High-Throughput Drug Stability Assessment via Biomimetic Metalloporphyrin-Catalyzed Reactions Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. LA-REIMS Well Plate Reader
2.4. HPLC-UV-MS Measurements
3. Results and Discussion
3.1. Experimental Methodology
3.2. Biomimetic Sample Evaluation and Data Acquisition
3.3. Regression Comparison of Results Obtained Using LA-REIMS and LC-UV-MS
3.4. Solvent Requirements and Measurement Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Williamson, B.; Wilson, C.; Dagnell, G.; Riley, R.J. Harmonised High Throughput Microsomal Stability Assay. J. Pharmacol. Toxicol. Methods 2017, 84, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Obach, R.S.; Baxter, J.G.; Liston, T.E.; Silber, B.M.; Jones, B.C.; MacIntyre, F.; Rance, D.J.; Wastall, P. The Prediction of Human Pharmacokinetic Parameters from Preclinical and in Vitro Metabolism Data. J. Pharmacol. Exp. Ther. 1997, 283, 46–58. [Google Scholar] [PubMed]
- Kiani, A.K.; Pheby, D.; Henehan, G.; Brown, R.; Sieving, P.; Sykora, P.; Marks, R.; Falsini, B.; Capodicasa, N.; Miertus, S.; et al. Ethical Considerations Regarding Animal Experimentation. J. Prev. Med. Hyg. 2022, 63, E255. [Google Scholar] [CrossRef]
- The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. (Eds.) Springer: Cham, Switzerland, 2015; ISBN 978-3-319-15791-7. [Google Scholar]
- Asha, S.; Vidyavathi, M. Role of Human Liver Microsomes in in Vitro Metabolism of Drugs-a Review. Appl. Biochem. Biotechnol. 2010, 160, 1699–1722. [Google Scholar] [CrossRef]
- Groves, J.T.; Nemo, T.E.; Myers, R.S. Hydroxylation and Epoxidation Catalyzed by Iron-Porphine Complexes. Oxygen Transfer from Iodosylbenzene. J. Am. Chem. Soc. 1979, 101, 1032–1033. [Google Scholar] [CrossRef]
- Pereira, M.M.; Dias, L.D.; Calvete, M.J.F. Metalloporphyrins: Bioinspired Oxidation Catalysts. ACS Catal. 2018, 8, 10784–10808. [Google Scholar] [CrossRef]
- Balogh, G.T.; Keserû, G.M. Metalloporphyrin Mediated Biomimetic Oxidations. A Useful Tool for the Investigation of Cytochrome P450 Catalyzed Oxidative Metabolism. Arkivoc 2004, 2004, 124–139. [Google Scholar] [CrossRef]
- Bernadou, J.; Meunier, B. Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs. Adv. Synth. Catal. 2004, 346, 171–184. [Google Scholar] [CrossRef]
- Balogh, G.T.; Decsi, B.; Krammer, R.; Kenéz, B.; Ender, F.; Hergert, T.; Balogh-Weiser, D. Effect of Binding Linkers on the Efficiency and Metabolite Profile of Biomimetic Reactions Catalyzed by Immobilized Metalloporphyrin. Metabolites 2022, 12, 1269. [Google Scholar] [CrossRef]
- Decsi, B.; Krammer, R.; Hegedűs, K.; Ender, F.; Gyarmati, B.; Szilágyi, A.; Tőtős, R.; Katona, G.; Paizs, C.; Balogh, G.T.; et al. Liver-on-a-Chip–Magnetic Nanoparticle Bound Synthetic Metalloporphyrin-Catalyzed Biomimetic Oxidation of a Drug in a Magnechip Reactor. Micromachines 2019, 10, 668. [Google Scholar] [CrossRef]
- Wolak, M.; van Eldik, R. Mechanistic Studies on Peroxide Activation by a Water-Soluble Iron(III)–Porphyrin: Implications for O−O Bond Activation in Aqueous and Nonaqueous Solvents. Chem.–Eur. J. 2007, 13, 4873–4883. [Google Scholar] [CrossRef] [PubMed]
