Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases
Abstract
:1. Introduction
2. Combination Therapy with Phytochemicals for the Treatment of Visceral Leishmaniasis
2.1. Combination Therapy with Phytochemicals for the Treatment of Cutaneous Leishmaniasis
2.2. Phytochemical-Loaded Nanosystems for the Treatment of Visceral Leishmaniasis Caused by L. infantum
2.3. Phytochemical-Loaded Nanosystems for the Treatment of Visceral Leishmaniasis Caused by L. donovani
2.4. Phytochemical-Loaded Nanosystems for the Treatment of Cutaneous Leishmaniasis Caused by L. amazonensis
2.5. Phytochemical-Loaded Nanosystems for Combating Cutaneous Leishmaniasis Caused by L. major
2.6. Phytochemical-Loaded Nanosystems to Combat Cutaneous Leishmaniasis Caused by L. mexicana
2.7. Phytochemical-Loaded Nanosystems for the Treatment of Cutaneous Leishmaniasis Caused by L. tropica
3. Phytochemical Combination Therapy for the Treatment of Trypanosomiasis
Phytochemical-Loaded Nanosystems for the Treatment of Chagas Disease
4. Combination Therapy with Phytochemicals for the Treatment of Schistosomiasis
Phytochemical-Loaded Nanosystems to Treat Schistosomiasis
5. Future Trends
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Hotez, P.J.; Aksoy, S.; Brindley, P.J.; Kamhawi, S. World Neglected Tropical Diseases Day. PLoS Negl. Trop. Dis. 2020, 14, e0007999. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.K.; Das, S.; Kamran, M.; Ejazi, S.A.; Ali, N. The Pathogenicity and Virulence of Leishmania—Interplay of Virulence Factors with Host Defenses. Virulence 2022, 13, 903–935. [Google Scholar] [CrossRef] [PubMed]
- Flávia Nardy, A.; Freire-de-Lima, C.G.; Morrot, A. Immune Evasion Strategies of Trypanosoma cruzi. J. Immunol. Res. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Hambrook, J.R.; Hanington, P.C. Immune evasion strategies of schistosomes. Front. Immunol. 2021, 11, 624178. [Google Scholar] [CrossRef] [PubMed]
- Volpedo, G.; Costa, L.; Ryan, N.; Halsey, G.; Satoskar, A.; Oghumu, S. Nanoparticulate drug delivery systems for the treatment of neglected tropical protozoan diseases. J. Venom. Anim. Toxins Incl. Trop. Dis. 2019, 25, e144118. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, D.; Pan, Y.; Qu, W.; Hao, H.; Wang, X.; Liu, Z.; Xie, S. Nanoparticles for Antiparasitic Drug Delivery. Drug Deliv. 2019, 26, 1206–1221. [Google Scholar] [CrossRef]
- Assolini, J.P.; Carloto, A.C.M.; Bortoleti, B.T.d.S.; Gonçalves, M.D.; Tomiotto Pellissier, F.; Feuser, P.E.; Cordeiro, A.P.; Hermes de Araújo, P.H.; Sayer, C.; Miranda Sapla, M.M.; et al. Nanomedicine in Leishmaniasis: A Promising Tool for Diagnosis, Treatment and Prevention of Disease—An Update Overview. Eur. J. Pharmacol. 2022, 923, 174934. [Google Scholar] [CrossRef]
- Mendonça, P.H.B.; da Rocha, R.F.D.B.; Moraes, J.B.d.B.; LaRocque-de-Freitas, I.F.; Logullo, J.; Morrot, A.; Nunes, M.P.; Freire-de-Lima, C.G.; Decote-Ricardo, D. Canine Macrophage DH82 Cell Line as a Model to Study Susceptibility to Trypanosoma cruzi Infection. Front. Immunol. 2017, 8, 604. [Google Scholar] [CrossRef]
- Sun, W.; Sanderson, P.E.; Zheng, W. Drug Combination Therapy Increases Successful Drug Repositioning. Drug Discov. Today 2016, 21, 1189–1195. [Google Scholar] [CrossRef]
- Pa, C. Effect of amphotericin B nanodisks on Leishmania major infected mice. Pharm. Anal. Acta 2014, 5, 1000311. [Google Scholar] [CrossRef]
- Zadeh Mehrizi, T.; Khamesipour, A.; Shafiee Ardestani, M.; Ebrahimi Shahmabadi, H.; Haji Molla Hoseini, M.; Mosaffa, N.; Ramezani, A. Comparative Analysis between Four Model Nanoformulations of Amphotericin B-Chitosan, Amphotericin B-Dendrimer, Betulinic Acid-Chitosan and Betulinic Acid-Dendrimer for Treatment of Leishmania major: Real-Time PCR Assay Plus. Int. J. Nanomed. 2019, 14, 7593–7607. [Google Scholar] [CrossRef] [PubMed]
- Alpizar-Sosa, E.A.; Ithnin, N.R.B.; Wei, W.; Pountain, A.W.; Weidt, S.K.; Donachie, A.M.; Ritchie, R.; Dickie, E.A.; Burchmore, R.J.S.; Denny, P.W.; et al. Amphotericin B Resistance in Leishmania mexicana: Alterations to Sterol Metabolism and Oxidative Stress Response. PLoS Negl. Trop. Dis. 2022, 16, e0010779. [Google Scholar] [CrossRef]
- Ferreira, B.A.; Coser, E.M.; Saborito, C.; Yamashiro-Kanashiro, E.H.; Lindoso, J.A.L.; Coelho, A.C. In Vitro Miltefosine and Amphotericin B Susceptibility of Strains and Clinical Isolates of Leishmania Species Endemic in Brazil That Cause Tegumentary Leishmaniasis. Exp. Parasitol. 2023, 246, 108462. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Chakravarty, J. Liposomal Amphotericin B and Leishmaniasis: Dose and Response. J. Glob. Infect. Dis. 2010, 2, 159. [Google Scholar] [CrossRef] [PubMed]
- Dorlo, T.P.C.; Balasegaram, M.; Beijnen, J.H.; de Vries, P.J. Miltefosine: A Review of Its Pharmacology and Therapeutic Efficacy in the Treatment of Leishmaniasis. J. Antimicrob. Chemother. 2012, 67, 2576–2597. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Singh, A.; Rai, M.; Prajapati, V.K.; Singh, A.K.; Ostyn, B.; Boelaert, M.; Dujardin, J.-C.; Chakravarty, J. Efficacy of Miltefosine in the Treatment of Visceral Leishmaniasis in India after a Decade of Use. Clin. Infect. Dis. 2012, 55, 543–550. [Google Scholar] [CrossRef]
- Sunyoto, T.; Potet, J.; Boelaert, M. Why Miltefosine—A Life-Saving Drug for Leishmaniasis—Is Unavailable to People Who Need It the Most. BMJ Glob. Health 2018, 3, e000709. [Google Scholar] [CrossRef]
- Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and Tolerability of Miltefosine in the Treatment of Cutaneous Leishmaniasis. Clin. Infect. Dis. 2021, 73, e2457–e2562. [Google Scholar] [CrossRef]
- Damper, D.; Patton, C.L. Pentamidine Transport and Sensitivity in Brucei—Group Trypanosomes. J. Protozool. 1976, 23, 349–356. [Google Scholar] [CrossRef]
- Wu, S.; Lin, C.; Zhang, T.; Zhang, B.; Jin, Y.; Wang, H.; Li, H.; Wang, Y.; Wang, X. Pentamidine alleviates inflammation and lipopolysaccharide-induced sepsis by inhibiting TLR4 activation via targeting MD2. Front. Pharmacol. 2022, 13, 835081. [Google Scholar] [CrossRef]
- Mathis, A.M.; Holman, J.L.; Sturk, L.M.; Ismail, M.A.; Boykin, D.W.; Tidwell, R.R.; Hall, J.E. Accumulation and Intracellular Distribution of Antitrypanosomal Diamidine Compounds DB75 and DB820 in African Trypanosomes. Antimicrob. Agents Chemother. 2006, 50, 2185–2191. [Google Scholar] [CrossRef] [PubMed]
- Fairlamb, A.H.; Horn, D. Melarsoprol Resistance in African Trypanosomiasis. Trends Parasitol. 2018, 34, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Steverding, D. The Development of Drugs for Treatment of Sleeping Sickness: A Historical Review. Parasit. Vectors 2010, 3, 15. [Google Scholar] [CrossRef]
- Varghese, S.; Srivastava, A.; Wong, S.W.; Le, T.; Pitcher, N.; Mesnard, M.; Lallemand, C.; Rahmani, R.; Moawad, S.R.; Huang, F.; et al. Novel Aroyl Guanidine Anti-Trypanosomal Compounds That Exert Opposing Effects on Parasite Energy Metabolism. Eur. J. Med. Chem. 2024, 268, 116162. [Google Scholar] [CrossRef]
- Kennedy, P.G.E. The Evolving Spectrum of Human African Trypanosomiasis. QJM 2024, 117, 391–395. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, J.; Ortiz, J.F.; Fabara, S.P.; Eissa-Garcés, A.; Reddy, D.; Collins, K.D.; Tirupathi, R. Efficacy and Toxicity of Fexinidazole and Nifurtimox plus Eflornithine in the Treatment of African Trypanosomiasis. Cureus 2021, 13, e16881. [Google Scholar] [CrossRef]
- Yun, O.; Priotto, G.; Tong, J.; Flevaud, L.; Chappuis, F. NECT Is Next: Implementing the New Drug Combination Therapy for Trypanosoma Brucei Gambiense Sleeping Sickness. PLoS Negl. Trop. Dis. 2010, 4, e720. [Google Scholar] [CrossRef]
- Rogers, I.; Berg, K.; Ramirez, H.; Hovel-Miner, G.A. Fexinidazole induced cytotoxicity is distinct from related anti-trypanosome nitroaromatic drugs. bioRxiv 2023. bioRxiv:2023-10. [Google Scholar] [CrossRef]
- Murta, S.M.F.; Lemos Santana, P.A.; Jacques Dit Lapierre, T.J.W.; Penteado, A.B.; El Hajje, M.; Navarro Vinha, T.C.; Liarte, D.B.; de Souza, M.L.; Goulart Trossini, G.H.; de Oliveira Rezende Júnior, C.; et al. New Drug Discovery Strategies for the Treatment of Benznidazole-Resistance in Trypanosoma cruzi, the Causative Agent of Chagas Disease. Expert Opin. Drug Discov. 2024, 19, 741–753. [Google Scholar] [CrossRef]
- Cardoso, C.S.; Ribeiro, A.L.P.; Oliveira, C.D.L.; Oliveira, L.C.; Ferreira, A.M.; Bierrenbach, A.L.; Silva, J.L.P.; Colosimo, E.A.; Ferreira, J.E.; Lee, T.-H.; et al. Beneficial Effects of Benznidazole in Chagas Disease: NIH SaMi-Trop Cohort Study. PLoS Negl. Trop. Dis. 2018, 12, e0006814. [Google Scholar] [CrossRef]
- Pérez-Molina, J.A.; Crespillo-Andújar, C.; Bosch-Nicolau, P.; Molina, I. Trypanocidal Treatment of Chagas Disease. Enferm. Infecc. Microbiol. Clin. (Engl.) 2021, 39, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. Praziquantel for Schistosomiasis: Single-Drug Metabolism Revisited, Mode of Action, and Resistance. Antimicrob. Agents Chemother. 2017, 61, e02582-16. [Google Scholar] [CrossRef]
- Doenhoff, M.J.; Cioli, D.; Utzinger, J. Praziquantel: Mechanisms of Action, Resistance and New Derivatives for Schistosomiasis. Curr. Opin. Infect. Dis. 2008, 21, 659–667. [Google Scholar] [CrossRef] [PubMed]
- Soto-Sánchez, J. Bioactivity of Natural Polyphenols as Antiparasitic Agents and Their Biochemical Targets. Mini Rev. Med. Chem. 2022, 22, 2661–2677. [Google Scholar] [CrossRef]
- Soto-Sánchez, J. Could Natural Terpenes Be an Alternative for the Treatment of Neglected Tropical Diseases? Chem. Biol. Drug Des. 2024, 103, e14470. [Google Scholar] [CrossRef]
- Clemente, C.M.; Murillo, J.; Garro, A.G.; Arbeláez, N.; Pineda, T.; Robledo, S.M.; Ravetti, S. Piperine, Quercetin, and Curcumin Identified as Promising Natural Products for Topical Treatment of Cutaneous Leishmaniasis. Parasitol. Res. 2024, 123, 108554. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, H.; Xu, C.; Gu, L. A Review: Using Nanoparticles to Enhance Absorption and Bioavailability of Phenolic Phytochemicals. Food Hydrocoll. 2015, 43, 153–164. [Google Scholar] [CrossRef]
