of enzymes that remodel the matrix and activate
growth factors [67].

3.2. Metastatic Colonization and Survival

TAMs play a critical role in cancer cell migration during metastasis through autocrine
loops [68–70]. TAMs also contribute to the formation of pre-metastatic supportive niches
(PMNs) by responding to tumor-released CCL2, recruiting macrophages to the metastatic
site [71]. Within the metastatic niche, these macrophages are referred to as metastasis-
associated macrophages (MAMs) [72,73]. MAMs further produce cathepsin S and VEGF-A,
which increase vessel permeability and promote cancer cell extravasation [74]. Moreover,
macrophage-generated granulin activates resident stellate cells, leading to their transfor-
mation into myofibroblasts that produce fibronectin, feriostin, and collagen, supporting
cancer cell metastasis [75]. Additionally, TAMs promote the intravasation of tumor cells
into the host vasculature through the secretion of EGF and CSF-1 [76].

Macrophages play a crucial role in promoting metastatic tumor cell survival [77]. They
produce integrin α4, which interacts with VCAM1 on tumor cells, leading to enhanced
survival via PI3K/Akt signaling [78]. Additionally, macrophages bind to fibrin complexes
on tumor cell-associated platelets, facilitating their survival during the initial stage of
metastatic colonization [79]. Furthermore, TAMs promote tumor cell invasion by mediating
the degradation of the extracellular matrix through the involvement of cathepsins and
matrix metalloproteinases (MMPs) such as MMP7, MMP2, and MMP9 [80]. Macrophages
are also implicated in driving epithelial-mesenchymal transition (EMT) through factors like
transforming growth factor-β (TGF-β) and IL-8 [81] (Figure 2).
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Figure 2. The role of macrophages in TME: In the context of tumor progression, neoplastic cells and
stromal cells release specific molecules that act as chemoattractants, such as CCL2 and MCSF-1, to
recruit circulating monocytes to the tumor site. Once recruited, monocytes significantly differentiate
into M2 TAMs. The predominant M2 TAMs promote the downregulation of tumor immunity,
angiogenesis, as well as therapeutic resistance (↓ suggesting decrease) (created with biorender.com,
accessed on 17 July 2023).

4. TAM and Therapeutic Resistance

TAMs play pivotal roles in therapeutic resistance in various cancers, making them
important targets to improve treatment efficacy [82]. Chemotherapeutic regents achieved
success for decades; however, TAM impairs the efficacy of chemotherapy via factors
including CSF-1 [83], CCL2/CCR2+ axis [84], and macrophage inhibitory factor (MIF) [85].
In addition, the mechanism of TAM is involved in the drug resistance including the
activation of anti-apoptotic signals and the promotion of tumor-favorable Th17 response
after the treatments with chemo-agents [86,87]. In addition, the TAMs also play a pivotal
role in connecting epithelial-mesenchymal transition (EMT) with therapeutic resistance [88].
The interplay between cytokines produced by TAMs and cancer cells fosters EMT and
the acquisition of stem cell-like properties [88]. Cancer cells undergoing EMT exhibit
characteristics such as enhanced drug expulsion and resistance to apoptosis, rendering
them highly resilient to chemotherapy drugs [89].

In molecular target therapy, TAMs have been implicated in resistance to EGFR-TKIs in
lung cancer [90]. Combination therapy targeting both EGFR and TAMs holds promise [91].
TAMs can also contribute to resistance to radiotherapy [92,93]. Strategies like CSF-1R
inhibition and macrophage depletion have been explored to enhance radiotherapy effi-
cacy [94,95]. In antibody-based therapy, TAMs can compromise the effects of drugs like
trastuzumab and immune checkpoint inhibitors [96,97]. Depleting TAMs may improve the
response to such therapies. TAMs also play a role in resistance to anti-angiogenic therapy
by infiltrating and producing tumor-promoting factors [98]. It was found that the selective
elimination of M2 TAMs has shown potential in enhancing the efficacy of anti-angiogenic
therapies [99] (Figure 2).

biorender.com
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5. Therapeutic Strategies

As previously mentioned, the presence of TAMs in TME is correlated with cancer
progression and treatments. Therefore, the therapeutic strategies of targeting macrophages
are significant (Figure 3).
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Figure 3. Schematic representation of a variety of therapeutic approaches targeting TAM. Targeting
TAMs therapeutic strategies involve inhibiting TAM recruitment and differentiation, depleting
or impairing their function, reprogramming M2 TAMs, and promoting their phagocytic activity.
Inhibiting TAM recruitment entails blocking chemokine and growth factor signaling while inhibiting
TAM differentiation involves targeting factors like IL-4 and IL-13. Depleting TAMs can be achieved
through selective elimination using specific markers or immunotherapies. Impairing TAM function
targets signaling pathways involved in immunosuppression and angiogenesis. Reprogramming M2
TAMs toward an anti-tumoral M1-like phenotype enhances their anti-tumor activity. Promoting
TAM phagocytosis enhances their ability to eliminate tumor cells. Combination therapies, integrating
TAM-targeting approaches with other modalities, hold promise for synergistic effects (Created with
biorender.com, accessed on 17 July 2023).

