Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Search Strategy
2.4. Literature Search Output
3. Fused Deposition Modeling Printing Principle and Setup
3.1. Creating the 3D Digital Pharmaceutical Dosage Form
3.2. Transforming 3D Model into a 3D Printer-Readable Version
3.3. Fixing Process Parameters and Slicing the Model Layer by Layer
3.4. Fabrication and Formulation of Filaments
3.5. Printing and Evaluation of the Final Printed Dosage Form
4. Incorporating Active Pharmaceutical Ingredients
4.1. Solvent Immersion
4.2. Hot Melt Extrusion (HME) Coupled with FDM
4.3. Print and Fill
5. Printing and Extrusion Parameters
5.1. Printing and Extrusion Temperature
5.2. Printing Speed
5.3. Nozzle Size
5.4. Printing Dimensions and Design
5.5. Infill Density
5.6. Infill Pattern
5.7. Shell Thickness
6. Materials for 3D Printing
6.1. API
6.2. Polymers
6.3. Plasticizers
6.4. Binders
6.5. Fillers
6.6. Lubricants
6.7. Release Modifiers
6.8. Disintegrants
6.9. Stabilizers
7. Dosage Forms with More than One API
8. Characterization
9. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
3PB | Three-Point Bend |
AFM | Atomic Force Microscopy |
AM | Additive Manufacturing |
API | Active pharmaceutical ingredient |
ASA | Acetylsalicylic acid |
CAD | Computer-Aided Design |
CAP | Cellulose acetate phthalate |
DDS | Drug Delivery System |
DSC | Differential scanning calorimetry |
EC | Ethyl cellulose |
EM | Enalapril malate |
EMA | European Medicines Agency |
EVA | Ethylene-vinyl acetate |
FDA | Food and Drug Administration |
FDM | Fused Deposition Modeling |
FT-IR | Fourier-Transform Infrared Spectroscopy |
GMP | Good Manufacturing Practice |
HCT | Hydrochlorothiazide |
HEC | Hydroxyethyl cellulose |
HME | Hot Melt Extrusion |
HPC | Hydroxypropyl cellulose |
HPLC | High-Performance Liquid Chromatography |
HPMC | Hydroxypropyl methylcellulose |
HPMCAS | Hydroxypropyl methylcellulose acetate succinate |
HPMCP | Hydroxypropyl methylcellulose phthalate |
MC | Methyl cellulose |
NIR | Near Infra-Red hyperspectral imaging technique |
OM | Optical Microscopy |
PCL | Poly(ε-caprolactone) |
PEG | Polyethylene glycol |
PEO | Polyethylene oxide |
PLA | Polylactic acid |
PRISMA | Preferred Reporting Items for Systematic Reviews and Meta-Analyses |
PVA | Polyvinyl alcohol |
PVP | Polyvinylpyrrolidone |
SEM | Scanning Electron Microscopy |
TGA | Thermogravimetric analysis |
TEM | Transmission Electron Microscopy |
UV | Ultraviolet–Visible Spectroscopy |
XRD | X-ray diffraction |
XRPD | X-ray Powder Diffractometry |
References
- Ginsburg, G.S.; Willard, H.F. Genomic and personalized medicine: Foundations and applications. Transl. Res. 2009, 154, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, M.A.; Collins, F.S. The Path to Personalized Medicine. N. Engl. J. Med. 2010, 363, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Reeves, S.; Pelone, F.; Harrison, R.; Goldman, J.; Zwarenstein, M. Interprofessional collaboration to improve professional practice and healthcare outcomes. Cochrane Database Syst. Rev. 2017, 2017, CD000072. [Google Scholar] [CrossRef]
- Tremblay, J.; Hamet, P. Role of genomics on the path to personalized medicine. Metabolism 2013, 62 (Suppl. S1), S2–S5. [Google Scholar] [CrossRef]
- Lafeber, M.; Grobbee, D.E.; Bots, M.L.; Thom, S.; Webster, R.; Rodgers, A.; Visseren, F.L.; Spiering, W. The Evening versus Morning Polypill Utilization Study: The TEMPUS rationale and design. Eur. J. Prev. Cardiol. 2014, 21, 425–433. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, J.; Yang, W.; Pang, J.; Zhang, W.; Chen, G.; Dong, X.; Zheng, Z.; Lin, W.; Feng, W.; et al. Warpage optimization and influence factors analysis of 3D printing personalized JJY tablets. Drug Dev. Ind. Pharm. 2020, 46, 388–394. [Google Scholar] [CrossRef]
- Aprecia Pharmaceuticals. Available online: www.aprecia.com (accessed on 24 March 2024).
- Spritam. Available online: www.spritam.com (accessed on 24 March 2024).