- Grgić, J.; Šelo, G.; Planinić, M.; Tišma, M.; Bucić-Kojić, A. Role of the Encapsulation in Bioavailability of Phenolic Compounds. Antioxidants 2020, 9, 923. [Google Scholar] [CrossRef] [PubMed]
- Ou, K.; Percival, S.S.; Zou, T.; Khoo, C.; Gu, L. Transport of Cranberry A-Type Procyanidin Dimers, Trimers, and Tetramers across Monolayers of Human Intestinal Epithelial Caco-2 Cells. J. Agric. Food Chem. 2012, 60, 1390–1396. [Google Scholar] [CrossRef]
- Intagliata, S.; Modica, M.N.; Santagati, L.M.; Montenegro, L. Strategies to Improve Resveratrol Systemic and Topical Bioavailability: An Update. Antioxidants 2019, 8, 244. [Google Scholar] [CrossRef]
- Suresh, C.; Zhao, H.; Gumbs, A.; Chetty, C.S.; Bose, H.S. New Ionic Derivatives of Betulinic Acid as Highly Potent Anti-Cancer Agents. Bioorg. Med. Chem. Lett. 2012, 22, 1734–1738. [Google Scholar] [CrossRef]
- El-Saadony, M.T.; Yang, T.; Korma, S.A.; Sitohy, M.; Abd El-Mageed, T.A.; Selim, S.; Al Jaouni, S.K.; Salem, H.M.; Mahmmod, Y.; Soliman, S.M.; et al. Impacts of turmeric and its principal bioactive curcumin on human health: Pharmaceutical, medicinal, and food applications: A comprehensive review. Front. Nutr. 2023, 9, 1040259. [Google Scholar] [CrossRef]
- Dourado, D.; Silva Medeiros, T.; do Nascimento Alencar, É.; Matos Sales, E.; Formiga, F.R. Curcumin-Loaded Nanostructured Systems for Treatment of Leishmaniasis: A Review. Beilstein J. Nanotechnol. 2024, 15, 37–50. [Google Scholar] [CrossRef]
- Morilla, M.J.; Ghosal, K.; Romero, E.L. Nanomedicines against Chagas Disease: A Critical Review. Beilstein J. Nanotechnol. 2024, 15, 333–349. [Google Scholar] [CrossRef]
- Ossai, E.C.; Eze, A.A.; Ogugofor, M.O. Plant-Derived Compounds for the Treatment of Schistosomiasis: Improving Efficacy via Nano-Drug Delivery. Niger. J. Clin. Pract. 2022, 25, 747. [Google Scholar] [CrossRef]
- Sasidharan, S.; Saudagar, P. Leishmaniasis: Where Are We and Where Are We Heading? Parasitol. Res. 2021, 120, 1541–1554. [Google Scholar] [CrossRef]
- Tambe, S.; Nag, S.; Pandya, S.R.; Kumar, R.; Balakrishnan, K.; Kumar, R.; Kumar, S.; Amin, P.; Gupta, P.K. Revolutionizing Leishmaniasis Treatment with Cutting Edge Drug Delivery Systems and Nanovaccines: An Updated Review. ACS Infect. Dis. 2024, 10, 1871–1889. [Google Scholar] [CrossRef]
- Assefa, M.; Biset, S. Prevalence of hepatitis B and C virus infections among visceral leishmaniasis patients: A systematic review and meta-analysis. Front. Microbiol. 2024, 15, 1415330. [Google Scholar] [CrossRef]
- Leishmaniasis; World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 3 July 2024).
- Kaur, G.; Chauhan, K.; Kaur, S. Lupeol Induces Immunity and Protective Efficacy in a Murine Model against Visceral Leishmaniasis. Parasitology 2019, 146, 1440–1450. [Google Scholar] [CrossRef]
- Das, A.; Jawed, J.J.; Das, M.C.; Parveen, S.; Ghosh, C.; Majumdar, S.; Saha, B.; Bhattacharjee, S. Lupeol and Amphotericin B Mediate Synergistic Anti-Leishmanial Immunomodulatory Effects in Leishmania donovani-Infected BALB/c Mice. Cytokine 2021, 137, 155319. [Google Scholar] [CrossRef]
- Jesus, J.A.; Fragoso da Silva, T.N.; Yamamoto, E.S.; G. Lago, J.H.; Dalastra Laurenti, M.; Passero, L.F.D. Ursolic Acid Potentializes Conventional Therapy in Experimental Leishmaniasis. Pathogens 2020, 9, 855. [Google Scholar] [CrossRef] [PubMed]
- Tabrez, S.; Rahman, F.; Ali, R.; Alouffi, A.S.; Akand, S.K.; Alshehri, B.M.; Alshammari, F.A.; Alam, A.; Alaidarous, M.A.; Banawas, S.; et al. Cynaroside Inhibits Leishmania donovani UDP-Galactopyranose Mutase and Induces Reactive Oxygen Species to Exert Antileishmanial Response. Biosci. Rep. 2021, 41, BSR20203857. [Google Scholar] [CrossRef] [PubMed]
- Salarkia, E.; Sharifi, I.; Keyhani, A.; Tavakoli Oliaee, R.; Khosravi, A.; Sharifi, F.; Bamorovat, M.; Babaei, Z. In Silico and in Vitro Potentials of Crocin and Amphotericin B on Leishmania major: Multiple Synergistic Mechanisms of Actions. PLoS ONE 2023, 18, e0291322. [Google Scholar] [CrossRef]
- de Carvalho, R.D.C.V.; de Sousa, V.C.; Santos, L.P.; Dos Santos, I.L.; Diniz, R.C.; Rodrigues, R.R.L.; de Medeiros, M.D.G.F.; da Franca Rodrigues, K.A.; de Moraes Alves, M.M.; Arcanjo, D.D.R.; et al. Limonene-Carvacrol: A Combination of Monoterpenes with Enhanced Antileishmanial Activity. Toxicol. Vitr. 2021, 74, 105158. [Google Scholar] [CrossRef]
- Nooshadokht, M.; Mirzaei, M.; Sharifi, I.; Sharifi, F.; Lashkari, M.; Amirheidari, B. In Silico and in Vitro Antileishmanial Effects of Gamma-Terpinene: Multifunctional Modes of Action. Chem. Biol. Interact. 2022, 361, 109957. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Sehgal, R.; Jhacak, S.; Deshmukh, K.; Nada, R. Evaluation of Farnesol Orally and Topically against Experimental Cutaneous Leishmaniasis: In -Vivo Analysis. PLoS ONE 2023, 18, e0290297. [Google Scholar] [CrossRef]
- Jesus, J.A.; Fragoso, T.N.; Yamamoto, E.S.; Laurenti, M.D.; Silva, M.S.; Ferreira, A.F.; Lago, J.H.G.; Gomes, G.S.; Passero, L.F.D. Therapeutic Effect of Ursolic Acid in Experimental Visceral Leishmaniasis. Int. J. Parasitol. Drugs Drug Resist. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Labib, R.M.; Ebada, S.S.; Youssef, F.S.; Ashour, M.L.; Ross, S.A. Ursolic Acid, a Natural Pentacylcic Triterpene from Ochrosia Elliptica and Its Role in the Management of Certain Neglected Tropical Diseases. Pharmacogn. Mag. 2016, 12, 319–325. [Google Scholar] [CrossRef]
- Kashif, M.; Tabrez, S.; Husein, A.; Arish, M.; Kalaiarasan, P.; Manna, P.P.; Subbarao, N.; Akhter, Y.; Rub, A. Identification of Novel Inhibitors against UDP—Galactopyranose Mutase to Combat Leishmaniasis. J. Cell. Biochem. 2018, 119, 2653–2665. [Google Scholar] [CrossRef]
- Malinowska, M.; Miroslaw, B.; Sikora, E.; Ogonowski, J.; Wojtkiewicz, A.M.; Szaleniec, M.; Pasikowska-Piwko, M.; Eris, I. New Lupeol Esters as Active Substances in the Treatment of Skin Damage. PLoS ONE 2019, 14, e0214216. [Google Scholar] [CrossRef]
- Elmowafy, M.; Al-Sanea, M.M. Nanostructured Lipid Carriers (NLCs) as Drug Delivery Platform: Advances in Formulation and Delivery Strategies. Saudi Pharm. J. 2021, 29, 999–1012. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.A.; da Silva, T.N.F.; Sousa, I.M.O.; Ferreira, A.F.; Laurenti, M.D.; da Costa, P.C.; de Carvalho Ferreira, D.; Passero, L.F.D. Nanostructured Lipid Carriers as Robust Systems for Lupeol Delivery in the Treatment of Experimental Visceral Leishmaniasis. Pharmaceuticals 2023, 16, 1646. [Google Scholar] [CrossRef] [PubMed]
- Jesus, J.A.; Sousa, I.M.O.; da Silva, T.N.F.; Ferreira, A.F.; Laurenti, M.D.; Antonangelo, L.; Faria, C.S.; da Costa, P.C.; de Carvalho Ferreira, D.; Passero, L.F.D. Preclinical Assessment of Ursolic Acid Loaded into Nanostructured Lipid Carriers in Experimental Visceral Leishmaniasis. Pharmaceutics 2021, 13, 908. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Heli, H.; Oryan, A.; Hatam, G. A Novel Outlook in the Delivery of Artemisinin: Production and Efficacy in Experimental Visceral Leishmaniasis. Pathog. Glob. Health 2024, 118, 40–46. [Google Scholar] [CrossRef]
- Sasidharan, S.; Saudagar, P. 4′,7-Dihydroxyflavone Conjugated Carbon Nanotube Formulation Demonstrates Improved Efficacy against Leishmania parasite. Biochim. Biophys. Acta Gen. Subj. 2023, 1867, 130416. [Google Scholar] [CrossRef]
- Sasidharan, S.; Saudagar, P. An Anti—Leishmanial Compound 4′,7—Dihydroxyflavone Elicits ROS—Mediated Apoptosis—Like Death in Leishmania parasite. FEBS J. 2023, 290, 3646–3663. [Google Scholar] [CrossRef] [PubMed]
- Sasidharan, S.; Saudagar, P. Gold and Silver Nanoparticles Functionalized with 4’,7-Dihydroxyflavone Exhibit Activity against Leishmania donovani. Acta Trop. 2022, 231, 106448. [Google Scholar] [CrossRef]
- Raj, S.; Sasidharan, S.; Tripathi, T.; Saudagar, P. Biofunctionalized Chrysin-Conjugated Gold Nanoparticles Neutralize Leishmania parasites with High Efficacy. Int. J. Biol. Macromol. 2022, 205, 211–219. [Google Scholar] [CrossRef]
- Das, S.S.; Dubey, A.K.; Verma, P.R.P.; Singh, S.K.; Singh, S.K. Therapeutic Potential of Quercetin-Loaded Nanoemulsion against Experimental Visceral Leishmaniasis: In Vitro/Ex Vivo Studies and Mechanistic Insights. Mol. Pharm. 2022, 19, 3367–3384. [Google Scholar] [CrossRef]
- Mittra, B.; Saha, A.; Roy Chowdhury, A.; Pal, C.; Mandal, S.; Mukhopadhyay, S.; Bandyopadhyay, S.; Majumder, H.K. Luteolin, an Abundant Dietary Component Is a Potent Anti-Leishmanial Agent That Acts by Inducing Topoisomerase II-Mediated Kinetoplast DNA Cleavage Leading to Apoptosis. Mol. Med. 2000, 6, 527–541. [Google Scholar] [CrossRef]
- Prasanna, P.; Kumar, P.; Mandal, S.; Payal, T.; Kumar, S.; Hossain, S.U.; Das, P.; Ravichandiran, V.; Mandal, D. 7,8-Dihydroxyflavone-Functionalized Gold Nanoparticles Target the Arginase Enzyme of Leishmania donovani. Nanomedicine 2021, 16, 1887–1903. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhao, Z.; Xia, G.; Xue, F.; Chen, C.; Zhang, Y. Fabrication and Characterization of Zein/Lactoferrin Composite Nanoparticles for Encapsulating 7,8-Dihydroxyflavone: Enhancement of Stability, Water Solubility and Bioaccessibility. Int. J. Biol. Macromol. 2020, 146, 179–192. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Li, X.; Wang, C.; Guo, H.; Liu, J.; Xu, H. Carbon Nanotubes Activate Macrophages into a M1/M2 Mixed Status: Recruiting Naïve Macrophages and Supporting Angiogenesis. ACS Appl. Mater. Interfaces 2015, 7, 3180–3188. [Google Scholar] [CrossRef] [PubMed]
- Negri, V.; Pacheco-Torres, J.; Calle, D.; López-Larrubia, P. Carbon Nanotubes in Biomedicine. Top. Curr. Chem. (J.) 2020, 378, 15. [Google Scholar] [CrossRef]
- Alsaleh, N.B.; Minarchick, V.C.; Mendoza, R.P.; Sharma, B.; Podila, R.; Brown, J.M. Silver Nanoparticle Immunomodulatory Potential in Absence of Direct Cytotoxicity in RAW 264.7 Macrophages and MPRO 2.1 Neutrophils. J. Immunotoxicol. 2019, 16, 63–73. [Google Scholar] [CrossRef]
- Das, S.; Halder, A.; Roy, P.; Mukherjee, A. Biogenic Gold Nanoparticles against Wild and Resistant Type Visceral Leishmaniasis. Mater. Today 2018, 5, 2912–2920. [Google Scholar] [CrossRef]