- Nam, W.; Han, H.J.; Oh, S.-Y.; Lee, Y.J.; Choi, M.-H.; Han, S.-Y.; Kim, C.; Woo, S.K.; Shin, W. New Insights into the Mechanisms of O−O Bond Cleavage of Hydrogen Peroxide and Tert-Alkyl Hydroperoxides by Iron(III) Porphyrin Complexes. J. Am. Chem. Soc. 2000, 122, 8677–8684. [Google Scholar] [CrossRef]
- Cunningham, I.D.; Danks, T.N.; Hay, J.N.; Hamerton, I.; Gunathilagan, S.; Janczak, C. Stability of Various Metalloporphyrin Catalysts during Hydrogen Peroxide Epoxidation of Alkene. J. Mol. Catal. Chem. 2002, 185, 25–31. [Google Scholar] [CrossRef]
- Smith, M.J.; Ivanov, D.P.; Weber, R.J.M.; Wingfield, J.; Viant, M.R. Acoustic Mist Ionization Mass Spectrometry for Ultrahigh-Throughput Metabolomics Screening. Anal. Chem. 2021, 93, 9258–9266. [Google Scholar] [CrossRef]
- Wleklinski, M.; Loren, B.P.; Ferreira, C.R.; Jaman, Z.; Avramova, L.; Sobreira, T.J.P.; Thompson, D.H.; Cooks, R.G. High Throughput Reaction Screening Using Desorption Electrospray Ionization Mass Spectrometry. Chem. Sci. 2018, 9, 1647–1653. [Google Scholar] [CrossRef]
- Wagner, A.; Zhang, J.; Liu, C.; Covey, T.R.; Olah, T.V.; Weller, H.N.; Shou, W.Z. Ultrahigh-Throughput and Chromatography-Free Bioanalysis of Polar Analytes with Acoustic Ejection Mass Spectrometry. Anal. Chem. 2020, 92, 13525–13531. [Google Scholar] [CrossRef]
- Winter, M.; Ries, R.; Kleiner, C.; Bischoff, D.; Luippold, A.H.; Bretschneider, T.; Büttner, F.H. Automated MALDI Target Preparation Concept: Providing Ultra-High-Throughput Mass Spectrometry–Based Screening for Drug Discovery. SLAS Technol. 2019, 24, 209–221. [Google Scholar] [CrossRef]
- Pu, F.; Radosevich, A.J.; Sawicki, J.W.; Chang-Yen, D.; Talaty, N.N.; Gopalakrishnan, S.M.; Williams, J.D.; Elsen, N.L. High-Throughput Label-Free Biochemical Assays Using Infrared Matrix-Assisted Desorption Electrospray Ionization Mass Spectrometry. Anal. Chem. 2021, 93, 6792–6800. [Google Scholar] [CrossRef]
- Wu, X.; Wang, J.; Tan, L.; Bui, J.; Gjerstad, E.; McMillan, K.; Zhang, W. In Vitro ADME Profiling Using High-Throughput RapidFire Mass Spectrometry: Cytochrome P450 Inhibition and Metabolic Stability Assays. SLAS Discov. 2012, 17, 761–772. [Google Scholar] [CrossRef]
- Balog, J.; Szaniszlo, T.; Schaefer, K.-C.; Denes, J.; Lopata, A.; Godorhazy, L.; Szalay, D.; Balogh, L.; Sasi-Szabo, L.; Toth, M.; et al. Identification of Biological Tissues by Rapid Evaporative Ionization Mass Spectrometry. Anal. Chem. 2010, 82, 7343–7350. [Google Scholar] [CrossRef]
- Wijnant, K.; Van Meulebroek, L.; Pomian, B.; De Windt, K.; De Henauw, S.; Michels, N.; Vanhaecke, L. Validated Ultra-High-Performance Liquid Chromatography Hybrid High-Resolution Mass Spectrometry and Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry for Salivary Metabolomics. Anal. Chem. 2020, 92, 5116–5124. [Google Scholar] [CrossRef] [PubMed]