- Warsi, M.H.; Yusuf, M.; Al Robaian, M.; Khan, M.; Muheem, A.; Khan, S. 3D Printing Methods for Pharmaceutical Manufacturing: Opportunity and Challenges. Curr. Pharm. Des. 2018, 24, 4949–4956. [Google Scholar] [CrossRef]
- Azad, M.A.; Olawuni, D.; Kimbell, G.; Badruddoza, A.Z.M.; Hossain, S.; Sultana, T. Polymers for extrusion-based 3D printing of pharmaceuticals: A holistic materials–process perspective. Pharmaceutics 2020, 12, 124. [Google Scholar] [CrossRef]
- Goyanes, A.; Buanz, A.B.; Hatton, G.B.; Gaisford, S.; Basit, A.W. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets. Eur. J. Pharm. Biopharm. 2015, 89, 157–162. [Google Scholar] [CrossRef]
- Matić, J.; Alva, C.; Eder, S.; Reusch, K.; Paudel, A.; Khinast, J. Towards predicting the product quality in hot-melt extrusion: Pilot plant scale extrusion. Int. J. Pharm. X 2021, 3, 100084. [Google Scholar] [CrossRef]
- Oladeji, S.; Mohylyuk, V.; Jones, D.S.; Andrews, G.P. 3D printing of pharmaceutical oral solid dosage forms by fused deposition: The enhancement of printability using plasticised HPMCAS. Int. J. Pharm. 2022, 616, 121553. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, H.; Fernandes, Q.; Idoudi, S.; Basineni, R.; Billa, N. Status of Polymer Fused Deposition Modeling (FDM)-Based Three-Dimensional Printing (3DP) in the Pharmaceutical Industry. Polymers 2024, 16, 386. [Google Scholar] [CrossRef] [PubMed]
- Milliken, R.L.; Quinten, T.; Andersen, S.K.; Lamprou, D.A. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int. J. Pharm. 2024, 653, 123902. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.K.; Maniruzzaman, M.; Nokhodchi, A. Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3D printing for personalised drug delivery. Pharmaceutics 2018, 10, 203. [Google Scholar] [CrossRef]
- Cunha-Filho, M.; Araújo, M.R.; Gelfuso, G.M.; Gratieri, T. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: A new approach for individualized therapy. Ther. Deliv. 2017, 8, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Kathuria, H.; Tan, J.J.Y.; Kang, L. 3D printed drug delivery and testing systems—A passing fad or the future? Adv. Drug Deliv. Rev. 2018, 132, 139–168. [Google Scholar] [CrossRef]
- Medication Safety in Polypharmacy. 2019. Available online: http://apps.who.int/bookorders (accessed on 20 May 2024).
- Robles-Martinez, P.; Xu, X.; Trenfield, S.J.; Awad, A.; Goyanes, A.; Telford, R.; Basit, A.W.; Gaisford, S. 3D printing of a multi-layered polypill containing six drugs using a novel stereolithographic method. Pharmaceutics 2019, 11, 274. [Google Scholar] [CrossRef]
- Sandler, N.; Preis, M. Printed Drug-Delivery Systems for Improved Patient Treatment. Trends Pharmacol. Sci. 2016, 37, 1070–1080, Erratum in Trends Pharmacol. Sci. 2017, 38, 317. [Google Scholar] [CrossRef]
- Goole, J.; Amighi, K. 3D printing in pharmaceutics: A new tool for designing customized drug delivery systems. Int. J. Pharm. 2016, 499, 376–394. [Google Scholar] [CrossRef]
- Healy, A.V.; Fuenmayor, E.; Doran, P.; Geever, L.M.; Higginbotham, C.L.; Lyons, J.G. Additive manufacturing of personalized pharmaceutical dosage forms via stereolithography. Pharmaceutics 2019, 11, 645. [Google Scholar] [CrossRef]
- Goyanes, A.; Madla, C.M.; Umerji, A.; Piñeiro, G.D.; Montero, J.M.G.; Diaz, M.J.L.; Barcia, M.G.; Taherali, F.; Sánchez-Pintos, P.; Couce, M.-L.; et al. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int. J. Pharm. 2019, 567, 118497. [Google Scholar] [CrossRef] [PubMed]
- Melocchi, A.; Uboldi, M.; Inverardi, N.; Briatico-Vangosa, F.; Baldi, F.; Pandini, S.; Scalet, G.; Auricchio, F.; Cerea, M.; Foppoli, A.; et al. Expandable drug delivery system for gastric retention based on shape memory polymers: Development via 4D printing and extrusion. Int. J. Pharm. 2019, 571, 118700. [Google Scholar] [CrossRef] [PubMed]
- Abaci, A.; Gedeon, C.; Kuna, A.; Guvendiren, M. Additive manufacturing of oral tablets: Technologies, materials and printed tablets. Pharmaceutics 2021, 13, 156. [Google Scholar] [CrossRef] [PubMed]