- Sasidharan, S.; Saudagar, P. Flavones Reversibly Inhibit Leishmania donovani Tyrosine Aminotransferase by Binding to the Catalytic Pocket: An Integrated in Silico-in Vitro Approach. Int. J. Biol. Macromol. 2020, 164, 2987–3004. [Google Scholar] [CrossRef]
- Naz, S.; Imran, M.; Rauf, A.; Orhan, I.E.; Shariati, M.A.; Iahtisham-Ul-Haq; Yasmin, I.; Shahbaz, M.; Qaisrani, T.B.; Shah, Z.A.; et al. Chrysin: Pharmacological and Therapeutic Properties. Life Sci. 2019, 235, 116797. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Saha, G.; Sasidharan, S.; Dubey, V.K.; Saudagar, P. Biochemical Characterization and Chemical Validation of Leishmania MAP Kinase-3 as a Potential Drug Target. Sci. Rep. 2019, 9, 16209. [Google Scholar] [CrossRef]
- Raj, S.; Sasidharan, S.; Dubey, V.K.; Saudagar, P. Identification of Lead Molecules against Potential Drug Target Protein MAPK4 from L. Donovani: An in-Silico Approach Using Docking, Molecular Dynamics and Binding Free Energy Calculation. PLoS ONE 2019, 14, e0221331. [Google Scholar] [CrossRef]
- Espíndola, C. Some Nanocarrier’s Properties and Chemical Interaction Mechanisms with Flavones. Molecules 2023, 28, 2864. [Google Scholar] [CrossRef]
- Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and Antileishmanial Activities of Flavonoids and Their Analogues: In Vitro, in Vivo, Structure-Activity Relationship, and Quantitative Structure-Activity Relationship Studies. Antimicrob. Agents Chemother. 2006, 50, 1352–1364. [Google Scholar] [CrossRef] [PubMed]
- da Silva, E.R.; Maquiaveli, C.d.C.; Magalhães, P.P. The Leishmanicidal Flavonols Quercetin and Quercitrin Target Leishmania (Leishmania) amazonensis Arginase. Exp. Parasitol. 2012, 130, 183–188. [Google Scholar] [CrossRef]
- Mahadev, M.; Nandini, H.S.; Ramu, R.; Gowda, D.V.; Almarhoon, Z.M.; Al-Ghorbani, M.; Mabkhot, Y.N. Fabrication and Evaluation of Quercetin Nanoemulsion: A Delivery System with Improved Bioavailability and Therapeutic Efficacy in Diabetes Mellitus. Pharmaceuticals 2022, 15, 70. [Google Scholar] [CrossRef]
- Kumar, M.; Bishnoi, R.S.; Shukla, A.K.; Jain, C.P. Techniques for Formulation of Nanoemulsion Drug Delivery System: A Review. Prev. Nutr. Food Sci. 2019, 24, 225–234. [Google Scholar] [CrossRef]
- Ferreira, B.A.; Coser, E.M.; de la Roca, S.; Aoki, J.I.; Branco, N.; Soares, G.H.C.; Lima, M.I.S.; Coelho, A.C. Amphotericin B Resistance in Leishmania amazonensis: In Vitro and in Vivo Characterization of a Brazilian Clinical Isolate. PLoS Negl. Trop. Dis. 2024, 18, e0012175. [Google Scholar] [CrossRef]
- Mazur, K.L.; Feuser, P.E.; Valério, A.; Poester Cordeiro, A.; de Oliveira, C.I.; Assolini, J.P.; Pavanelli, W.R.; Sayer, C.; Araújo, P.H.H. Diethyldithiocarbamate Loaded in Beeswax-Copaiba Oil Nanoparticles Obtained by Solventless Double Emulsion Technique Promote Promastigote Death in Vitro. Colloids Surf. B Biointerfaces 2019, 176, 507–512. [Google Scholar] [CrossRef]
- Santos, A.O.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga Junior, V.F.; Pinto, A.C.; Nakamura, C.V. Effect of Brazilian Copaiba Oils on Leishmania amazonensis. J. Ethnopharmacol. 2008, 120, 204–208. [Google Scholar] [CrossRef]
- Carpio Arévalo, J.M.; Feuser, P.E.; Rossi, G.R.; Trindade, E.S.; da Silva Córneo, E.; Machado-de-Ávila, R.A.; Sayer, C.; Cadena, S.M.S.C.; Noleto, G.R.; Martinez, G.R.; et al. Preparation and Characterization of 4-Nitrochalcone-Folic Acid-Poly(Methyl Methacrylate) Nanocapsules and Cytotoxic Activity on HeLa and NIH3T3 Cells. J. Drug Deliv. Sci. Technol. 2019, 54, 101300. [Google Scholar] [CrossRef]
- Kovacic, P.; Somanathan, R. Nitroaromatic Compounds: Environmental Toxicity, Carcinogenicity, Mutagenicity, Therapy and Mechanism. J. Appl. Toxicol. 2014, 34, 810–824. [Google Scholar] [CrossRef]
- Assolini, J.P.; da Silva, T.P.; da Silva Bortoleti, B.T.; Gonçalves, M.D.; Tomiotto-Pellissier, F.; Sahd, C.S.; Carloto, A.C.M.; Feuser, P.E.; Cordeiro, A.P.; Sayer, C.; et al. 4-Nitrochalcone Exerts Leishmanicidal Effect on L. Amazonensis Promastigotes and Intracellular Amastigotes, and the 4-Nitrochalcone Encapsulation in Beeswax Copaiba Oil Nanoparticles Reduces Macrophages Cytotoxicity. Eur. J. Pharmacol. 2020, 884, 173392. [Google Scholar] [CrossRef]
- Albalawi, A.E.; Shater, A.F.; Alanazi, A.D.; Almohammed, H.I. Unveiling of the Antileishmanial Activities of Linalool Loaded Zinc Oxide Nanocomposite through Its Potent Antioxidant and Immunomodulatory Effects. Acta Trop. 2024, 252, 107155. [Google Scholar] [CrossRef]
- Mousavi, P.; Rahimi Esboei, B.; Pourhajibagher, M.; Fakhar, M.; Shahmoradi, Z.; Hejazi, S.H.; Hassannia, H.; Nasrollahi Omran, A.; Hasanpour, H. Anti-Leishmanial Effects of Resveratrol and Resveratrol Nanoemulsion on Leishmania major. BMC Microbiol. 2022, 22, 56. [Google Scholar] [CrossRef]
- Amini, S.M.; Hadighi, R.; Najm, M.; Alipour, M.; Hasanpour, H.; Vosoogh, M.; Vosough, A.; Hajizadeh, M.; Badirzadeh, A. The Therapeutic Effects of Curcumin-Coated Gold Nanoparticle against Leishmania major Causative Agent of Zoonotic Cutaneous Leishmaniasis (ZCL): An in Vitro and in Vivo Study. Curr. Microbiol. 2023, 80, 104. [Google Scholar] [CrossRef]
- Hanif, H.; Abdollahi, V.; Javani Jouni, F.; Nikoukar, M.; Rahimi Esboei, B.; Shams, E.; Vazini, H. Quercetin Nano Phytosome: As a Novel Anti-Leishmania and Anti-Malarial Natural Product. J. Parasit. Dis. 2023, 47, 257–264. [Google Scholar] [CrossRef]
- Rocha, V.; Quadros, H.; Meira, C.; Silva, L.; Carvalho, D.; Hodel, K.; Moreira, D.; Soares, M. Potential of Triterpenic Natural Compound Betulinic Acid for Neglected Tropical Diseases New Treatments. Biomedicines 2022, 10, 831. [Google Scholar] [CrossRef]
- Hamdi, A.; Bero, J.; Beaufay, C.; Flamini, G.; Marzouk, Z.; Vander Heyden, Y.; Quetin-Leclercq, J. In Vitro Antileishmanial and Cytotoxicity Activities of Essential Oils from Haplophyllum tuberculatum A. Juss Leaves, Stems and Aerial Parts. BMC Complement. Altern. Med. 2018, 18, 60. [Google Scholar] [CrossRef]
- Saneja, A.; Kumar, R.; Singh, A.; Dhar Dubey, R.; Mintoo, M.J.; Singh, G.; Mondhe, D.M.; Panda, A.K.; Gupta, P.N. Development and Evaluation of Long-Circulating Nanoparticles Loaded with Betulinic Acid for Improved Anti-Tumor Efficacy. Int. J. Pharm. 2017, 531, 153–166. [Google Scholar] [CrossRef]
- Rosa, M.D.S.S.; Mendonça-Filho, R.R.; Bizzo, H.R.; Rodrigues, I.D.A.; Soares, R.M.A.; Souto-Padrón, T.; Alviano, C.S.; Lopes, A.H.C. Antileishmanial Activity of a Linalool-Rich Essential Oil fromCroton cajucara. Antimicrob. Agents Chemother. 2003, 47, 1895–1901. [Google Scholar] [CrossRef]
- Gonçalves, S.; Mansinhos, I.; Romano, A. Aromatic Plants: A Source of Compounds with Antioxidant and Neuroprotective Effects. In Oxidative Stress and Dietary Antioxidants in Neurological Diseases; Elsevier: Amsterdam, The Netherlands, 2020; pp. 155–173. [Google Scholar]
- Gong, X.; Gao, Y.; Shu, J.; Zhang, C.; Zhao, K. Chitosan-Based Nanomaterial as Immune Adjuvant and Delivery Carrier for Vaccines. Vaccines 2022, 10, 1906. [Google Scholar] [CrossRef]
- Khatami, M.; Khatami, S.; Mosazade, F.; Raisi, M.; Haghighat, M.; Sabaghan, M.; Yaghoubi, S.; Sarani, M.; Bamorovat, M.; Malekian, L.; et al. Greener Synthesis of Rod Shaped Zinc Oxide Nanoparticles Using Lilium Ledebourii Tuber and Evaluation of Their Leishmanicidal Activity. Iran. J. Biotechnol. 2020, 18, e2196. [Google Scholar] [CrossRef]
- Kedzierski, L.; Curtis, J.M.; Kaminska, M.; Jodynis-Liebert, J.; Murias, M. In Vitro Antileishmanial Activity of Resveratrol and Its Hydroxylated Analogues against Leishmania major Promastigotes and Amastigotes. Parasitol. Res. 2007, 102, 91–97. [Google Scholar] [CrossRef]
- Albalawi, A.E.; Alanazi, A.D.; Sharifi, I.; Ezzatkhah, F. A Systematic Review of Curcumin and Its Derivatives as Valuable Sources of Antileishmanial Agents. Acta Parasitol. 2021, 66, 797–811. [Google Scholar] [CrossRef]
- Talib, W.H.; Alsayed, A.R.; Farhan, F.; Al Kury, L.T. Resveratrol and Tumor Microenvironment: Mechanistic Basis and Therapeutic Targets. Molecules 2020, 25, 4282. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Zhu, P.; He, J.; Huang, S.; Han, L.; Chang, C.; Zhang, W. Encapsulation of Resveratrol in Zein-Polyglycerol Conjugate Stabilized O/W Nanoemulsions: Chemical Stability, in Vitro Gastrointestinal Digestion, and Antioxidant Activity. Lebenson. Wiss. Technol. 2021, 149, 112049. [Google Scholar] [CrossRef]
- Nene, S.; Devabattula, G.; Vambhurkar, G.; Tryphena, K.P.; Singh, P.K.; Khatri, D.K.; Godugu, C.; Srivastava, S. High Mobility Group Box 1 Cytokine Targeted Topical Delivery of Resveratrol Embedded Nanoemulgel for the Management of Atopic Dermatitis. Drug Deliv. Transl. Res. 2024, 1–24. [Google Scholar] [CrossRef]
- Hendawy, O.M.; Al-Sanea, M.M.; Elbargisy, R.M.; Rahman, H.U.; Gomaa, H.A.M.; Mohamed, A.A.B.; Ibrahim, M.F.; Kassem, A.M.; Elmowafy, M. Development of Olive Oil Containing Phytosomal Nanocomplex for Improving Skin Delivery of Quercetin: Formulation Design Optimization, in Vitro and Ex Vivo Appraisals. Pharmaceutics 2023, 15, 1124. [Google Scholar] [CrossRef]
- Reguera, R.M.; Balaña-Fouce, R.; Showalter, M.; Hickerson, S.; Beverley, S.M. Leishmania major Lacking Arginase (ARG) Are Auxotrophic for Polyamines but Retain Infectivity to Susceptible BALB/c Mice. Mol. Biochem. Parasitol. 2009, 165, 48–56. [Google Scholar] [CrossRef]
- Cataneo, A.H.D.; Tomiotto-Pellissier, F.; Miranda-Sapla, M.M.; Assolini, J.P.; Panis, C.; Kian, D.; Yamauchi, L.M.; Colado Simão, A.N.; Casagrande, R.; Pinge-Filho, P.; et al. Quercetin Promotes Antipromastigote Effect by Increasing the ROS Production and Anti-Amastigote by Upregulating Nrf2/HO-1 Expression, Affecting Iron Availability. Biomed. Pharmacother. 2019, 113, 108745. [Google Scholar] [CrossRef]
- Centro Nacional de Programas Preventivos y Control de Enfermedades. Guía de Atención de Leishmaniasis. Available online: https://www.gob.mx/salud/cenaprece/documentos/guia-de-atencion-de-leishmaniasis (accessed on 3 July 2024).