5.1. Typical Conventional Therapeutics

Because of the abundant literature summarizing the traditional therapeutics, we will
only briefly cover the conventional strategies. The conventional therapeutics focus on
TAM based on the below three aspects: (a) Inhibition of TAM recruitment and differentia-
tion using inhibitors for pathways including CSF-1/CSF-1R [100,101], CCL2/CCR2, and
CCL5/CCR5 pathways [102,103]. (b) Depletion of TAM and impairment of TAM function
with various agents, including trabectedin and amphotericin B [104,105] and bisphos-
phonates [106–108]. Additionally, the mannosylated engineered trichosanthin-legumain
(MTL) vaccine selectively depletes M2 TAMs, which in turn activates CTLs, benefiting the
treatment of breast cancer [105]. (c) Reprogramming M2 TAMs using TLR agonists like
resiquimod [109] and CpG ODNs [110] to trigger M2-M1 TAM repolarization. Inhibitors
of STAT3 and STAT6, such as FLLL32 and corosolic acid, have also been found effective
in reprogramming TAM [111–113]. Additionally, PI3K inhibitors (e.g., IPI-549) [114] and
HDAC inhibitors (e.g., TMP195) [115,116] offer potential strategies for TAM remodeling

biorender.com
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(Figure 3). For more compounds associated with the above therapeutic targets, refer to
Table 1.

Table 1. Summary of therapeutics targeting TAM.

Target Site Substance Ref or Identifier

CSF1/CSF1R AMG820
BLZ945
PLX3397
PLX7486
GW2580
RG7155
Cabiralizumab(FPA008)
IMC-CS4

NCT01444404 [117]
NCT02829723 [118]
NCT01349049 [119]
NCT01804530
[120]
NCT01494688 [121]
NCT03336216
NCT01346358, NCT02265536, NCT03153410

CCL2/CCR2 Carlumab
MLN1202
PF04136309
RS102895
Zoledronic acid

NCT00992186 [122]
NCT01015560, NCT01413022
NCT02732938
[123,124]
[106]

CCL5/CCR5 Maraviroc
Vicriviroc
Gefitinib

[125]
[126]
[127]

PD-1/PDL-1 CD3-HAC/
BMS-936558
PD-1 antibody

[128]
[26]
[129]

CD47-SIRPα Hu5F9-G4
Glutaminyl cyclase

NCT02953509, NCT02953782 [130]
[131]

B7-H1 Amphotericin B [132]

PI3K Wortmannin or
LY294002

[133]

RKIP siRNA [134]

AMP-activated protein kinase (AMPK) RSVA314, RSVA405 [135]

STAT3 CPA-7,
AZD9150
WP1066

[136]
NCT03421353 [137]
NCT01904123 [138]

Leukocyte Ig-like receptor (LIR) 1
(CD85j/ILT2/LILRB1)

GHI/75 (nti-LIR-1 antibodies) [139]

CD24/Siglec-10 Genetic ablation or
Monoclonal antibodies

[140]

Arg-1 Cyclosporine [141]

TLR7 852A
Imiquimod

[142]
[143,144]

TLR7/8 Resiquimod(R848) [109]

TAM apoptosis
Clodronate [145]

Trabectedin [146]

Bisphosphonate [147]

The therapeutic significance and approaches to targeting TAMs have been discussed in
the above sections. Based on the increased number of publications in recent years, targeting
TAMs is gaining high significance and appears to be a more practical approach in cancer
therapy. Strategies focused on TAMs have made successful progress. However, there are
obstacles. First, cessation of M2 TAM therapeutics may cause the rebound of M2 TAM.
Second, the off-target side effects because of mixed sub-type in TIME and interaction with
healthy macrophages result in failed effects. Researchers are gradually paying attention to
the biological functions in terms of macrophage recovery. Thus, in the following part, the
efforts in investigating the TAM phagocytosis function are summarized.
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5.2. Recovery of Phagocytosis of TAM

In the tumor’s initial stage, the macrophage has the phagocytic ability towards can-
cer cells. However, cancer cells program the beneficial macrophage to a pro-tumor M2
macrophage that highly expresses the immune markers. Thus, the use of an immune check-
point blockade is a promising approach in the recovery phagocytosis ability of macrophages
and facilitates the T cell function in the body, in which the modulation of certain signaling
pathways is crucial (Figure 3).