- Dumpa, N.; Butreddy, A.; Wang, H.; Komanduri, N.; Bandari, S.; Repka, M.A. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int. J. Pharm. 2021, 600, 120501. [Google Scholar] [CrossRef] [PubMed]
- Pyteraf, J.; Jamróz, W.; Kurek, M.; Szafraniec-Szczęsny, J.; Kramarczyk, D.; Jurkiewicz, K.; Justyna, K.-K.; Jacek, T.; Sebastian, W.; Marian, P. How to obtain the maximum properties flexibility of 3d printed ketoprofen tablets using only one drug-loaded filament? Molecules 2021, 26, 3106. [Google Scholar] [CrossRef]
- Galatas, A.; Hassanin, H.; Zweiri, Y.; Seneviratne, L. Additive manufactured sandwich composite/ABS parts for unmanned aerial vehicle applications. Polymers 2018, 10, 1262. [Google Scholar] [CrossRef]
- Fina, F.; Goyanes, A.; Gaisford, S.; Basit, A.W. Selective laser sintering (SLS) 3D printing of medicines. Int. J. Pharm. 2017, 529, 285–293. [Google Scholar] [CrossRef]
- Nasr, E.S.A.; Al-Ahmari, A.; Moiduddin, K. CAD Issues in Additive Manufacturing. In Comprehensive Materials Processing; Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Goyanes, A.; Robles Martinez, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm. 2015, 494, 657–663. [Google Scholar] [CrossRef]
- Long, J.; Gholizadeh, H.; Lu, J.; Bunt, C.; Seyfoddin, A. Application of Fused Deposition Modelling (FDM) Method of 3D Printing in Drug Delivery. Curr. Pharm. Des. 2016, 23, 433–439. [Google Scholar] [CrossRef]
- Norman, J.; Madurawe, R.D.; Moore, C.M.V.; Khan, M.A.; Khairuzzaman, A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv. Drug Deliv. Rev. 2017, 108, 39–50. [Google Scholar] [CrossRef]
- Moulton, S.E.; Wallace, G.G. 3-dimensional (3D) fabricated polymer based drug delivery systems. J. Control. Release 2014, 193, 27–34. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Fina, F.; Martorana, A.; Sedough, D.; Gaisford, S.; Basit, A.W. Development of modified release 3D printed tablets (printlets) with pharmaceutical excipients using additive manufacturing. Int. J. Pharm. 2017, 527, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Skowyra, J.; Pietrzak, K.; Alhnan, M.A. Fabrication of extended-release patient-tailored prednisolone tablets via fused deposition modelling (FDM) 3D printing. Eur. J. Pharm. Sci. 2015, 68, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Fukushige, K.; Ogawa, E.; Hayashi, N.; Ozeki, T. 3D printing factors important for the fabrication of polyvinylalcohol filament-based tablets. Biol. Pharm. Bull. 2017, 40, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Buanz, A.B.M.; Basit, A.W.; Gaisford, S. Fused-filament 3D printing (3DP) for fabrication of tablets. Int. J. Pharm. 2014, 476, 88–92. [Google Scholar] [CrossRef]
- Chokshi, R.; Zia, H. Hot-melt extrusion technique: A review. Iran. J. Pharm. Res. 2004, 3, 3–16. [Google Scholar]
- Awad, A.; Trenfield, S.J.; Gaisford, S.; Basit, A.W. 3D printed medicines: A new branch of digital healthcare. Int. J. Pharm. 2018, 548, 586–596. [Google Scholar] [CrossRef]
- Repka, M.A.; Majumdar, S.; Battu, S.K.; Srirangam, R.; Upadhye, S.B. Applications of hot-melt extrusion for drug delivery. Expert Opin. Drug Deliv. 2008, 5, 1357–1376. [Google Scholar] [CrossRef]
- Breitenbach, J. Melt extrusion: From process to drug delivery technology. Eur. J. Pharm. Biopharm. 2002, 54, 107–117. [Google Scholar] [CrossRef]
- Zhang, J.; Feng, X.; Patil, H.; Tiwari, R.V.; Repka, M.A. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int. J. Pharm. 2017, 519, 186–197. [Google Scholar] [CrossRef]
- Kushwaha, S. Application of Hot Melt Extrusion in Pharmaceutical 3D Printing. J. Bioequivalence Bioavailab. 2018, 10, 54–57. [Google Scholar] [CrossRef]
- Patil, H.; Tiwari, R.V.; Repka, M.A. Hot-Melt Extrusion: From Theory to Application in Pharmaceutical Formulation. AAPS PharmSciTech 2016, 17, 20–42. [Google Scholar] [CrossRef] [PubMed]