- Torres-Guerrero, E.; Quintanilla-Cedillo, M.R.; Ruiz-Esmenjaud, J.; Arenas, R. Leishmaniasis: A Review. F1000Res. 2017, 6, 750. [Google Scholar] [CrossRef] [PubMed]
- Naddaf, N.; Haddad, S. Apigenin Effect against Leishmania tropica Amastigotes in Vitro. J. Parasit. Dis. 2020, 44, 574–578. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Silva, F.; Canto-Cavalheiro, M.M.; Menna-Barreto, R.F.S.; Almeida-Amaral, E.E. Effect of Apigenin on Leishmania amazonensis Is Associated with Reactive Oxygen Species Production Followed by Mitochondrial Dysfunction. J. Nat. Prod. 2015, 78, 880–884. [Google Scholar] [CrossRef] [PubMed]
- Emiliano, Y.S.S.; Almeida-Amaral, E.E. Apigenin is a promising molecule for treatment of visceral leishmaniasis. Front. Cell. Infect. Microbiol. 2023, 13, 1066407. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rebolledo, G.A.; Drier-Jonas, S.; Jiménez-Arellanes, M.A. Natural Compounds and Extracts from Mexican Medicinal Plants with Anti-Leishmaniasis Activity: An Update. Asian Pac. J. Trop. Med. 2017, 10, 1105–1110. [Google Scholar] [CrossRef]
- Pena-Rodríguez, E.; García-Vega, L.; Lajarin Reinares, M.; Pastor-Anglada, M.; Pérez-Torras, S.; Fernandez-Campos, F. Latanoprost-Loaded Nanotransfersomes Designed for Scalp Administration Enhance Keratinocytes Proliferation. Mol. Pharm. 2023, 20, 2317–2325. [Google Scholar] [CrossRef]
- Dar, M.J.; McElroy, C.A.; Khan, M.I.; Satoskar, A.R.; Khan, G.M. Development and Evaluation of Novel Miltefosine-Polyphenol Co-Loaded Second Generation Nano-Transfersomes for the Topical Treatment of Cutaneous Leishmaniasis. Expert Opin. Drug Deliv. 2020, 17, 97–110. [Google Scholar] [CrossRef]
- Bashir, S.; Shabbir, K.; ud Din, F.; Khan, S.U.; Ali, Z.; Khan, B.A.; Kim, D.W.; Khan, G.M. Nitazoxanide and Quercetin Co-Loaded Nanotransfersomal Gel for Topical Treatment of Cutaneous Leishmaniasis with Macrophage Targeting and Enhanced Anti-Leishmanial Effect. Heliyon 2023, 9, e21939. [Google Scholar] [CrossRef]
- Masoudzadeh, N.; Mizbani, A.; Taslimi, Y.; Mashayekhi, V.; Mortazavi, H.; Sadeghipour, P.; Ardekani, H.M.; Rafati, S. Leishmania tropica Infected Human Lesions: Whole Genome Transcription Profiling. Acta Trop. 2017, 176, 236–241. [Google Scholar] [CrossRef]
- Sabino, E.C.; Nunes, M.C.P.; Blum, J.; Molina, I.; Ribeiro, A.L.P. Cardiac Involvement in Chagas Disease and African Trypanosomiasis. Nat. Rev. Cardiol. 2024, 1–15. [Google Scholar] [CrossRef]
- Büscher, P.; Cecchi, G.; Jamonneau, V.; Priotto, G. Human African Trypanosomiasis. Lancet 2017, 390, 2397–2409. [Google Scholar] [CrossRef] [PubMed]
- Price, M.; Lodh, N. Diagnosis of Chagas Disease by Detecting Species-Specific Repetitive Genomic DNA from Filtered Human Urine Samples. WMJ 2024, 123, 199–203. [Google Scholar]
- Gorla, N.B.; Ledesma, O.S.; Barbieri, G.P.; Larripa, I.B. Thirteenfold Increase of Chromosomal Aberrations Non-Randomly Distributed in Chagasic Children Treated with Nifurtimox. Mutat. Res.-Rev. Genet. Toxicol. 1989, 224, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Steverding, D.; Sexton, D.W.; Wang, X.; Gehrke, S.S.; Wagner, G.K.; Caffrey, C.R. Trypanosoma Brucei: Chemical Evidence That Cathepsin L Is Essential for Survival and a Relevant Drug Target. Int. J. Parasitol. 2012, 42, 481–488. [Google Scholar] [CrossRef]
- Lemke, C.; Jílková, A.; Ferber, D.; Braune, A.; On, A.; Johe, P.; Zíková, A.; Schirmeister, T.; Mareš, M.; Horn, M.; et al. Two Tags in One Probe: Combining Fluorescence—And Biotin—Based Detection of the Trypanosomal Cysteine Protease Rhodesain. Chemistry 2022, 28, e202201636. [Google Scholar] [CrossRef]
- Di Chio, C.; Previti, S.; Amendola, G.; Ravichandran, R.; Wagner, A.; Cosconati, S.; Hellmich, U.A.; Schirmeister, T.; Zappalà, M.; Ettari, R. Development of Novel Dipeptide Nitriles as Inhibitors of Rhodesain of Trypanosoma Brucei Rhodesiense. Eur. J. Med. Chem. 2022, 236, 114328. [Google Scholar] [CrossRef] [PubMed]
- Previti, S.; Ettari, R.; Cosconati, S.; Amendola, G.; Chouchene, K.; Wagner, A.; Hellmich, U.A.; Ulrich, K.; Krauth-Siegel, R.L.; Wich, P.R.; et al. Development of Novel Peptide-Based Michael Acceptors Targeting Rhodesain and Falcipain-2 for the Treatment of Neglected Tropical Diseases (NTDs). J. Med. Chem. 2017, 60, 6911–6923. [Google Scholar] [CrossRef]
- Ettari, R.; Previti, S.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Grasso, S.; Zappalà, M. Drug Combination Studies of Curcumin and Genistein against Rhodesain of Trypanosoma brucei rhodesiense. Nat. Prod. Res. 2019, 33, 3577–3581. [Google Scholar] [CrossRef]
- Di Chio, C.; Previti, S.; De Luca, F.; Bogacz, M.; Zimmer, C.; Wagner, A.; Schirmeister, T.; Zappalà, M.; Ettari, R. Drug Combination Studies of the Dipeptide Nitrile CD24 with Curcumin: A New Strategy to Synergistically Inhibit Rhodesain of Trypanosoma Brucei Rhodesiense. Int. J. Mol. Sci. 2022, 23, 14470. [Google Scholar] [CrossRef]
- Ettari, R.; Previti, S.; Di Chio, C.; Maiorana, S.; Allegra, A.; Schirmeister, T.; Zappalà, M. Drug Synergism: Studies of Combination of RK-52 and Curcumin against Rhodesain of Trypanosoma brucei rhodesiense. ACS Med. Chem. Lett. 2020, 11, 806–810. [Google Scholar] [CrossRef]
- Gouveia, M.J.; Brindley, P.J.; Azevedo, C.; Gärtner, F.; da Costa, J.M.C.; Vale, N. The Antioxidants Resveratrol and N-Acetylcysteine Enhance Anthelmintic Activity of Praziquantel and Artesunate against Schistosoma mansoni. Parasit. Vectors 2019, 12, 309. [Google Scholar] [CrossRef] [PubMed]
- Fracasso, M.; Reichert, K.; Bottari, N.B.; da Silva, A.D.; Schetinger, M.R.C.; Monteiro, S.G.; da Silva, A.S. Involvement of Ectonucleotidases and Purinergic Receptor Expression during Acute Chagas Disease in the Cortex of Mice Treated with Resveratrol and Benznidazole. Purinergic Signal. 2021, 17, 493–502. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Wicz, S.; Santamaría, M.H.; Corral, R.S. Curcumin exerts anti-inflammatory and vasoprotective effects through amelioration of NFAT-dependent endothelin-1 production in mice with acute Chagas cardiomyopathy. Mem. Inst. Oswaldo Cruz 2018, 113, e180171. [Google Scholar] [CrossRef] [PubMed]
- Nagajyothi, F.; Zhao, D.; Weiss, L.M.; Tanowitz, H.B. Curcumin Treatment Provides Protection against Trypanosoma cruzi Infection. Parasitol. Res. 2012, 110, 2491–2499. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.; Wicz, S.; Pérez Caballero, E.; Santamaría, M.H.; Corral, R.S. Dual Chemotherapy with Benznidazole at Suboptimal Dose plus Curcumin Nanoparticles Mitigates Trypanosoma cruzi-Elicited Chronic Cardiomyopathy. Parasitol. Int. 2021, 81, 102248. [Google Scholar] [CrossRef]
- Chung, H.; Yoon, S.H.; Cho, J.-Y.; Yeo, H.K.; Shin, D.; Park, J.-Y. Comparative Pharmacokinetics of Theracurmin, a Highly Bioavailable Curcumin, in Healthy Adult Subjects. Int. J. Clin. Pharmacol. Ther. 2021, 59, 684–690. [Google Scholar] [CrossRef]
- Nakagawa, Y.; Mukai, S.; Yamada, S.; Murata, S.; Yabumoto, H.; Maeda, T.; Akamatsu, S. The Efficacy and Safety of Highly-Bioavailable Curcumin for Treating Knee Osteoarthritis: A 6-Month Open-Labeled Prospective Study. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2020, 13, 117954412094847. [Google Scholar] [CrossRef]
- Louise, V.; Machado, B.A.A.; Pontes, W.M.; Menezes, T.P.; Dias, F.C.R.; Ervilhas, L.O.G.; Pinto, K.M.D.C.; Talvani, A. Theracurmin Modulates Cardiac Inflammation in Experimental Model of Trypanosoma cruzi Infection. Trop. Med. Infect. Dis. 2023, 8, 343. [Google Scholar] [CrossRef]
- Horta, A.L.; Figueiredo, V.P.; Leite, A.L.J.; Costa, G.D.P.; Menezes, A.P.D.J.; Ramos, C.D.O.; Pedrosa, T.C.F.; Bezerra, F.S.; Vieira, P.M.D.A.; Talvani, A. The β-blocker carvedilol and the benznidazole modulate the cardiac immune response in the acute infection induced by Colombian strain of the Trypanosoma cruzi. Mem. Inst. Oswaldo Cruz 2018, 113, e180271. [Google Scholar] [CrossRef]
- Pimenta, B.L.; Menezes, T.P.; Louise, V.; Dias, F.C.R.; Machado, B.A.A.; Ribeiro, L.; Pinto, K.M.d.C.; Talvani, A. Protective effects of Theracurmin treatment during experimental infection of the Colombian strain of Trypanosoma cruzi at the testicular site. Front. Cell. Infect. Microbiol. 2023, 13, 1143360. [Google Scholar] [CrossRef]