CD47-SIRPα pathway: CD47 is an inhibitory ligand on tumor cells that binds to
the signal-regulatory protein alpha (SIRPα) on macrophages, acting as a “do not eat me”
signal to prevent phagocytosis [148]. Blocking the CD47-SIRPα signaling pathway using
CD47 antibodies (such as Hu5F9-G4 and CC-90002) [21,22], engineered SIRPα proteins
(e.g., ALX148) [21], or SIRPα-Fc fusion proteins (e.g., TTI-621) [149] enhances macrophage
phagocytosis. The increased phagocytosis promotes CD8 T cell activity and suppresses
Treg cells [31,150,151]. Additionally, the blockage of interaction between tumor cells and
TAM might not be enough to fully convert the “soil” environment. Combination therapies
that target CD47 signaling, along with the blockade of TAM recruitment using CSF-1R
inhibitors, have demonstrated improved anticancer efficacy [152–154].

CD-Siglec axis: Small-cell lung carcinoma cluster 4 antigen (CD24) expressed on tumor
cells interact with sialic acid-binding immunoglobulin-like lectin 10 (Siglec-10) expressed on
TAMs [23,24]. Through the Src homology region, two domain-containing phosphatases (SHP-1
and/or SHP-2) mediated inhibitory signals were generated, suppressing innate immune cells’
reaction against tumor cells [155,156]. In addition to siglec-10, further studies indicated that
siglec-15 and siglec-8 are also involved in the anti-phagocytosis process [157–159]. Similarly, the
blockade of Siglec-15 enhanced the infiltration of CD8+ T and NK cells into tumors, resulting
in reduced tumor burden and prolonged survival in mice [157–159]. The monoclonal antibody
NC318, which targets Siglec-15, is currently undergoing clinical trials. This antibody offers hope to
individuals who do not respond to PD-1/PD-L1 therapy [25]. The development of this antibody
represents a potential breakthrough in the treatment of non-responders, bringing new possibilities
for improving outcomes in cancer immunotherapy [160,161]. Antibody-toxin conjugate can also
be used to selectively deplete Siglec-8 positive immune-suppressive immune cells [162].

Major histocompatibility (MHC) class I–LILRB1/LILRB2 signaling axis: The ex-
pression of major histocompatibility complex class I (MHC I) on cancer cells hinders
phagocytosis by interacting with the leukocyte immunoglobulin-like receptor (LILRB1)
on macrophages [163]. The beta-2 macroglobulin subunit of MHC I (B2M) is a newly
founded anti-phagocytic surface protein (“do not eat me” signal) [163]. B2M suppresses
the phagocytic function of macrophages by interacting with its inhibitory receptor LILRB1
on TAMs, leading to compromised anti-tumor immunity [163]. Targeting the MHC class
I/LILRB1 interaction to enhance TAM phagocytosis is a potential therapeutic approach to
cancer treatment [163]. LILRB2, another member of the LILRB family, has been found to be
expressed in various cell types, including monocytes and macrophages [164,165]. Thera-
peutic antibodies targeting LILRB2, which also interacts with HLA class I similar to LILRB1,
have been shown to facilitate macrophage maturation and promote their pro-inflammatory
activation [166,167]. Of note, it remains uncertain whether the promotion of phagocytosis
activities by antagonizing LILRB2 occurs directly or indirectly through macrophage pheno-
typic changes [164,168]. While both LILRB1 and LILRB2 bind to HLA-I/MHC-I, it is yet to
be determined if the interaction of LILRB2 acts as a phagocytosis checkpoint [169].

PD-L1/L2 and PD-1: The PD-1/PD-L1 interaction primarily occurs in the context of
the adaptive immune response, involving T cells and other immune cells. Additionally,
the expression of PD-L2 on M2 TAM affects the anti-tumor effects of Th2 T cells [170]. The
inhibition of PDL2/PD1 with nivolumab benefits the recovery of Th2 T cell function [171].
Additionally, the use of antibodies against CD47 and PD-L1 was shown to exert synergistic
anti-tumor immunity effects [172]. A ROS-responsive albumin-based system has been
developed to sequentially release antibodies against CD47 and PD1, promoting M1 TAM
differentiation and leading to an enhanced anti-tumor response [173].
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5.3. Modality for Metabolism in TAM

Modulating the metabolism of TAMs is important because of the direct association
with TAM polarization [174,175]. TAMs show elevated expression of glutamic pyruvic
transaminase and glutamine synthetase involved in glutamine metabolism [176]. M2 TAM
exhibits increased glutamine catabolism [176]. The enhanced utilization of glutamine by
TAMs fuels the production of the chemokine C-C motif chemokine ligand-22 (CCL22) and
contributes to the M2 TAM phenotype via the glycosylation of C-type lectin receptors like
CD206 and CD301 [177]. Disulfiram modulates the metabolism in the glioma TME via
glucose-glycolysis/folate-NADH-ATP metabolism axis; thus, the anti-tumor M1 TAMs
become predominant [178]. Additionally, inhibiting oxidative metabolism causes the M2-
To-M1 phenotype [179]. Shikonin, a natural product, acts as a regulator of TAM via the
regulation of colorectal cancer [180]. The intricate interplay between tumor metabolism,
angiogenesis, and immunity constitutes a complex network [181]. Cancer cells undergo a
metabolic reprogramming of glycolysis, which can be mediated by mTOR. Thus, mTOR
inhibitor can be a therapeutic for cancer. A combinational therapy of rapamycin and
regorafenib (inhibitor for angiogenesis) regulates the metabolic activity in the TME. This
TME reprogramming resulted in reduced proliferation of cancer cells and a decrease in
the production of lactic acid that possesses immunosuppressive properties and can also
stimulate angiogenesis within the tumor microenvironment [182] (Figure 4).Pharmaceutics 2024, 16, x FOR PEER REVIEW 10 of 31 