- Cameron, S.J.S.; Perdones-Montero, A.; Van Meulebroek, L.; Burke, A.; Alexander-Hardiman, K.; Simon, D.; Schaffer, R.; Balog, J.; Karancsi, T.; Rickards, T.; et al. Sample Preparation Free Mass Spectrometry Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry: Applications to Microbiology, Metabolic Biofluid Phenotyping, and Food Authenticity. J. Am. Soc. Mass Spectrom. 2021, 32, 1393–1401. [Google Scholar] [CrossRef] [PubMed]
- Paraskevaidi, M.; Cameron, S.J.S.; Whelan, E.; Bowden, S.; Tzafetas, M.; Mitra, A.; Semertzidou, A.; Athanasiou, A.; Bennett, P.R.; MacIntyre, D.A.; et al. Laser-Assisted Rapid Evaporative Ionisation Mass Spectrometry (LA-REIMS) as a Metabolomics Platform in Cervical Cancer Screening. EBioMedicine 2020, 60, 103017. [Google Scholar] [CrossRef] [PubMed]
- Molnár, A.; Horkovics-Kováts, G.S.; Kucsma, N.; Szegő, Z.; Tauber, B.; Egri, A.; Szkupien, Z.; Deák, B.A.; McKenzie, J.S.; Thuróczy, J.; et al. Characterisation of Canine and Feline Breast Tumours, Their Metastases, and Corresponding Primary Cell Lines Using LA-REIMS and DESI-MS Imaging. Int. J. Mol. Sci. 2024, 25, 7752. [Google Scholar] [CrossRef]
- Attwa, M.W.; Bakheit, A.H.; Abdelhameed, A.S.; Kadi, A.A. An Ultrafast UPLC–MS/MS Method for Characterizing the In Vitro Metabolic Stability of Acalabrutinib. Molecules 2023, 28, 7220. [Google Scholar] [CrossRef]
Technique | One Sample | 10 Samples (to Characterize a Drug) | 760 Samples (Whole Dataset) |
---|---|---|---|
HPLC-based | 15 mL 15 min | 150 mL 150 min | 11,550 mL 212.5 h |
UHPLC-based * | 0.3 mL 1 min | 3 mL 10 min | 231 mL ~13 h |
HTS LA-REIMS | 0.02 mL 8 s | 0.2 mL 80 s | 15.4 mL <1 h 42 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marton, A.; Mohácsi, Z.; Decsi, B.; Csillag, B.; Balog, J.; Schäffer, R.; Karancsi, T.; Balogh, G.T. High-Throughput Drug Stability Assessment via Biomimetic Metalloporphyrin-Catalyzed Reactions Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS). Pharmaceutics 2024, 16, 1266. https://doi.org/10.3390/pharmaceutics16101266
Marton A, Mohácsi Z, Decsi B, Csillag B, Balog J, Schäffer R, Karancsi T, Balogh GT. High-Throughput Drug Stability Assessment via Biomimetic Metalloporphyrin-Catalyzed Reactions Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS). Pharmaceutics. 2024; 16(10):1266. https://doi.org/10.3390/pharmaceutics16101266
Chicago/Turabian StyleMarton, András, Zsombor Mohácsi, Balázs Decsi, Balázs Csillag, Júlia Balog, Richard Schäffer, Tamás Karancsi, and György Tibor Balogh. 2024. "High-Throughput Drug Stability Assessment via Biomimetic Metalloporphyrin-Catalyzed Reactions Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS)" Pharmaceutics 16, no. 10: 1266. https://doi.org/10.3390/pharmaceutics16101266
APA StyleMarton, A., Mohácsi, Z., Decsi, B., Csillag, B., Balog, J., Schäffer, R., Karancsi, T., & Balogh, G. T. (2024). High-Throughput Drug Stability Assessment via Biomimetic Metalloporphyrin-Catalyzed Reactions Using Laser-Assisted Rapid Evaporative Ionization Mass Spectrometry (LA-REIMS). Pharmaceutics, 16(10), 1266. https://doi.org/10.3390/pharmaceutics16101266