- Stone, K.P.; Kastin, A.J.; Pan, W. NFĸB Is an Unexpected Major Mediator of Interleukin-15 Signaling in Cerebral Endothelia. Cell. Physiol. Biochem. 2011, 28, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Karimian, M.S.; Pirro, M.; Majeed, M.; Sahebkar, A. Curcumin as a Natural Regulator of Monocyte Chemoattractant Protein-1. Cytokine Growth Factor Rev. 2017, 33, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, R.T.; Mosqueira, V.C.F.; Kano, E.K.; de Souza, J.; Dorim, D.D.R.; Saude-Guimaraes, D.A.; de Lana, M. HPLC-DAD and UV-Spectrophotometry for the Determination of Lychnopholide in Nanocapsule Dosage Form: Validation and Application to Release Kinetic Study. J. Chromatogr. Sci. 2014, 52, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Milagre, M.M.; Torchelsen, F.K.V.d.S.; Pedrosa, T.C.F.; Teixeira, G.M.; Sampaio, L.S.; Saúde-Guimarães, D.A.; Branquinho, R.T.; Mosqueira, V.C.F.; de Lana, M. Lychnopholide Loaded in Surface Modified Polylactide Nanocapsules (LYC-PLA-PEG-NC) Cure Mice Infected by Trypanosoma cruzi Strain a Prototype of Resistance to Benznidazole and Nifurtimox: First Insights of Its Mechanism of Action. Exp. Parasitol. 2023, 255, 108647. [Google Scholar] [CrossRef] [PubMed]
- Branquinho, R.T.; de Mello, C.G.C.; Oliveira, M.T.; Reis, L.E.S.; Vieira, P.M.d.A.; Saúde-Guimarães, D.A.; Mosqueira, V.C.F.; de Lana, M. Lychnopholide in Poly(d,l-Lactide)-Block-Polyethylene Glycol Nanocapsules Cures Infection with a Drug-Resistant Trypanosoma cruzi Strain at Acute and Chronic Phases. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef]
- Mosqueira, V.C.F.; Legrand, P.; Morgat, J.-L.; Vert, M.; Mysiakine, E.; Gref, R.; Devissaguet, J.-P.; Barratt, G. Biodistribution of Long-Circulating PEG-Grafted Nanocapsules in Mice: Effects of PEG Chain Length and Density. Pharm. Res. 2001, 18, 1411–1419. [Google Scholar] [CrossRef]
- Mosqueira, V.C.F.; Legrand, P.; Gulik, A.; Bourdon, O.; Gref, R.; Labarre, D.; Barratt, G. Relationship between Complement Activation, Cellular Uptake and Surface Physicochemical Aspects of Novel PEG-Modified Nanocapsules. Biomaterials 2001, 22, 2967–2979. [Google Scholar] [CrossRef]
- Pereira, M.A.; Mosqueira, V.C.F.; Carmo, V.A.S.; Ferrari, C.S.; Reis, E.C.O.; Ramaldes, G.A.; Cardoso, V.N. Biodistribution Study and Identification of Inflammatory Sites Using Nanocapsules Labeled with 99mTc–HMPAO. Nucl. Med. Commun. 2009, 30, 749–755. [Google Scholar] [CrossRef]
- Andrade, G.; Bertsch, D.J.; Gazzinelli, A.; King, C.H. Decline in Infection-Related Morbidities Following Drug-Mediated Reductions in the Intensity of Schistosoma Infection: A Systematic Review and Meta-Analysis. PLoS Negl. Trop. Dis. 2017, 11, e0005372. [Google Scholar] [CrossRef] [PubMed]
- Pinto-Almeida, A.; Mendes, T.; de Oliveira, R.N.; Corrêa, S.d.A.P.; Allegretti, S.M.; Belo, S.; Tomás, A.; Anibal, F.d.F.; Carrilho, E.; Afonso, A. Morphological characteristics of Schistosoma mansoni PZQ-resistant and -susceptible strains are different in presence of praziquantel. Front. Microbiol. 2016, 7, 594. [Google Scholar] [CrossRef]
- Soliman, R.H.; Ismail, O.A.; Badr, M.S.; Nasr, S.M. Resveratrol Ameliorates Oxidative Stress and Organ Dysfunction in Schistosoma mansoni Infected Mice. Exp. Parasitol. 2017, 174, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Binggui, S.; Chollet, J.; Tanner, M. Tegumental Changes in 21-Day-Old Schistosoma mansoni Harboured in Mice Treated with Artemether. Acta Trop. 2000, 75, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Suntres, Z.E.; Coccimiglio, J.; Alipour, M. The Bioactivity and Toxicological Actions of Carvacrol. Crit. Rev. Food Sci. Nutr. 2015, 55, 304–318. [Google Scholar] [CrossRef] [PubMed]
- Sharifi-Rad, M.; Varoni, E.M.; Iriti, M.; Martorell, M.; Setzer, W.N.; del Mar Contreras, M.; Salehi, B.; Soltani-Nejad, A.; Rajabi, S.; Tajbakhsh, M.; et al. Carvacrol and Human Health: A Comprehensive Review. Phytother. Res. 2018, 32, 1675–1687. [Google Scholar] [CrossRef]
- Xavier, E.S.; de Souza, R.L.; Rodrigues, V.C.; Melo, C.O.; Roquini, D.B.; Lemes, B.L.; Wilairatana, P.; Oliveira, E.E.; de Moraes, J. Therapeutic efficacy of carvacrol-loaded nanoemulsion in a mouse model of schistosomiasis. Front. Pharmacol. 2022, 13, 917363. [Google Scholar] [CrossRef]
- Tavares, C.P.; Sabadin, G.A.; Sousa, I.C.; Gomes, M.N.; Soares, A.M.S.; Monteiro, C.M.O.; Vaz, I.S., Jr.; Costa-Junior, L.M. Effects of Carvacrol and Thymol on the Antioxidant and Detoxifying Enzymes of Rhipicephalus Microplus (Acari: Ixodidae). Ticks Tick Borne Dis. 2022, 13, 101929. [Google Scholar] [CrossRef]
- Gamal, A.; Aboelhadid, S.M.; Abo El-Ela, F.I.; Abdel-Baki, A.-A.S.; Ibrahium, S.M.; EL-Mallah, A.M.; Al-Quraishy, S.; Hassan, A.O.; Gadelhaq, S.M. Synthesis of Carvacrol-Loaded Invasomes Nanoparticles Improved Acaricide Efficacy, Cuticle Invasion and Inhibition of Acetylcholinestrase against Hard Ticks. Microorganisms 2023, 11, 733. [Google Scholar] [CrossRef]
- Si, H.; Xu, C.; Zhang, J.; Zhang, X.; Li, B.; Zhou, X.; Zhang, J. Licochalcone A: An Effective and Low-Toxicity Compound against Toxoplasma Gondii in Vitro and in Vivo. Int. J. Parasitol. Drugs Drug Resist. 2018, 8, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Theander, T.G.; Christensen, S.B.; Hviid, L.; Zhai, L.; Kharazmi, A. Licochalcone A, a New Antimalarial Agent, Inhibits in Vitro Growth of the Human Malaria Parasite Plasmodium Falciparum and Protects Mice from P. Yoelii Infection. Antimicrob. Agents Chemother. 1994, 38, 1470–1475. [Google Scholar] [CrossRef]
- Souza, R.L.; Gonçalves, U.O.; Badoco, F.R.; de Souza Galvão, L.; Santos, R.A.d.; de Carvalho, P.H.D.; de Carvalho, L.S.A.; da Silva Filho, A.A.; Veneziani, R.C.S.; Rodrigues, V.; et al. Licochalcone A Induces Morphological and Biochemical Alterations in Schistosoma mansoni Adult Worms. Biomed. Pharmacother. 2017, 96, 64–71. [Google Scholar] [CrossRef]
- Weng, Q.; Chen, L.; Ye, L.; Lu, X.; Yu, Z.; Wen, C.; Chen, Y.; Huang, G. Determination of licochalcone A in rat plasma by UPLC–MS/MS and its pharmacokinetics. Acta Chromatogr. 2019, 31, 262–265. [Google Scholar] [CrossRef]
- Egler, J.; Lang, F. Licochalcone A Induced Suicidal Death of Human Erythrocytes. Cell. Physiol. Biochem. 2015, 37, 2060–2070. [Google Scholar] [CrossRef] [PubMed]
- Silva, L.M.; Marconato, D.G.; Nascimento da Silva, M.P.; Barbosa Raposo, N.R.; de Faria Silva Facchini, G.; Macedo, G.C.; de Sá Teixeira, F.; Barbosa da Silveira Salvadori, M.C.; de Faria Pinto, P.; de Moraes, J.; et al. Licochalcone A-Loaded Solid Lipid Nanoparticles Improve Antischistosomal Activity in Vitro and in Vivo. Nanomedicine 2021, 16, 1641–1655. [Google Scholar] [CrossRef] [PubMed]
- Mokbel, K.E.-D.M.; Baiuomy, I.R.; Sabry, A.E.-H.A.; Mohammed, M.M.; El-Dardiry, M.A. In Vivo Assessment of the Antischistosomal Activity of Curcumin Loaded Nanoparticles versus Praziquantel in the Treatment of Schistosoma mansoni. Sci. Rep. 2020, 10, 15742. [Google Scholar] [CrossRef]
- Lima, T.C.; Magalhães, L.G.; Paula, L.A.d.L.; Cunha, W.R.; Januário, A.H.; Pauletti, P.M.; Bastos, J.K.; Mnuquian, H.A.; Forim, M.R.; Morais-Urano, R.P.; et al. In Vivo Schistosomicidal Activity of (±)-Licarin A-Loaded Poly(ε-Caprolactone) Nanoparticles. Exp. Parasitol. 2022, 241, 108357. [Google Scholar] [CrossRef]
- Rehman, A.; Ullah, R.; Gupta, D.; Khan, M.A.H.; Rehman, L.; Beg, M.A.; Khan, A.U.; Abidi, S.M.A. Generation of Oxidative Stress and Induction of Apoptotic like Events in Curcumin and Thymoquinone Treated Adult Fasciola Gigantica Worms. Exp. Parasitol. 2020, 209, 107810. [Google Scholar] [CrossRef]
- de Paula Aguiar, D.; Brunetto Moreira Moscardini, M.; Rezende Morais, E.; Graciano de Paula, R.; Ferreira, P.M.; Afonso, A.; Belo, S.; Tomie Ouchida, A.; Curti, C.; Cunha, W.R.; et al. Curcumin Generates Oxidative Stress and Induces Apoptosis in Adult Schistosoma mansoni Worms. PLoS ONE 2016, 11, e0167135. [Google Scholar] [CrossRef]
- Morais, E.R.; Oliveira, K.C.; Magalhães, L.G.; Moreira, É.B.C.; Verjovski-Almeida, S.; Rodrigues, V. Effects of Curcumin on the Parasite Schistosoma mansoni: A Transcriptomic Approach. Mol. Biochem. Parasitol. 2013, 187, 91–97. [Google Scholar] [CrossRef]
- de Castro Levatti, E.V.; Costa-Silva, T.A.; Morais, T.R.; Fernandes, J.P.S.; Lago, J.H.G.; Tempone, A.G. Lethal Action of Licarin A Derivatives in Leishmania (L.) Infantum: Imbalance of Calcium and Bioenergetic Metabolism. Biochimie 2023, 208, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Meleti, V.R.; Esperandim, V.R.; Flauzino, L.G.B.; Prizantelli, A.H.; Paula, L.A.d.L.; Magalhães, L.G.; Cunha, W.R.; Laurentiz, R.d.S.; Pissurno, A.P.d.R.; Nanayakkara, N.P.D.; et al. (±)-Licarin A and Its Semi-Synthetic Derivatives: In Vitro and in Silico Evaluation of Trypanocidal and Schistosomicidal Activities. Acta Trop. 2020, 202, 105248. [Google Scholar] [CrossRef]