 

 

 

Figure 4. Represenative of therapeutic modality for metabolism in TAM. (A) Schematic illustra-
tion of biomimetic targeting codelivery of Shikonin/JQ1 for reprogramming TME via regulation
of metabolism (↑ suggesting increase, ↓ suggesting decrease) [180]. Copyright © 2019 American
Chemical Society. (B) Schematic illustration of anti-alcoholism drug disulfiram for targeting glioma
energy metabolism [178]. Copyright © 2022 Published by Elsevier Ltd. (C) Schematic illustration of
using a PD-L1-targeting system loaded with rapamycin and regorafenib for metabolic modulation in
TME [182]. Copyright © 2020 Elsevier Ltd.
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6. Nanotechnology-Based TAM Imaging and Therapeutic Delivery System

Nanoparticles enhance the drug delivery in tumor sites via the Enhanced Permeability
and Retention (EPR) effect, which is known to be a well-known strategy. The abnormal vas-
culature in tumors is characterized by increased permeability and compromised lymphatic
drainage, which allows nano-size drug carriers to selectively accumulate in the tumor
tissues. Therefore, nano carriers reduce off-target effects on healthy tissues. In this review,
we explore the use of nanoparticles for targeting TAMs in the TME.

6.1. Nanoparticle for Imaging TAM

The development of imaging agents for the specific visualization of TAMs in vivo
involves various innovative approaches. Molecular imaging techniques like magnetic
resonance imaging (MRI) and Positron Emission Tomography (PET) offer non-invasive
means to observe and monitor the behavior of TAMs within tumors. This is achieved by
tracking and quantifying the uptake of MRI-visible nanoparticles or PET-visible radiotracers
that are specific to TAMs.

6.1.1. MRI-Visible Nanoparticles

Iron-based nanoprobes or gadolinium-based nanoparticles can be used as MRI contrast
agents [183]. A notable example is the development of PEG-b-AGE polymer-coated iron oxide
nanoparticles engineered to target the mannose receptor found on M2-like macrophages. This
nano platform exhibits robust imaging capabilities for M2-like macrophages within the tumor
microenvironment [183]. Additionally, to monitor the imaging of glioblastoma (GBM) TAMs,
Runze Yang and colleagues recently showed that the use of iron oxide nanoparticles (USPIOs)
on their own in MRI effectively tracked the monocyte-macrophage system [184].

Sulfated dextran-coated iron oxide nanoparticles, referred to as SDIO, have demon-
strated the ability to target the macrophage scavenger receptor A (SR-A) and exhibit good
retention within macrophages [185].

Another approach involves superparamagnetic iron oxide (SPIO) nanoparticles function-
alized with an M2 macrophage-targeting peptide, empowering them with M2 macrophage-
targeting properties and MRI capabilities. In vitro and in vivo experiments have validated their
efficiency as both an imaging agent and an M2 macrophage-targeting tool [186]. In a study
by Zhu et al. [187], they designed nanoprobes that utilized Erbium (Er)-based near-infrared
IIb (NIR-IIb) fluorescence specifically targeting M2-type TAMs in orthotopic glioblastoma.
Weissleder et al. synthesized a library of nanoparticles and found that the dextran-coated iron
oxide nanoparticles (CLIO680 and AMTA680) exhibit a high affinity for TAMs [188].

6.1.2. PET-Visible Radiotracers

PET is a functional imaging technique that measures metabolic activity within the
body, in which the polarization, reduction, and recruitment (inhibition) of TAMs can be
assessed [189]. Blykers et al. (2015) have developed 18F-labeled single-domain antibody
fragments (sdAbs) derived from camelids with the specific aim of targeting the mannose
receptor in M2-type TAMs [190]. In addition, a 68Ga-labeled single-domain antibody
fragment (sdAb) targeting the MMR (Mannose Receptor) has been developed to evaluate
the presence of pro-tumor TAMs [191]. The preclinical testing of [68Ga]Ga-NOTA-anti-
MMR-sdAb demonstrated significant and specific uptake of this tracer in MMR-expressing
TAMs and organs without any observed toxic effects. As a result of these promising
findings, [68Ga]Ga-NOTA-anti-MMR-sdAb is now poised for advancement into a phase
I clinical trial [191]. Additionally, serum albumin modified with mannose molecules and
radionuclide-labeled nanobodies can be used as PET nanoprobes [192,193].