- Pietrzak, K.; Isreb, A.; Alhnan, M.A. A flexible-dose dispenser for immediate and extended release 3D printed tablets. Eur. J. Pharm. Biopharm. 2015, 96, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Chang, H.; Sedough, D.; Hatton, G.B.; Wang, J.; Buanz, A.; Gaisford, S.; Basit, A.W. Fabrication of controlled-release budesonide tablets via desktop (FDM) 3D printing. Int. J. Pharm. 2015, 496, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Jani, R.; Patel, D. Hot melt extrusion: An industrially feasible approach for casting orodispersible film. Asian J. Pharm. Sci. 2014, 10, 292–305. [Google Scholar] [CrossRef]
- Palekar, S.; Nukala, P.K.; Mishra, S.M.; Kipping, T.; Patel, K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int. J. Pharm. 2019, 556, 106–116. [Google Scholar] [CrossRef]
- Gioumouxouzis, C.I.; Baklavaridis, A.; Katsamenis, O.L.; Markopoulou, C.K.; Bouropoulos, N.; Tzetzis, D.; Fatouros, D.G. A 3D printed bilayer oral solid dosage form combining metformin for prolonged and glimepiride for immediate drug delivery. Eur. J. Pharm. Sci. 2018, 120, 40–52. [Google Scholar] [CrossRef]
- Rycerz, K.; Stepien, K.A.; Czapiewska, M.; Arafat, B.T.; Habashy, R.; Isreb, A.; Peak, M.; Alhnan, M.A. Embedded 3D printing of novel bespoke soft dosage form concept for pediatrics. Pharmaceutics 2019, 11, 630. [Google Scholar] [CrossRef]
- Sadia, M.; Isreb, A.; Abbadi, I.; Isreb, M.; Aziz, D.; Selo, A.; Timmins, P.; Alhnan, M.A. From ‘fixed dose combinations’ to ‘a dynamic dose combiner’: 3D printed bi-layer antihypertensive tablets. Eur. J. Pharm. Sci. 2018, 123, 484–494. [Google Scholar] [CrossRef]
- Alhijjaj, M.; Belton, P.; Qi, S. An investigation into the use of polymer blends to improve the printability of and regulate drug release from pharmaceutical solid dispersions prepared via fused deposition modeling (FDM) 3D printing. Eur. J. Pharm. Biopharm. 2016, 108, 111–125. [Google Scholar] [CrossRef]
- Quodbach, J.; Bogdahn, M.; Breitkreutz, J.; Chamberlain, R.; Eggenreich, K.; Elia, A.G.; Gottschalk, N.; Gunkel-Grabole, G.; Hoffmann, L.; Kapote, D.; et al. Quality of FDM 3D Printed Medicines for Pediatrics: Considerations for Formulation Development, Filament Extrusion, Printing Process and Printer Design. Ther. Innov. Regul. Sci. 2021, 56, 910–928. [Google Scholar] [CrossRef] [PubMed]
- Keikhosravi, N.; Mirdamadian, S.Z.; Varshosaz, J.; Taheri, A. Preparation and characterization of polypills containing aspirin and simvastatin using 3D printing technology for the prevention of cardiovascular diseases. Drug Dev. Ind. Pharm. 2020, 46, 1665–1675. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, V.R.; Kazi, M.; Shahba, A.A.-W.; Radhanpuri, A.; Maniruzzaman, M. Three-Dimensional Printing of a Container Tablet: A New Paradigm for Multi-Drug-Containing Bioactive Self-Nanoemulsifying Drug-Delivery Systems (Bio-SNEDDSs). Pharmaceutics 2022, 14, 1082. [Google Scholar] [CrossRef]
- Okwuosa, T.C.; Stefaniak, D.; Arafat, B.; Isreb, A.; Wan, K.-W.; Alhnan, M.A. A Lower Temperature FDM 3D Printing for the Manufacture of Patient-Specific Immediate Release Tablets. Pharm. Res. 2016, 33, 2704–2712. [Google Scholar] [CrossRef]
- Agarwal, K.M.; Shubham, P.; Bhatia, D.; Sharma, P.; Vaid, H.; Vajpeyi, R. Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM). Sensors Int. 2022, 3, 100149. [Google Scholar] [CrossRef]
- Czyżewski, P.; Marciniak, D.; Nowinka, B.; Borowiak, M.; Bieliński, M. Influence of Extruder’s Nozzle Diameter on the Improvement of Functional Properties of 3D-Printed PLA Products. Polymers 2022, 14, 356. [Google Scholar] [CrossRef]
- Triyono, J.; Sukanto, H.; Saputra, R.M.; Smaradhana, D.F. The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material. Open Eng. 2020, 10, 762–768. [Google Scholar] [CrossRef]
- Mora-Castaño, G.; Millán-Jiménez, M.; Linares, V.; Caraballo, I. Assessment of the Extrusion Process and Printability of Suspension-Type Drug-Loaded AffinisolTM Filaments for 3D Printing. Pharmaceutics 2022, 14, 871. [Google Scholar] [CrossRef]
- Ahmed, T.A.; Felimban, R.I.; Tayeb, H.H.; Rizg, W.Y.; Alnadwi, F.H.; Alotaibi, H.A.; Alhakamy, N.A.; Abd-Allah, F.I.; Mohamed, G.A.; Zidan, A.S.; et al. Development of multi-compartment 3D-printed tablets loaded with self-nanoemulsified formulations of various drugs: A new strategy for personalized medicine. Pharmaceutics 2021, 13, 1733. [Google Scholar] [CrossRef]