- Néris, P.L.N.; Caldas, J.P.A.; Rodrigues, Y.K.S.; Amorim, F.M.; Leite, J.A.; Rodrigues-Mascarenhas, S.; Barbosa-Filho, J.M.; Rodrigues, L.C.; Oliveira, M.R. Neolignan Licarin A Presents Effect against Leishmania (Leishmania) major Associated with Immunomodulation in Vitro. Exp. Parasitol. 2013, 135, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Cabral, M.M.O.; Barbosa-Filho, J.M.; Maia, G.L.A.; Chaves, M.C.O.; Braga, M.V.; De Souza, W.; Soares, R.O.A. Neolignans from Plants in Northeastern Brazil (Lauraceae) with Activity against Trypanosoma cruzi. Exp. Parasitol. 2010, 124, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, X.; Zoulikha, M.; Boafo, G.F.; Magar, K.T.; Ju, Y.; He, W. Multifunctional Nanoparticle-Mediated Combining Therapy for Human Diseases. Signal Transduct. Target. Ther. 2024, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Hou, Y.; Huang, J.; Pang, Y.; Ruan, C.; Wu, W.; Xu, C.; Zhang, H.; Yin, L.; He, W. Cytosolic Delivery of the Immunological Adjuvant Poly I:C and Cytotoxic Drug Crystals via a Carrier-Free Strategy Significantly Amplifies Immune Response. Acta Pharm. Sin. B. 2021, 11, 3272–3285. [Google Scholar] [CrossRef]
- Koklesova, L.; Jakubikova, J.; Cholujova, D.; Samec, M.; Mazurakova, A.; Šudomová, M.; Pec, M.; Hassan, S.T.S.; Biringer, K.; Büsselberg, D.; et al. Phytochemical-based nanodrugs going beyond the state-of-the-art in cancer management—Targeting cancer stem cells in the framework of predictive, preventive, personalized medicine. Front. Pharmacol. 2023, 14, 1121950. [Google Scholar] [CrossRef]
Drug | Mechanism of Action | Advantages | Disadvantages | Ref. |
---|---|---|---|---|
AmpB (Leishmanicidal) | The drug interacts with ergosterol, the main membrane sterol of the parasite, forming pores in the plasma membrane, changing the permeability to ions and metabolites, and generating reactive oxygen species (ROS). | Amp B has an excellent cure rate (~100%) at a dose of 0.75–1 mg/kg for 15–20 intravenous infusions daily or every other day for visceral leishmaniasis (VL). | It causes severe nephrotoxicity and hematological toxicity, hemolysis, liver damage, nausea, and fever. Resistance has been found in several Leishmania strains and clinical isolates. | [10,11,12,13,14] |
MTF (Leishmanicidal) | Interferes with membrane lipids and mitochondrial function of the parasite. | MTF is the only oral drug approved for the treatment of both VL and cutaneous leishmaniasis (CL). 77% efficiency in CL. | Causes gastrointestinal intolerance and teratogenicity in pregnant women. Resistance in clinical isolates. Unaffordable. | [13,15,16,17,18] |
PNT (Trypanocidal) | The drug accumulates in very high concentrations in the mitochondria of the trypanosome, where it binds to DNA in the kinetoplast, inhibiting both replication and transcription. | PNT has therapeutic effects in early-stage human African trypanosomiasis (HAT). | PNT is only used to treat early-stage trypanosomiasis caused by Trypanosoma brucei gambiense. PNT resistance. | [19,20] |
Mel B (Trypanocidal) | Mel B is rapidly metabolized to melarsen oxide. Melarsen oxide can cause loss of parasite motility. Mel B can form a Mel T complex. Mel T is a competitive inhibitor of the antioxidant enzyme trypanothione reductase. | Mel B displays no toxic effect on the optic nerve. Mel B is the only drug effective in stage II of T. b. rhodesiense sleeping sickness. | Causes reactive encephalopathy that can be fatal in up to 10% of treated patients. Resistance due to genetic modifications in the aquaglyceroporin 2 (AQP2) gene. | [21,22,23] |
NECT (Trypanocidal) | Eflornithine: irreversible ornithine decarboxylase inhibitor. | For the treatment of stage II HAT by T. b. gambiense: the cure rate for NECT is ~96.5%, compared to 9.6% for eflornithine. NECT requires a much simpler and less intensive treatment regimen than eflornithine monotherapy. | NECT is ineffective against T. b. rhodesiense and requires 14 days of systemic treatment with eflornithine. | [24,25,26,27] |
FX (Trypanocidal) | It produces a pronounced defect in DNA synthesis that reduces the parasite population in the S phase of the cell cycle. | Oral administration. Effective (99%) in the treatment of stage I and early stage II HAT (T. b. gambiense). | FX is only used to treat trypanosomiasis caused by T. b. gambiense. Moderate adverse events. | [25,26,28] |
BNZ (Trypanocidal) | BNZ is activated by trypanosomal nitroreductase I and produces glyoxal dialdehyde, which blocks normal parasite DNA/RNA function, increasing vulnerability to life-cycle oxidative damage. | Pretreatment with BNZ is associated with less advanced heart disease, lower prevalence of detectable parasitemia, and lower mortality in patients with chronic Chagas disease. | Not effective in chronic cases; has side effects and has been associated with resistance. | [29,30] |
NF (Trypanocidal) | NF, activated by nitroreductases, induces nitro anion radicals. These react with oxygen to produce free radicals that damage T. cruzi. They also inhibit DNA synthesis and promote DNA degradation. | NF is moderately effective in the acute phase of Chagas disease. | NF is not effective in chronic cases. Its high toxicity is associated with intrauterine developmental delay and reduced body weight in rat and mouse fetuses. In addition, it induces chromosomal aberrations in infected children. | [31] |
PZQ (Schistosomicidal) | PZQ causes altered calcium homeostasis, which in turn induces muscle contraction and alterations in the integument. | Effective against all Schistosoma species infecting humans, with cure rates often exceeding 80%. PZQ has some mild and transient side effects. | Ineffective against young forms of Schistosoma mansoni. Limited effect on granulomatous lesions. Significantly reduced susceptibility to PZQ in foci of endemicity. | [32,33] |
Combination Therapy/Monotherapy (mg/kg) | Model/Parasite | Parasite Load (%)/IC₅₀ (µM)/Footpad Thickness | CC50 (µM) | Major Outcome | Ref. |
---|---|---|---|---|---|
Lup (3) + AmpB(0.1) | BALB/c mice were infected with stationary-phase L. donovani promastigotes (i.v., 1 × 107/mouse). | Liver:89.22; spleen:83.58 | A suboptimal dose combination of Lup and AmpB significantly reduced hepatic and splenic parasite load, increased Th1 cytokines, and suppressed Th2 cytokines. | [51] | |
Lup (3) | Liver:6.85; spleen:4.38 | ||||
AmpB (0.1) | Liver:8.9; spleen:7.06 | ||||
UA (1.0) + AmpB (1.0) | Golden hamsters were inoculated with L. infantum (MHOM/BR/72/46) promastigotes (i.p., 2 × 107/hamster). | Liver:86.5; spleen:60.7 | Animals treated with UA (1.0 mg/kg) significantly reduced splenic and hepatic parasitism compared to AmpB (0.2 mg/kg) and combination therapy. | [52] | |
UA (1) | Liver:99.9; spleen:99.8 | ||||
AmpB (0.2) | 0% | ||||
Cye (20 µM) +MTF (4 µM) | L. donovani (MHOM/IN/83/AG83) promastigotes in the log phase were incubated (5 × 106 parasites). | > 50 | Cye demonstrated a better response when used in combination with low concentrations of MTF than with monotherapy using either Cye or MTF. | [53] | |
Cye | 49.49 ± 3.51 | ||||
MTF | 6.43 ± 0.50 | ||||
Cye (20 µM) +MTF (4 µM) | THP-1-differentiated macrophages were infected with L. donovani (1 macrophage:10 parasites) | >80 | |||
Cye (20 µM) | 50 | 65.33 ± 5.27 | |||
MTF (4 µM) | 80 | 20.39 ± 1.69 | |||
Crn+ AmpB | L. major (MRHO/IR/75/ER) promastigotes were incubated (1 × 106 parasites). | 229.6 ± 6.2 | The combination Crn + AmpB had a greater effect on inhibiting intra-macrophagic promastigote multiplication than monotherapy with Crn, by inhibiting L-ARG levels, potentiating immune response, and arresting cell cycle growth. | [54] | |
Crn | 382.7 ± 23 | ||||
AmpB | 293.5 ± 71 | ||||
Crn+ AmpB | J774 murine macrophages were infected with L. major promastigotes (1 macrophage:10 parasites). | 24.5 ± 6.4 (SI = 18.1) | 328.7 | ||
Crn | 95.8 ± 18 (SI = 20.2) | 1935.3 | |||
AmpB | 43.7 ± 13 (SI = 7.5) | 328.7 | |||
UA (1.0) + Glu (2.0) | BALB/c mice were infected with L. amazonensis promastigotes in the stationary phase of growth (2 × 107 parasites/mL) in the tail. | 97.6 | Treatment with Glu (2.0 mg/kg) alone showed no reduction in skin parasitism in infected BALB/c mice. However, when Glu (2.0 mg/kg) was combined with UA (1.0 mg/kg), a 97.6% decrease in skin parasitism was observed. A positive increase in IFN-γ production and a decrease in IL-4 production were also observed. | [52] | |
UA (1.0) | 96.2 | ||||
Glu (2.0) | 0 | ||||
Lim + Car 1:4 | Macrophages were incubated with L. major promastigotes in stationary phase (1 macrophage:10 parasites). | ~20.59 (SI = 19.0) | ~391.55 | Lim + Car 1:4 demonstrated no remarkable activity against L. major amastigotes and promastigotes. | [55] |
Lim | ~194.58 (SI = 5.9) | ~1166.55 | |||
Car | ~64.83 (SI = 9.6) | ~626.68 | |||
AmpB | ~0.42 (SI = 22.4) | ~9.46 | |||