In 2021, two radiolabeled arginase inhibitors, namely 18F-FMARS and 18F-FBMARS,
have been created using derivatives of α-substituted-2-amino-6-boronohexanoic acid to
image TAMs in a prostate cancer xenograft model [194].

Specially engineered ultrasmall copper nanoparticles (Cu@CuOx) that target CCR2
have been designed as nanovesicles, by which accurate detection in pancreatic ductal
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adenocarcinoma (PDAC) mouse models was achieved [195]. The 64Cu-labeled nanovehicle
nanoparticles demonstrate minimal in vivo toxicity [195]. However, PET tracers that target
receptors found on TAMs were carried out in preclinical animal models and with only a
limited number of tracers tested in human patients [196].

6.2. Therapeutic Nanoparticle for TAM
6.2.1. Inorganic Nanoparticles

Gold materials (nanoparticles or nanocage) have been implicated in anti-tumor im-
munotherapy, and the immunomodulatory effects of AuNC are associated with either the
reprogramming of TAM [197] or the depletion of M2 TAM [198]. The behind mechanism
is associated with the heat and the heat-induced TME improvement [199]. In a study,
Zhang et al. devised a strategy for in situ vaccination, employing gold nanocages (AuNC)
that harness photothermal effects, along with an adjuvant and a PD-L1 inhibitor [197,200].
In addition, AuNCs resulted in autophagy intervention and thus contributed to TAM
inhibition [201]. Furthermore, immune responses can be triggered by the release of tumor
antigens and cell debris resulting from localized destruction of cancer cells through pho-
tothermal effects [202,203]. To facilitate drug delivery, the hydrophobic domains of albumin
were found to interact with the drug paclitaxel (PTX), creating an albumin corona that
acted as a drug carrier for gold nanorods (AuNRs). The co-loading significantly modulated
the TME, effectively inhibiting the polarization of M2 TAMs [198]. Graphdiyne oxide
nanosheets polarize M2-TAM macrophages for melanoma immunotherapy [204]. The
intraperitoneal graphdiyne oxide injection reduces tumor growth and activates cytotoxic
T cells [204] (Figure 5).
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In addition, colorful and inorganic material can trigger photodynamic therapy [205,206],
which involves the activation of a photosensitizer (PS) using light at a specific wavelength (λ) in
the presence of molecular oxygen, resulting in the generation of singlet oxygen. Photodynamic
therapy is able to modulate TME and affect TAM [206].

6.2.2. Nanotechnology-Based-Large Molecules Therapeutics

Recently, large molecules, including protein, mRNA, siRNA, and miRNA therapeutics,
have been used to reprogram TAMs [207]. Trichosanthin (TCS) has drawn much attention
due to its newly founded immunomodulatory effects. A modified version of the drug
trichosanthin called recombinant cell-penetrating trichosanthin (rTCS-LMWP) has been
developed to repolarize TAM, remodel TME, and increase cytotoxic T cells, and suppress
regulatory T cells [208] (Figure 6A). By delivering mRNAs encoding M1 macrophage, it is
possible to enhance anti-tumor immunity [209]. In a study, researchers developed a targeted
nanocarrier capable of delivering in vitro-transcribed mRNA encoding M1-polarizing
transcription factors to TAMs. M2 TAM is typically predominant in TME. However, the
nanocarrier specifically reprograms TAMs to adopt an M1 phenotype, unleashing anti-
tumor immunity. The involved mRNAs are interferon regulatory factor 5 and kinase
IKKβ (Figure 6B) [210]. Glioblastoma (GBM) has only a 6.8% five-year survival rate, and
microglia and macrophages infiltrating the TME adopt a tumor-promoting phenotype (M2),
which hinders the anti-tumor immune response in GBM. The researchers developed a virus-
mimicking membrane-coated nanogel called Vir-Gel, which contained therapeutic miRNA
to address this issue. This nanogel achieved M2-to-M1 alternation [211]. Additionally,
in vivo experiments indicated that Vir-Gel effectively prolonged the circulation time of
the therapeutic miRNA, allowing it to actively target tumors and exhibit excellent tumor
inhibition efficacy (Figure 6C) [211]. In addition, targeted lipid-coated calcium phosphonate
nanoparticles have also been designed for the delivery of microRNA (miRNA); this system
responded to the acidic pH in TME [212].