- Goyanes, A.; Scarpa, M.; Kamlow, M.; Gaisford, S.; Basit, A.W.; Orlu, M. Patient acceptability of 3D printed medicines. Int. J. Pharm. 2017, 530, 71–78. [Google Scholar] [CrossRef]
- Martinez, P.R.; Goyanes, A.; Basit, A.W.; Gaisford, S. Influence of Geometry on the Drug Release Profiles of Stereolithographic (SLA) 3D-Printed Tablets. AAPS Pharmscitech 2018, 19, 3355–3361. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.; Chen, D.; Xu, X.; Li, R.; Yan, G.; Fan, T. FDM 3D-Printed Sustained-Release Gastric-Floating Verapamil Hydrochloride Formulations with Cylinder, Capsule and Hemisphere Shapes, and Low Infill Percentage. Pharmaceutics 2022, 14, 281. [Google Scholar] [CrossRef] [PubMed]
- Windolf, H.; Chamberlain, R.; Breitkreutz, J.; Quodbach, J. 3D Printed Mini-Floating-Polypill for Parkinson’s Disease: Combination of Levodopa, Benserazide, and Pramipexole in Various Dosing for Personalized Therapy. Pharmaceutics 2022, 14, 931. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Wang, J.; Buanz, A.; Martínez-Pacheco, R.; Telford, R.; Gaisford, S.; Basit, A.W. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics. Mol. Pharm. 2015, 12, 4077–4084. [Google Scholar] [CrossRef]
- Wang, F.; Li, L.; Zhu, X.; Chen, F.; Han, X. Development of pH-Responsive Polypills via Semi-Solid Extrusion 3D Printing. Bioengineering 2023, 10, 402. [Google Scholar] [CrossRef]
- Zhang, B.; Teoh, X.Y.; Yan, J.; Gleadall, A.; Belton, P.; Bibb, R.; Qi, S. Development of combi-pills using the coupling of semi-solid syringe extrusion 3D printing with fused deposition modelling. Int. J. Pharm. 2022, 625, 122140. [Google Scholar] [CrossRef]
- Korte, C.; Quodbach, J. 3D-Printed Network Structures as Controlled-Release Drug Delivery Systems: Dose Adjustment, API Release Analysis and Prediction. AAPS Pharmscitech 2018, 19, 3333–3342. [Google Scholar] [CrossRef]
- Pereira, B.C.; Isreb, A.; Isreb, M.; Forbes, R.T.; Oga, E.F.; Alhnan, M.A. Additive Manufacturing of a Point-of-Care “Polypill”: Fabrication of Concept Capsules of Complex Geometry with Bespoke Release against Cardiovascular Disease. Adv. Health Mater. 2020, 9, e2000236. [Google Scholar] [CrossRef]
- Pereira, B.C.; Isreb, A.; Forbes, R.T.; Dores, F.; Habashy, R.; Petit, J.B.; Mohamed, A.A.; Enoche, F.O. ‘Temporary Plasticiser’: A novel solution to fabricate 3D printed patient-centred cardiovascular ‘Polypill’ architectures. Eur. J. Pharm. Biopharm. 2019, 135, 94–103. [Google Scholar] [CrossRef]
- Tanveer, Q.; Mishra, G.; Mishra, S.; Sharma, R. Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts—A current review. Mater. Today Proc. 2022, 62, 100–108. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, W.; Vo, A.Q.; Feng, X.; Ye, X.; Kim, D.W.; Repka, M.A. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation. Carbohydr. Polym. 2017, 177, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Traore, Y.L.; Walker, L.; Yang, S.; Ho, E.A. Fused deposition modeling three-dimensional printing of flexible polyurethane intravaginal rings with controlled tunable release profiles for multiple active drugs. Drug Deliv. Transl. Res. 2022, 12, 906–924. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wang, H.; Li, H.; Ou, Z.; Yang, G. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release. Eur. J. Pharm. Sci. 2018, 115, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Tagami, T.; Nagata, N.; Hayashi, N.; Ogawa, E.; Fukushige, K.; Sakai, N.; Ozeki, T. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler. Int. J. Pharm. 2018, 543, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Alayoubi, A.; Zidan, A.; Asfari, S.; Ashraf, M.; Sau, L.; Kopcha, M. Mechanistic understanding of the performance of personalized 3D-printed cardiovascular polypills: A case study of patient-centered therapy. Int. J. Pharm. 2022, 617, 121599. [Google Scholar] [CrossRef]
- Sadia, M.; Sośnicka, A.; Arafat, B.; Isreb, A.; Ahmed, W.; Kelarakis, A.; Alhnan, M.A. Adaptation of pharmaceutical excipients to FDM 3D printing for the fabrication of patient-tailored immediate release tablets. Int. J. Pharm. 2016, 513, 659–668. [Google Scholar] [CrossRef]