Lim + Car 4:1 | L. major (MHOM/IL/80/Friendlin) promastigotes in the log phase were incubated (1 × 106 parasites). | ~47.12 (SI = 8.30) | |||
Lim | ~117.43 (SI = 9.93) | ||||
Car | ~38.61 (SI = 16.23) | ||||
AmpB | ~0.67 (SI = 14.11) | ||||
GT (10,000 µM) + Glu (750µM) | Macrophages were incubated with L. major promastigotes in stationary phase (1 macrophage:10 parasites). | >50% | GT + Glu combination exhibited antagonistic interaction against L. major amastigotes. | [56] | |
GT | 25,890 (SI = 3.17) | 82,100 | |||
Glu | 1280 (SI = 8.08) | 10,350 | |||
FA (250 mM) + Par-cream | BALB/c mice were injected with stationary-phase L. major (MHOM/SU/73/5ASKH) promastigotes (i.d., 106–107) in each hindfoot. | ND | The combined therapy of F (250 mM) + Par-cream in topical administration showed an antagonistic effect, with a greater plantar pad thickness observed than in the monotherapy application. | [57] | |
FA (250 mM) | 2.16 mm (footpad thickness) | ||||
P-cream | ~2.4 mm (footpad thickness) |
Nanosystem/Monotherapy (mg/kg) | Model/Parasite | Parasite Load (%)/IC50 (µg/mL) | Physicochemical Properties/Cytotoxicity | Major Outcome | Ref. |
---|---|---|---|---|---|
Lup-NCLs (5) | Golden hamsters were infected with L. infantum (MHOM/BR/72/46) promastigotes in the stationary phase of growth (i.p., 2 × 107). | Liver:99.9; spleen:99.9 | PS (nm) = 265.3 ± 4.6; PDI = 0.21 ± 0.011; ZP (mV) = −37.2 ± 0.84 ; EEn (%) = 84.04 ± 0.57 | Treatment with Lup-NLCs in infected hamsters significantly reduced the number of parasites in the spleen and liver, with effects comparable to those of AmpB, and also improved organ preservation and elevated anti-Leishmania IgG2 levels. | [61,63] |
Lup (5) | Liver:90.2; spleen:94.4 | Log Sw = −8.57; Log P = 7.6; PS (nm) = 266.3 ± 2.6; PDI = 0.16 ± 0.013; ZP (mV) = −26.5 ± 1.18 | |||
AmpB (5) | Liver: 99.7; spleen:99.4 | ||||
UA-NLCs (1.25) | Golden hamsters were infected with L. infantum (MHOM/BR/72/46) promastigotes (i.p., 2 × 107). | Liver:99.78; spleen:98.63 | PS (nm) = 266.3 ± 5.4; PDI = 0.18 ± 0.022; ZP (mV) = 29.26 ± 1.16; EEn (%) = 59.71 ± 0.2 | Administration of UA-NLC to infected hamsters significantly reduced the parasite load in the spleen and liver, outperforming free UA and AmpB, and enhanced the immune response without the renal toxicity observed with AmpB. | [64] |
UA (1.25) | Liver:90.04; spleen:74.20 | Log Sw = −7.23; Log P = 5.93 | |||
AmpB (5) | Liver:~99; spleen:~98 | AmpB increased AST, creatinine and urea concentrations | |||
Ar-SLNs (20) | BALB/c mice were inoculated with L. infantum (MCAN/IR/07/Moheb-gh) promastigotes in the stationary phase (i.v., 2.5 × 107). | Liver:84.7 ± 4. 9; spleen: 85.0 ± 3.1 | PS (nm) = 222.0 ± 14.0; PDI = 0.5; EE (%) = 75 | Ar-SLNs reduce parasite load by ~30% in a murine model of visceral leishmaniasis, improving over free Ar. | [65] |
Ar (20) | Liver:~60; spleen:~60 | ||||
4′,7-DHF-MWCNT | L. donovani (MHOM/IN/80/DD8) promastigotes in the log phase were incubated (1 × 106). | 0.05 ± 0.01 | ZP (mV) = 35; LE (%) = 84.28 ± 0.55 | The 4′,7-DHF-MWCNT formulation showed ~28-, 11-, and 38-fold higher activity on promastigotes, intracellular amastigotes, and amastigotes compared to administration of 4′,7-DHF alone. | [66,67] |
4′,7-DHF | 1.42 | Log Po/w = 2.40 ; LogS = −4.03 | |||
MWCNT | 0.93 ± 0.17 | ||||
4′,7-DHF-MWCNT | Macrophages were incubated with L. donovani promastigotes at a 1:10 ratio. | 0.08 ± 0.02 (SI = ~95) | CC₅₀ = 7.62 ± 0.70 μg/mL | ||
4′,7-DHF | 0.87 (SI = > 1000) | CC₅₀ = ~1131 μg/mL | |||
MWCNT | 5.15 ± 0.95 (SI = ~3) | CC₅₀ = 11.7 ± 1.7 μg/mL | |||
4′,7-DHF-MWCNT | L. donovani amastigotes in the log phase were incubated (1 × 106). | 0.07 ± 0.01 | |||
4′,7-DHF | 2.78 | ||||
MWCNT | 3.01 ± 0.23 | ||||
4′,7-DHF-AuNPs | L. donovani (MHOM/IN/80/DD8) promastigotes in the log phase were incubated (1 × 106). | 0.12 ± 0.02 | PS (nm) = 5.8 ± 0.1; PDI = 0.412; ZP (mV) = 60; EEn (%) = 80.79 ± 2.17 | The 4′,7-DHF-AuNPs formulation demonstrated ~12, 7, and 25 times more activity on promastigotes, intracellular amastigotes, and amastigotes than free 4′,7-DHF. | [67,68] |
Macrophages were incubated with L. donovani promastigotes at a 1:10 ratio. | 0.12 ± 0.36 (SI = 24) | CC₅₀ = 2.95 ± 0.46 µg/mL | |||
L. donovani amastigotes in the log phase were incubated (1 × 106). | 0.11 ± 0.02 | ||||
4′,7-DHF-AgNPs | L. donovani (MHOM/IN/80/DD8) promastigotes in the log phase were incubated (1 × 106). | 0.84 ± 0.14 | PS (nm) = 10; PDI = 0.62; ZP (mV) = 40; EEn (%) = 64.13 ± 0.83 | The 4′,7-DHF-AgNPs formulation demonstrated ~2, 4, and 11 times more activity on promastigotes, intracellular amastigotes, and amastigotes than free 4′,7-DHF. | |
Macrophages were incubated with L. donovani promastigotes at a 1:10 ratio. | 0.21 ± 0.85 (SI = 23) | CC₅₀ = 4.95 ± 0.69 µg/ml | |||
L. donovani amastigotes in the log phase were incubated (1 × 106). | 0.26 ± 0.58 | ||||
Chy-AuNPs | J774A.1 macrophages were infected with L. donovani (MHOM/IN/80/DD8) promastigotes at a 1:10 ratio. | 0.8 ± 0.08 | PS (nm) = 20 ± 0.14; LE (%) = 90.86 ± 0.86 | The Chy-AuNPs formulation exhibited ~3 times more activity on intracellular amastigotes than free Chy. | [69] |
Chy | 2.19 ± 0.41 | ||||
QTNE | L. donovani (clinical isolate) promastigotes were incubated (1 × 106). | 1.99 (48 h) | PS (nm) = 38.90 ± 3.33; PDI = 0.290 ± 0.010 | QTNE significantly reduced the number of treated promastigotes by directly enhancing ROS production, leading to death by late apoptosis/necrosis. | [70,71] |
QT | ~1.99 (48 h) | ||||
7,8-DHF-AuNPs | RAW264.7 macrophages were infected with L. donovani (MHOM/IN/1983/AG83) promastigotes. | ~6.35 | PS (nm) = 35 ± 7.4; PDI = 0.19 ± 0.01; ZP (mV) = 34.1; EE (%) = ~8–10 | The antileishmanial efficacy of 7,8-DHF-AuNPs is much higher than that of free 7,8-DHF. The 7,8-DHF-AuNPs were equally effective against sensitive and resistant strains of L. donovani. Treatment with 7,8-DHF-AuNPs inhibits arginase. | [72,73] |
7,8-DHF | ~14.49 | Water solubility (μg/mL) = 7.12; bioaccessibility (%) = 18.06 | |||
7,8-DHF-AuNPs | L. donovani promastigotes were incubated in log phase (1 × 106) | ~11.69 | |||
7,8-DHF | ~35.59 | ||||
7,8-DHF-AuNPs | AmpB-resistant clinical isolate of L. donovani. | ~10.16 | |||
7,8-DHF | ~38.13 | ||||
7,8-DHF-AuNPs | SAG-resistant clinical isolate of L. donovani. | ~8.89 | |||
7,8-DHF | ~40.67 |
Nanosystem/Monotherapy (mg/kg) | Model/Parasite | Dead (%)/IC50 (µg/mL) | Lesion Size (mm) | Physicochemical Properties/Cytotoxicity | Major outcome | Ref. |
---|---|---|---|---|---|---|
4NC-beeswax-CONPs | Peritoneal macrophages were infected with L. amazonensis (MHOM/BR/1989/166MJO) promastigotes at a 1:10 ratio. | 4.98 μM (SI > 10) | CC50 => 50 μM. | 4NC-beeswax-CONPs has a better SI than free 4NC and reduces the number of intracellular amastigotes by increasing proinflammatory mediators and microbicidal mediators (TNF-α, NO and ROS). | [92] | |
4NC | 4.04 μM (SI = 2.16) | CC50 = 8.73 μM | ||||
* BA-KNPs (20) | L. major promastigotes. | 88% | PS (nm) = 124 ± 14; PDI = 0.3 ± 0.1; ZP (mV) = 6.5 ± 1; LE(%) = 93 | BA-KNPs demonstrated significant lethal effects against L. major promastigotes and intracellular amastigotes in vitro similar to AmpB-KNPs and greater than free BA. | [6,41] | |
* BA (20) | ~60% | Solubility in water = 0.02 μg/mL | ||||
* Amp-KNPs (20) | 89% | PS (nm) = 112 ± 15; PDI = 0.45 ± 0.15; ZP (mV) = 8 ± 1.5; LE (%) = 90 | ||||
* BA-KNPs (20) | Peritoneal macrophages infected with L. major promastigotes. | ~81% | ||||
* BA (20) | ~65% | |||||
* AmpB-KNPs (20) | ~81% | |||||
Li-ZNPs | L. major (MHOM/TM/82/Lev) promastigotes were incubated in the log phase (1 × 105/mL). | 53.1 | PS (nm) = 105; ZP (mV) = 28.3 | Li-ZNPs are more effective than the common drug Glu against CL in mice, reducing lesion size and stimulating cellular immunity through apoptosis and upregulation of proinflammatory cytokines. In addition, they have the potential to reduce oxidative stress and increase antioxidant activity. | [93] | |
Glu | 94.3 | |||||
Li-ZNPs | J774-A1 macrophages were infected with L. major promastigotes at a 1:10 ratio. | 22.6 (SI = 12.35) | CC₅₀ = 279.3 μg/mL | |||
Glu | 30.3 (SI = 16.4) | CC₅₀ = 496.3 μg/mL | ||||
Li-ZNPs-Glu (15) | BALB/c mice were infected with L. major promastigotes (SQ., 106 parasites/mL) in the tail. | 0 | ||||
Li-ZNPs (25) | <5 | |||||
Glu (15) | <5 | |||||
RsvNE | L. major (MRHO/IR/75/ER) promastigotes were incubated in the log phase (105/mL) | 35.71 | PS (nm) = 110.1 ± 14 nm; PDI = 0.23; ZP (mV) = −48.7 | In vivo RsvNE was less effective than free Rsv after 12 h, but in a 21-day study, it reduced lesion size more effectively than the negative control, showing better long-term in vivo efficacy. | [40,94] | |