In addition, mannose moiety facilitates enhanced internalization of TAMs towards miRNA.
Consequently, the delivery system successfully downregulated pro-tumor factors, including
IL-10, MMP9, and VEGF, but upregulated anti-tumor factors like IL-12 in TAMs [212]. Moreover,
small interfering RNA (siRNA) has been utilized as a tool to reprogram M2 TAMs by specifically
silencing target genes [213,214]. A lipid nanoparticle (LNP) composed primarily of the CL4H6
lipid was developed to deliver siRNA to TAMs. These optimized siRNA-loaded CL4H6-LNPs
demonstrated efficient uptake by TAMs in the human tumor xenograft mice model, effectively
silencing target genes, including STAT3 and HIF-1α genes [215]. Additionally, mannosylated
pH-responsive nanoparticles were utilized to deliver siRNAs targeting placental growth factor
(PIGF) and VEGF to TAMs. This approach allowed for specific and efficient delivery of the
siRNAs to TAMs, resulting in the silencing of PIGF and VEGF genes [216]. In a study by Yu
et al., a triblock copolymer was modified with mannose through click chemistry. The resulting
mannose-functionalized copolymer was utilized to create a micellar system capable of delivering
siRNA specifically to TAMs [217].

6.2.3. Nanotechnology-Based Active Targeting Strategies

Nanotechnology-based targeting strategies have emerged as innovative approaches
to specifically target TAMs within the tumor microenvironment. Because macrophages
efficiently phagocytize NPs ranging from 0.1 nm to 1 µm, favoring elongated shapes and
sharp edges, nanoscale materials and delivery systems could enhance the precision and
efficacy of therapeutic interventions. Passive targeting delivery systems, exploiting the
enhanced permeability and retention (EPR) effect, have been extensively studied to localize
nanoparticles [218]. However, the efficacy of passive targeting is limited. Thus, an active
targeting system is on demand. Through ligand-receptor interactions, active targeting
facilitates selective accumulation of nanoparticles at target sites. Ideally, this approach
exclusively interacts with the target cells, bypassing off-target toxicity concerns [219]. The
representative works about the formulations targeting TAMs are presented in Table 2.
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virus-mimicking nanogel for miRNA delivery [210]. Copyright © 2021 John Wiley and Sons.

Nanobody

Tumor cells often overexpress PD-L1, leading to immune tolerance induction [220,221].
Liposome is a good formulation for targeting the cancer microenvironment [222,223].
PD-L1 can be used as a targeted site, as shown by Yin et al., with PD-L1 nanobody-
encapsulated gefitinib and simvastatin liposomes to overcome EGFR T790M-associated
drug resistance in non-small cell lung cancer (NSCLC) (Figure 7A) [224]. Immunoglob-
ulin (Ig) has a Y-shaped structure with variable binding sites that can recognize specific
regions on antigens. Mannose receptor-targeted nanobodies, derived from Camelidae
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heavy-chain antibodies, labeled with 99mTc, specifically label TAMs in the tumor microen-
vironment [225]. TAMs highly expressed CD163; based on this, enhanced TAM uptake
can be achieved by ligating CD163-responsive monoclonal antibodies on pegylated lipo-
somes [226]. A liposomal drug delivery system was developed to achieve dual targeting
through the simultaneous modification with PD-L1 nanobody and mannose ligands. This
system was designed for the co-delivery of an mTOR inhibitor (rapamycin) and an anti-
angiogenic drug (regorafenib). The liposomes exhibited the capability to target both TAMs
and cancer cells [182].

Carbohydrate Ligand

The mannose receptor CD206 can be effectively utilized for M2 TAM-specific targeting
and potential delivery in cancer treatment [227]. The targeting ability of CD206 ligands-
mannose has been confirmed by [217,228,229]. In another example, mannose moieties
have been attached to pH-sensitive polymeric micelles using ‘click’ chemistry for siRNA
encapsulation; with this modification, the gene silencing in TAM is up to 87 ± 10% [217].
In addition, a single-chain peptide binding the CD206 receptor conjugated to nanocarri-
ers also allowed them to selectively target CD206 TAMs, even in hypoxic regions [225].
Oligomannose-coated liposomes (OMLs) loaded with 5-fluorouracil and magnetic NPs
achieved a controlled release of 5-fluorouracil and improved tumor growth inhibition
via peritoneal macrophage active internalization function [230]. To minimize uptake by
normal macrophages, an acid-sensitive PEG modification in mannose-modified NPs was
utilized, reducing uptake by the reticuloendothelial system (RES) through effective PEG
shielding at neutral pH [231]. Additionally, for enhancing targeted gene delivery to alveolar
macrophages, mannan-modified solid lipid nanoparticles (SLN) were investigated [232].
Other carbohydrate ligands such as dextran [233], galactosylated cationic dextran [234],
and carboxydetran [235] are mainly used for imaging and will not be discussed here.

Proteins and Peptide

Albumin, the major protein in the blood, serves as a reservoir of amino acids [236].
Either tumor cells or TAMs have high demands for albumin as a source of amino acids. In
the internalizing process, albumin-binding proteins, such as SPARC (secreted protein acidic
and rich in cysteine), play a crucial role in the uptake of albumin by cells [237]. Combining
the advantage of mannose and albumin, a dual-targeting mannosylated albumin nanopar-
ticle was constructed; this nanoparticle targeting SPARC and MR (mannose receptor) can
effectively target both cancer cells and M2 macrophages, leading to the reprogramming
of the tumor microenvironment [229]. Furthermore, biomimetic albumin-modified gold
nanorods (AuNRs) incorporating paclitaxel (PTX) have demonstrated tumor inhibition
through the synergistic effects of photothermal and chemotherapy. Interestingly, AuNRs
can also suppress the polarization of macrophages towards the M2 pro-tumor phenotype
via SPARC-mediated uptake [198]. Surface modification of NPs with a minimal peptide
corresponding to the CD47 receptor, a putative marker of self-recognition expressed in
tumors, was also suggested to avoid the capture of NPs by RES phagocytosis [238].