- Solanki, N.G.; Tahsin; Shah, A.V.; Serajuddin, A.T. Formulation of 3D Printed Tablet for Rapid Drug Release by Fused Deposition Modeling: Screening Polymers for Drug Release, Drug-Polymer Miscibility and Printability. J. Pharm. Sci. 2018, 107, 390–401. [Google Scholar]
- Dores, F.; Kuźmińska, M.; Soares, C.; Bohus, M.; Shervington, L.A.; Habashy, R.; Pereira, B.C.; Peak, M.; Isreb, A.; Alhnan, M.A. Temperature and solvent facilitated extrusion based 3D printing for pharmaceuticals. Eur. J. Pharm. Sci. 2020, 152, 105430. [Google Scholar] [CrossRef]
- Fanous, M.; Bitar, M.; Gold, S.; Sobczuk, A.; Hirsch, S.; Ogorka, J.; Imanidis, G. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution. Int. J. Pharm. 2021, 599, 120417. [Google Scholar] [CrossRef]
- Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs—An integrated review. Int. J. Pharm. 2018, 535, 68–85. [Google Scholar] [CrossRef]
- Wang, N.; Shi, H.; Yang, S. 3D printed oral solid dosage form: Modified release and improved solubility. J. Control. Release 2022, 351, 407–431. [Google Scholar] [CrossRef]
- Repka, M.A.; Shah, S.; Lu, J.; Maddineni, S.; Morott, J.; Patwardhan, K.; Mohammed, N.N. Melt extrusion: Process to product. Expert Opin. Drug Deliv. 2011, 9, 105–125. [Google Scholar] [CrossRef] [PubMed]
- Fina, F.; Goyanes, A.; Madla, C.M.; Awad, A.; Trenfield, S.J.; Kuek, J.M.; Patel, P.; Gaisford, S.; Basit, A.W. 3D printing of drug-loaded gyroid lattices using selective laser sintering. Int. J. Pharm. 2018, 547, 44–52. [Google Scholar] [CrossRef]
- Elisetti, S.K.; Arora, V.; Sharma, R.B. Polymers for designing 3D Printed Pharmaceutical Products. J. Res. Pharm. 2023, 27, 576–594. [Google Scholar]
- Wang, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int. J. Pharm. 2016, 503, 207–212. [Google Scholar] [CrossRef]
- Jamróz, W.; Kurek, M.; Czech, A.; Szafraniec, J.; Gawlak, K.; Jachowicz, R. 3D printing of tablets containing amorphous aripiprazole by filaments co-extrusion. Eur. J. Pharm. Biopharm. 2018, 131, 44–47. [Google Scholar] [CrossRef] [PubMed]
- Goyanes, A.; Kobayashi, M.; Martínez-Pacheco, R.; Gaisford, S.; Basit, A.W. Fused-filament 3D printing of drug products: Microstructure analysis and drug release characteristics of PVA-based caplets. Int. J. Pharm. 2016, 514, 290–295. [Google Scholar] [CrossRef]
- Pereira, G.G.; Figueiredo, S.; Fernandes, A.I.; Pinto, J.F. Polymer selection for hot-melt extrusion coupled to fused deposition modelling in pharmaceutics. Pharmaceutics 2020, 12, 795. [Google Scholar] [CrossRef]
- Bialecka-Florjańczyk, E.; Florjańczyk, Z. Solubility of plasticizers, polymers and environmental pollution. In Thermodynamics, Solubility and Environmental Issues; Elsevier: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Fuenmayor, E.; Forde, M.; Healy, A.V.; Devine, D.M.; Lyons, J.G.; McConville, C.; Major, I. Material considerations for fused-filament fabrication of solid dosage forms. Pharmaceutics 2018, 10, 44. [Google Scholar] [CrossRef]
- Fuenmayor, E.; O’Donnell, C.; Gately, N.; Doran, P.; Devine, D.M.; Lyons, J.G.; Christopher, M.; Ian, M. Mass-customization of oral tablets via the combination of 3D printing and injection molding. Int. J. Pharm. 2019, 569, 118611. [Google Scholar] [CrossRef]
- Korte, C.; Quodbach, J. Formulation development and process analysis of drug-loaded filaments manufactured via hot-melt extrusion for 3D-printing of medicines. Pharm. Dev. Technol. 2018, 23, 1117–1127. [Google Scholar] [CrossRef]
- Scoutaris, N.; Ross, S.A.; Douroumis, D. 3D Printed “Starmix” Drug Loaded Dosage Forms for Paediatric Applications. Pharm. Res. 2018, 35, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Vasantrao Patil, S.; Laxman Ghatage, S.; Shankar Navale, S.; Kadar Mujawar, N. Natural binders in tablet formulation. Int J Pharmtech Res. 2014, 6, 1070–1073. [Google Scholar]
- Debnath, S.; Yadav, C.N.; Nowjiya, N.; Prabhavathi, M.; SaiKumar, A.; Krishna, P.S.; Babu, M.N. A Review on Natural Binders used in Pharmacy. Asian J. Pharm. Res. 2019, 9, 55. [Google Scholar] [CrossRef]