Rsv | 16.23 | Solubility in water (μg/mL) = 21; PS (nm) = 432.7 ± 26; ZP (mV) = −12.1 | ||||
RsvNE (20) | BALB/c mice were infected with L. major promastigotes (SQ, 1.6 × 106 parasites/mL) in the tail. | 0 | ||||
Rsv (20) | <2 | |||||
PBS | ~7.5 | |||||
Cur-AuNPs | L. major (MRHO/IR/75/ER) promastigotes were incubated in the stationary phase (2 × 106 parasites/mL). | 29.89 | PS (nm) = 22.2 ± 12.7 nm | Cur-AuNPs inhibited parasite proliferation less effectively than AmpB but without significant toxicity. In addition, they reduced inflammation in infected mice, achieving similar efficacy to AmpB, in part by inducing a Th1 response. | [95] | |
AmpB | <1.1 | CC₅₀ = 29.80 μg/mL | ||||
Cur-AuNPs | J774-A1 macrophages were infected with L. major promastigotes at a 1:10 ratio. | 54.04 | Cell viability (%) => 90 | |||
AmpB | 2.4 | |||||
* Cur-AuNPs (60) | BALB/c mice were infected with promastigotes (SQ). | <0.5 | ||||
AmpB (8) | <0.5 | |||||
* QT-Phys (400) | L. major (MRHO/IR/75/ER) promastigotes were incubated (1 × 105 parasites/mL). | 100% | PS (nm) = ~88; EEn (%) = ~96.33 | QT-Phys eliminated 100% of the parasites and cured lesions in 28 days with no toxicity. | [96] | |
* QT-Phys (400) | BALB/c mice were infected with L. major promastigotes (i.d., 106 parasites/mL) in the tail. | 0 | Cell viability (%) = 96.33 |
Nanosystem/Monotherapy (mg/kg) | Model/Parasite | IC50 (µg/mL)/Lesion size | Physicochemical Properties/Cytotoxicity | Major Outcome | Ref. |
---|---|---|---|---|---|
MTF-Apg-SGNTs | L. mexicana (MNYC/BZ/62/M379) promastigotes were incubated in the stationary phase (2 × 106 cells/well). | 1.4 ± 0.18 | VS (nm) = 127 ± 1.2; PDI = 0.163; EE (%) = 76.5 ± 4.1/93.3 ± 3.6 | MTF-Apg-SGNTs exhibited higher activity on both promastigotes and intracellular amastigotes than Apg-NTs and free Apg and displayed higher EE. | [120] |
Apg-NTs | 8.6 ± 0.97 | VS (nm) = 254 ± 2.4; PDI = 0.125; EE (%) = 81.6 ± 4.7 | |||
Apg | 9.8 ± 0.94 | ||||
MTF-Cur-SGNTs | 8.7 ± 0.98 | VS (nm) = 139 ± 2.8; PDI = 0.193; EE (%) = 79.7 ± 4.3/85.3 ± 3.7 | |||
Cur-NTs | 28.7 ± 2.11 | VS (nm) = 284 ± 2.2; PDI = 0.132; EE (%) = 85.3 ± 4.5 | |||
Cur | 36.3 ± 2.13 | ||||
MTF-Ltl-SGNTs | 8.4 ± 1.61 | VS (nm) = 133 ± 1.5; PDI = 0.154; EE (%) = 77.5 ± 3.7/87.6 ± 3.2 | |||
Ltl-NTs | 30.5 ± 2.09 | VS (nm) = 267 ± 1.4; PDI = 0.137; EE (%) = 87.1 ± 4.2 | |||
Ltl | 32.8 ± 2.35 | ||||
MTF-QT-SGNTs | 8.4 ± 1.61 | VS (nm) = 131 ± 2.1; PDI = 0.186; EE (%) = 77.3 ± 4.1/89.3 ± 4.7 | |||
QT-NTs | 35.4 ± 2.87 | VS (nm) = 269 ± 1.8; PDI = 0.183; EE (%) = 88.7 ± 4.4 | |||
QT | 41.4 | ||||
MTF-Apg-SGNTs | Bone marrow-derived macrophages were infected with L. mexicana promastigotes at a 1:10 ratio. | 0.6 ± 0.08 | |||
Apg-NTs | 4.5 ± 0.37 | ||||
Apg | 6.7 ± 0.44 | ||||
MTF-Cur-SGNTs | 1.9 ± 0.19 | ||||
Cur-NTs | 6.8 ± 0.65 | ||||
Cur | 9.8 ± 0.71 | ||||
MTF-Ltl-SGNTs | 2.9 ± 0.29 | ||||
Ltl-NTs | 10.8 ± 1.41 | ||||
Ltl | 11.5 ± 1.33 | ||||
MTF-QT-SGNTs | 2.3 ± 0.27 | ||||
QT-NTs | 10.4 ± 1.71 | ||||
QT | 13.8 ± 1.57 | ||||
NTZ-QT-NTs | L. tropica promastigotes were incubated in the stationary phase (1 × 106 parasites/mL). | 3.15 ± 0.89 | PS (nm) = 210.90 ± 3.67 ; PDI = 0.16 ± 0.009; ZP (mV) = −15.1 ± 1.48; EE (%) = 85 ± 0.02; CC₅₀ = 71.95 ± 3.32 μg/mL | NTZ-QT-NTs demonstrated superior efficacy to QT-NTs and QT dispersion, being ~4.73 and 13.87 times more effective, respectively, in in vitro studies. In mice, the use of NTZ-QT-NTs reduced lesion size ~15 times more than the exclusive use of NTZ-QT-Gel. | [121] |
NTZ-NTs | 8.35 ± 0.95 | ||||
QT-NTs | 14.91 ± 1.09 | ||||
NTZ-QT dispersion | 19.66 ± 1.17 | CC₅₀ = 49.77 ± 2.15 μg/mL | |||
NTZ dispersion | 29.67 ± 1.43 | ||||
QT dispersion | 43.72 ± 1.52 | ||||
NTZ-QT-NTS-Gel | BALB/c mice were infected with L. tropica promastigotes (SQ) in the right ear. | 0.2 ± 0.1 mm | Amount of NTZ and QT permeated = 202.85 μg/cm2 and 262.72 μg/cm2 | ||
NTZ-QT-Gel | 3.1 ± 0.3 mm | Amount of NTZ and QT permeated = 40.54 μg/cm2 and 59.37 μg/cm2 | |||
Untreated control | 7.9 ± 0.6 mm |
Combination therapy/Monotherapy (μM) | Parasite | EC50 (µM)/Dead (%) | Major Outcomes | Ref. |
---|---|---|---|---|
CD24-Cur | T.b.brucei 449 cell line | 4.85 ± 0.02 (SI > 14.4) | CD24-Cur demonstrated superior antitrypanosomal activity compared to free CD24, along with greater selectivity. | [132] |
Cur | 3.12 ± 0.43 (SI > 22.4) | |||
CD24 | 10.1 ± 0.5 (SI > 6.9) | |||
RK-52-Cur | 4.64 ± 0.35 | RK-52-Cur did not result in a significant enhancement in activity compared to the free RK-52. | [133] | |
Cur | 3.12 ± 0.43 | |||
RK-52 | 2.33 ± 0.29 | |||
PZQ-Rsv (100) | S. mansoni NTS were incubated (50–100 parasites/well) | 81.0 ± 5.2 | The combination of PZQ or As with Rsv enhanced the antischistosomal effect by 60% and 30%, respectively, compared to a single treatment. | [134] |
Rsv (100) | 30.0 ± 1.6 | |||
PZQ (100) | 56.9 ± 2.5 | |||
As-Rsv (100) | 99.9 ± 0.1 | |||
As (100) | 70.0 ± 3.8 |
Nanosystem/Monotherapy (mg/kg) | Model | Burden Worms (%) | Egg Burden (%) | Physicochemical Properties/Biochemical Parameters/Cytotoxicity | Major Outcomes | Ref. |
---|---|---|---|---|---|---|
CvNE (200) | Mice were infected with S. mansoni cercariae (SQ, 80 parasites)—21 days post-infection (immature stage). | 86.4 | Feces = 90.1 | PS (nm) = 124 ± 0.8; PDI = 0.20 ± 0.01; ZP (mV) = −26.4 ± 0.59; cell viability (%) =≥ 95 | Juvenile parasites appeared to be more sensitive to CVNE than adult stages, as a reduction of 86.6 and 54.7% in total worm burden was observed in prepatent and patent infection, respectively. | [158] |
Cv (200) | 30.3 | Feces = ~30 | ||||
PZQ (400) | 29.2 | Feces = 31.9 | ||||
CvNE (200) | Mice were infected with S. mansoni cercariae (SQ, 80 parasites)—42 days post-infection (adult stage) | 54.8 | Feces = 50.1 | |||
Cv (200) | <54.8 | Feces =< 50.1 | ||||
PZQ (400) | 84.2 | Feces = 90.9 | ||||
Lico A-SLNs (5) | Swiss mice were infected with S. mansoni cercariae (i.p., 70 parasites)—49–53 days post-infection (adult stage) | 52.9 | Intestinal: immature = 50.8; mature = 38 | PS (nm) = 101.1 ± 1.8; PDI = 0.17 ± 0.01; ZP (mV) = −32.34 ± 2.9; EE (%) = 98.33; CC50 (μM) = 956.2. | L-SLNs improved in vivo antischistosomal effects compared with free Lico A. L-SLNs possess lower cytotoxic compared with free Lico A. | [166] |
Lico A (5) | 51.2 | Intestinal: Immature = 45.5; Mature =< 38 | CC₅₀ (μM) = 20.7; oral bioavailability (%) = 3.3 | |||
Cur- AuNPs (400) | C57BL/6 mice were infected with S. mansoni cercariae (SQ, 120 ± 10 parasites)—21–35 days post-infection | 42.42 | Intestinal = 77.26; hepatic = 83.85 | AST (IU/L) = 31.75 ± 1.28; ALT (IU/L) = 28.88 ± 1.55 | Cur-AuNPs-PZQ more efficiently reduced worm and egg burdens in the intestine and liver of mice than Cur monotherapy and were also less toxic than PZQ | [167] |
Cur (400) | 45.45 | Intestinal = 37.05; hepatic = 34.12 | AST (IU/L) = 46.75 ± 5.26; ALT (IU/L) = 46.25 ± 3.62 | |||
Cur-AuNPs-PZQ (400) | 97.43 | Intestinal = 73.77; hepatic = 46.67 | AST (IU/L) = 31 ± 1.85; ALT (IU/L) = 30.5 ± 2.08 | |||
Cur-PZQ (400) | 73.75 | Intestinal = 42.95; hepatic = 54.92 | AST (IU/L) = 47.13 ± 3.72; ALT (IU/L) = 41.13 ± 2.42 | |||
PZQ (500) | 72.72 | Intestinal = 92.98; hepatic = 93.60. | AST (IU/L) = 51.63 ± 2.72; ALT (IU/L) = 47.13 ± 4.22 | |||
Lic-A-PCLs (20) | BALB/c mice were infected with S. mansoni LE cercariae (80 parasites) in the tail—49 days post-infection (adult stage) | 56.3 | Hepatic = 27.1; spleen = 95. | PS (nm) = 131.4; ZP (mV) = −39.9 | Lic-A-PCLs reduced the blood worm burden similarly to free Lic-A but to a lesser extent than PZQ. | [168] |
Lic-A-PCLs (200) | 41.7 | Hepatic = 25.21; Spleen = 65 | PS (nm) = 233.2; ZP (mV) = −39.9 | |||
Lic-A (200) | 44.2 | Hepatic = 42; spleen = 96.6 | ||||
PZQ (400) | 85 | Hepatic = 24.21; spleen = 92.7. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soto-Sánchez, J.; Garza-Treviño, G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics 2024, 16, 1239. https://doi.org/10.3390/pharmaceutics16101239
Soto-Sánchez J, Garza-Treviño G. Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics. 2024; 16(10):1239. https://doi.org/10.3390/pharmaceutics16101239
Chicago/Turabian StyleSoto-Sánchez, Jacqueline, and Gilberto Garza-Treviño. 2024. "Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases" Pharmaceutics 16, no. 10: 1239. https://doi.org/10.3390/pharmaceutics16101239
APA StyleSoto-Sánchez, J., & Garza-Treviño, G. (2024). Combination Therapy and Phytochemical-Loaded Nanosytems for the Treatment of Neglected Tropical Diseases. Pharmaceutics, 16(10), 1239. https://doi.org/10.3390/pharmaceutics16101239