Antibody

In addition to peptides, antibodies could also be utilized as ligands for targeted
therapy.To combat EGFR mutation-related drug resistance, a novel approach involving a
trastuzumab-modified, mannosylated liposomal system (tLGV) has been developed. This
system targets HER2-positive NSCLC cells and mannose receptor (CD206)-overexpressed
TAM2 simultaneously, co-delivering gefitinib and vorinostat. Although HER2-based treat-
ments have been explored for NSCLC, HER2-targeted drug delivery in lung cancer has
been scarcely investigated, with its feasibility yet to be demonstrated. This innovative
approach holds promise as an alternative strategy to overcome EGFR mutation-associated
therapeutic resistance in NSCLC vorinostat [239] (Figure 7B).
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Legumain

Legumain, a cysteine protease belonging to the C13 family, is highly expressed in
various solid tumors and TAMs [240]. Legumain is also highly expressed in a number of
solid tumors [241,242]. As a result, it represents a promising therapeutic target. Importantly,
because legumain is primarily expressed in M2 macrophages rather than classical M1
macrophages, legumain-mediated TAM targeting delivery does not induce cytotoxicity in
normal M1 macrophages, nor does it interfere with the antigen presentation functions of M1
macrophages [243–245]. The use of legumain-expressing DNA vaccines stimulates a robust
CD8+ T cell response against TAMs, leading to a significant reduction in TAM quantity
within tumors. Consequently, this remodeling of the TME reduces its immunosuppressive
properties, enhancing the effectiveness of the DNA vaccine in suppressing tumor growth
and metastasis. The delivery of these therapeutic agents, or similar ones, using nanocarriers
presents a novel and effective approach for targeted elimination of TAMs, leveraging the
high specificity of drug-loaded nanoparticles for TAM uptake [246]. Specifically, legumain
itself could be used as an adjuvant in cancer vaccines [247,248] (Figure 7C).Pharmaceutics 2024, 16, x FOR PEER REVIEW 18 of 31 
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Figure 7. Nanotechnology-based strategies for reprogramming tumor microenvironment.
(A) Remodeling tumor-associated macrophages and neovascularization overcomes EGFRT790M-
associated drug resistance by PD-L1 nanobody-mediated codelivery of Gefitinib and Simvastatin [224].
Copyright © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. (B) Reprogramming
tumor-associated macrophages to reverse EGFRT790M resistance by dual-targeting codelivery of
gefitinib/vorinostat [239]. Copyright © 2017 American Chemical Society (↑ suggesting the increase, ↓
suggest the decrease). (C) Targeting lipid metabolism to overcome EMT-associated drug resistance
via integrin β3/FAK pathway and tumor-associated macrophage repolarization using legumain-
activatable delivery [249]. This is an open-access article distributed under the terms of the Creative
Commons Attribution License.
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Table 2. Summary of recent developments in macrophage-mediated/related drug delivery and
treatments.

Modified Ligand or Formulation Modality Reference

Macrophage-Membrane-Coated Nanoparticle

A macrophage-membrane-coated nanoparticle
(cskc-PPiP/PTX@Ma) has been engineered for
targeted chemotherapy delivery with controlled
release in response to tumor microenvironment
stimuli. After tumor homing and evasion of the
reticuloendothelial system, the
macrophage-membrane coating undergoes
morphological changes triggered by extracellular
stimuli, facilitating the shedding of nanoparticles.
This biomimetic drug delivery system, combining
membrane-derived tumor homing and step-by-step
controlled drug release, demonstrates enhanced
therapeutic efficacy tailored to the intricacies of the
tumor microenvironment.

[250]

PD-L1 nanobody liposome Reprogramming TME for overcoming drug
resistance. [224]

Carbohydrate-Functionalized Polymeric
Nanoparticles

A review illustrates that carbohydrate-modified
nanoparticles are able to modulate macrophages
M1/M2 polarization.

[251]

Hemoglobin-decorated liposomes

A sophisticated drug delivery system where the
integration of hemoglobin onto the liposomal
surface enhances stability and may potentially
facilitate oxygen transport, offering a multifaceted
platform for targeted therapy. Specifically targeting
macrophages through the CD163 receptor.

[252]

Mannose-NPs

By delivering therapeutic agents directly to TAMs,
Mannose-NPs can modulate the tumor immune
response, suppress pro-tumorigenic activities of
TAMs, and ultimately impede cancer progression,
offering a promising strategy for precision cancer
therapy.