- Okwuosa, T.C.; Soares, C.; Gollwitzer, V.; Habashy, R.; Timmins, P.; Alhnan, M.A. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing. Eur. J. Pharm. Sci. 2018, 118, 134–143. [Google Scholar] [CrossRef] [PubMed]
- Okwuosa, T.C.; Pereira, B.C.; Arafat, B.; Cieszynska, M.; Isreb, A.; Alhnan, M.A. Fabricating a Shell-Core Delayed Release Tablet Using Dual FDM 3D Printing for Patient-Centred Therapy. Pharm. Res. 2017, 34, 427–437. [Google Scholar] [CrossRef]
- Goyanes, A.; Fernández-Ferreiro, A.; Majeed, A.; Gomez-Lado, N.; Awad, A.; Luaces-Rodríguez, A.; Gaisford, S.; Aguiar, P.; Basit, A.W. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int. J. Pharm. 2018, 536, 158–164. [Google Scholar] [CrossRef]
- Beck, R.C.R.; Chaves, P.S.; Goyanes, A.; Vukosavljevic, B.; Buanz, A.; Windbergs, M.; Basit, A.; Gaisford, S.W. 3D printed tablets loaded with polymeric nanocapsules: An innovative approach to produce customized drug delivery systems. Int. J. Pharm. 2017, 528, 268–279. [Google Scholar] [CrossRef]
- Desai, P.M.; Liew, C.V.; Heng, P.W.S. Review of Disintegrants and the Disintegration Phenomena. J. Pharm. Sci. 2016, 105, 2545–2555. [Google Scholar] [CrossRef]
- Quodbach, J.; Moussavi, A.; Tammer, R.; Frahm, J.; Kleinebudde, P. Tablet disintegration studied by high-resolution real-time magnetic resonance imaging. J. Pharm. Sci. 2014, 103, 249–255. [Google Scholar] [CrossRef]
- Alebiowu, G.; Itiola, O.A. The effects of starches on mechanical properties of paracetamol tablet formulations. I. Pregelatinization of starch binders. Acta Pharm. 2003, 53, 231–237. [Google Scholar]
- El-Barghouthi, M.; Eftaiha, A.; Rashid, I.; Al-Remawi, M.; Badwan, A. A Novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev. Ind. Pharm. 2008, 34, 373–383. [Google Scholar] [CrossRef] [PubMed]
- Ehtezazi, T.; Algellay, M.; Islam, Y.; Roberts, M.; Dempster, N.M.; Sarker, S.D. The Application of 3D Printing in the Formulation of Multilayered Fast Dissolving Oral Films. J. Pharm. Sci. 2018, 107, 1076–1085. [Google Scholar] [CrossRef] [PubMed]
- Kollamaram, G.; Croker, D.M.; Walker, G.M.; Goyanes, A.; Basit, A.W.; Gaisford, S. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int. J. Pharm. 2018, 545, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Genina, N.; Boetker, J.P.; Colombo, S.; Harmankaya, N.; Rantanen, J.; Bohr, A. Anti-tuberculosis drug combination for controlled oral delivery using 3D printed compartmental dosage forms: From drug product design to in vivo testing. J. Control. Release 2017, 268, 40–48. [Google Scholar] [CrossRef]
- Anaya, B.J.; Cerda, J.R.; D’Atri, R.M.; Yuste, I.; Luciano, F.C.; Kara, A.; Helga, K.R.; Maria, P.B.; Dolores, R.S. Engineering of 3D printed personalized polypills for the treatment of the metabolic syndrome. Int. J. Pharm. 2023, 642, 123194. [Google Scholar] [CrossRef]
- Zgouro, P.; Katsamenis, O.L.; Moschakis, T.; Eleftheriadis, G.K.; Kyriakidis, A.S.; Chachlioutaki, K.; Monou, P.K.; Ntorkou, M.; Zacharis, C.K.; Bouropoulos, N.; et al. A floating 3D printed polypill formulation for the coadministration and sustained release of antihypertensive drugs. Int. J. Pharm. 2024, 655, 124058. [Google Scholar] [CrossRef]
- Rahman, J.; Quodbach, J. Versatility on demand—The case for semi-solid micro-extrusion in pharmaceutics. Adv. Drug Deliv. Rev. 2021, 172, 104–126. [Google Scholar] [CrossRef]
- Krueger, L.; Miles, J.A.; Steadman, K.J.; Kumeria, T.; Freeman, C.R.; Popat, A. 3D printing: Potential clinical applications for personalised solid dose medications. Med. J. Aust. 2022, 216, 64–67. [Google Scholar] [CrossRef] [PubMed]
- Araújo, M.R.P.; Sa-Barreto, L.L.; Gratieri, T.; Gelfuso, G.M.; Cunha-Filho, M. The digital pharmacies era: How 3D printing technology using fused deposition modeling can become a reality. Pharmaceutics 2019, 11, 128. [Google Scholar] [CrossRef]
- Zema, L.; Melocchi, A.; Maroni, A.; Gazzaniga, A. Three-Dimensional Printing of Medicinal Products and the Challenge of Personalized Therapy. J. Pharm. Sci. 2017, 106, 1697–1705. [Google Scholar] [CrossRef]