[217,229–231,238]

Mannosylated polymeric micelles

Mannosylated polymeric micelles, employing “click”
chemistry, offer a targeted delivery platform for
RNA interference molecules to macrophages by
utilizing the overexpressed mannose receptors,
providing a precise and efficient means of
modulating gene expression in immune cells.

[252]

Dextran-labelled zirconium-89 (89Zr)

The development involves a novel
macrophage-specific positron emission tomography
(PET) imaging agent labeled with zirconium-89
(89Zr). This agent is constructed using a cross-linked,
short-chain dextran nanoparticle with a size of 13
nanometers. After systemic administration, the
nanoparticle exhibits a vascular half-life of 3.9 h, and
notably, it preferentially accumulates in
tissue-resident macrophages as opposed to other
white blood cells.

[253]

Surface decoration of delivery vectors

The surface decoration of delivery vectors, despite
not influencing the expression of M1 markers such
as CD86, NOS2, TNF-α, and IL-1β, demonstrated a
distinct impact on the expression levels of scavenger
receptors CD163 and CD200R, as well as the release
of the anti-inflammatory cytokine IL-10.

[254,255]
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7. Summary and Conclusions

In summary, this review presented the role of TAMs in the tumor immune microen-
vironment and how TAMs are involved in metastasis, angiogenesis, lymphangiogenesis,
metastatic colonization, survival, and therapeutic resistance. This article discussed con-
ventional and nanoparticle-based therapeutic strategies and the use of nanoparticles for
imaging TAMs and delivering therapeutics, encompassing MRI-visible nanoparticles, and
large molecules therapeutics.

TAMs-based therapies play a complex role in tumor immunity and immunotherapy
via modulation of M1 and M2 phenotypes. However, achieving a delicate balance between
M1 and M2 macrophages is essential for the safety of immunotherapy, as an excess of M1
macrophages may lead to adverse effects like cytokine release syndrome [256]. Monitoring
cytokine levels or using advanced organ-on-chip platforms for prediction becomes pivotal
to minimizing unnecessary organ damage during TAM therapies.

Moreover, the complex and diverse nature of M2 TAM subpopulations in animals and
humans poses a significant problem in developing TAM-targeted nanoparticles to attain
desired therapeutic results. While certain biomarkers like CD206 and CD163 can accurately
detect TAM populations, it remains challenging to ascertain their specificity as CD206, for
instance, is also present in liver cells [257]. Hence, identifying reliable biomarkers is crucial
in understanding the role of TAMs in cancer.

The above issues pose challenges to efficient delivery and specific targeting of TAM. In
addition, TAM distribution can vary between tumors and even within different regions of
the same tumor [258]. Though we explore the therapeutic potential of using nanoparticles,
the accuracy of EPR effects in humans is challenging. Therefore, developing strategies to
effectively deliver therapeutic agents to TAMs while minimizing off-target effects such as
liver have been identified as a significant issue for TAM therapies.

In conclusion, it is essential to understand the potential side effects and toxicities
associated with TAM-targeted therapies. More research is required to address the challenges
associated with TAM-targeted therapies. Many modalities have been attempted to develop
effective TAM-based cancer treatment. This approach requires more research in the future to
elucidate the role of nanoparticle-based systems on TAM biology and associated biomarker
identification.
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TGF-β Transforming growth factor-β
iTreg cell Immunosuppressive T regulatory cells
IL-12 Interleukin-12
VEGF-A Vascular endothelial growth factor A
PD-1 Programmed cell death protein 1
TNBC Triple-negative breast cancer
CTLA-4 Cytotoxic T-lymphocyte antigen 4
EC Endothelial cells
ARG1 Arginase 1
HLA Human leukocyte antigen
AML Acute myeloid leukemia
ALL Acute lymphoblastic leukemia
ECM Extracellular matrix
ZA Zoledronic acid
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PyMT Polyomavirus middle T oncogene
RKIP Raf kinase inhibitory protein
EGF Epidermal growth factor
TAM Tumor-associated macrophages
HRG Histidine-rich glycoprotein
MCP1 Monocyte chemo-attractant protein 1
NK Natural killer
FAK Focal adhesion kinase
PEI Polyethylene imine
PPAR-γ Peroxisome proliferator-activated receptor gamma
GSH Glutathione
CCL C-C chemokine ligands
IL Interleukin
CSFs Colony-stimulating factor
VEGF Vascular endothelial growth factor
PDGF Platelet-derived growth factor
FGFs Fibroblast growth factors
TME Tumor microenvironment
TNF-α Tumor necrosis factorα
ECM Extracellular matrix
PD-L1 Programmed cell death ligand 1
TICs Tumor-initiating cells
NSCLC Non-small-cell lung cancer
TKI Tyrosine kinase inhibitor
β2M β2-microglobulin
QD Quantum dot
PAMAM Polyamidoamine
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