Combined API | Polymer(s) % | Other Excipients | HME Extrusion Temp/°C | Screw Speed/rpm | Nozzle Size/mm | Extruder Model | Print Design Software | Printer | Printing Temp/°C | Printing Speed mm/s | Infill % | Nozzle Size | Layer Height | Build Platform Temp °C | Dosage Form and Shape | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lisinopril dihydrate 5%, indapamide 1.25%, rosuvastatin calcium 5%, amlodipine besylate 2.5% * | 60% PVA | Water in filament but dried after extrusion * Sorbitol 25.9%, titanium dioxide 1% | 90 | 35 | 1.7 | Thermo Scientific HAAKE MiniCTW hot melt extruder (Karlsruhe, Germany) | Autodesk® 3ds Max Design 2016 software version 18.0 (Autodesk, Inc., San Francisco, CA, USA) | Makerbot Replicator 2x 3D printer (Makerbot Industries, New York, NY, USA) | 150 °C | 100 | 0.4 mm nozzle | 166 μm | 40 °C | Tablet | [73]) | |
Lisinopril dihydrate 10%, amlodipine besylate 5%, indapamide 2.5%, rosuvastatin calcium 10% | PEG 4000 10%, PEG 400 30% Shell: PLA for immediate release AND PVA for extended release | Lactose monohydrate | Ready PLA/PVA filaments | Autodesk 3ds Max Design 2016 software version 18.0 (Autodesk, Inc., USA) | Makerbot Replicator 2X (Makerbot Industries, LLC, USA) | 200 °C | 50 °C | Capsule, oval | [72] | |||||||
Rifampicin (RIF) and isoniazid (ISO) 30% | PEO 70% PLA shell PVA Cap | 80 | 30 | 1 | Twin-screw compounder (DSM, ®XPLORE, Amsterdam, The Netherlands) | Comsol Multiphysics (Comsol, Stockholm, Sweden, v5.1), | Dual-nozzle Ultimaker 3 Extended printer (Geldermalsen, The Netherlands) | 35 mm/s | 100 | 0.2 mm | 60 °C | Unique dual-compartmental dosage unit cylinder | [110] | |||
50% Metformin | 35% Eudragit® RL, 10% PLA 5% PEG 400 | Citric acid monohydrate, triethyl citrate (TEC) | 140 | 35 | 1.75 | Filabot Original® single-screw extruder (Filabot Inc., Barre, VT, USA) * | AutoCAD 2016® (Autodesk Inc., USA) AutoCAD 2016® (Autodesk Inc., USA) | MakerBot Replicator® 2X 3D printer (MakerBot Inc., NY, USA) | 170 °C | 70 mm/s, 70 mm/s | 100 | 0.4 mm | 0.2 | 90 °C 90 °C | Tablet, flat cylindrical with smoothed edges (pill-shaped | [51] |
2% Glimepiride | 80% PVA | 15% MANNITOL, 3% CA STEARATE | 190 | 23 | 1.5 | co-rotating twin-screw HAAKE MiniLab® extruder (Thermo Scientific, Waltham, MA, USA) * | 205 °C | 100 | 0.2 mm | |||||||
Simvastatin 0.5%, aspirin 5% | PEG6000 70% | TEC 20% *, silicon dioxide 3%, glycerin 10% | 135 * | 16 | 1.75 | UK Noztec desktop filament extruder | Rhinoceros 5 (McNeel & Associates, Seattle, WA, USA | Quantum 2025 desktop printer, Persia 3D printer Co., Tehran, Iran | 178 °C | 3.5 mm/s | 100 | 0.4 mm | 0.3 mm | 45 °C | Tablet, half-divided cylindrical shape body | [56] |
Enalapril maleate (EM) and hydrochlorothiazide (HCT) EPO: EM: TCP 35:15:50 Eudragit EPO:TEC:HCT:TCP (46.75:3.25:25:25% w/w) * | Eudragit EPO | Tri-calcium phosphate (TCP), triethyl citrate (TEC) | 100 | 35 | 1.7 | HAAKE MiniCTW hot melt extruder (Thermo Scientific, Karlsruhe, Germany) | Autodesk® 3ds Max Design 2016 software version 18.0 (Autodesk, Inc., USA) | Makerbot Replicator 2× (Makerbot Industries, LLC, USA | 135 °C | 100 | 60 °C | Tablet | [53] | |||
Paracetamol (4.3 and 8.2%) or caffeine (4.7 and 9.5%) | PVA | 180 | 15 | 1.75 | Noztek Pro hot melt extruder (Noztek, Shoreham-by-Sea, UK) | AutoCAD 2014R (Autodesk Inc., USA) | MakerBot Replicator 2X (MakerBot Inc, USA). | 200 °C | 90 mm/s | 100 | Capsule-shaped tablet, “Caplet” | [68] | ||||
Tranexamic acid 10%, indomethacin 17% | Eudragit RL 17%, PEG 4000 10%, PEO 20% * | Tween80 10%, plasticizer 17% | 100 | 100 rpm | 1.75 | Haake Minilab extruder | Ready PVA filaments Mowiol® 4–88, MW~31.000), were purchased from Sigma-Aldrich, Ann Arbor, MI, USA | Prusa i3 (Mk3S, Prague, Czech Republic | 100 °C | 10, 30 | Room temp, 21 °C | [70] | ||||
Lansoprazole, curcumin 20% | HPC and Soluplus | Black seed oil, Capmul MCM, Transcutol P, and Kolliphor ELP | 140 * | 50 rpm | 1.9 | Leistritz ZSE 12 HP-PH 12 mm twine-screw corotating extruder | (Dassault Systèmes, Vélizy-Villacoublay, France) | Ultimaker S3, Utrecht, The Netherlands | 250 °C * | 50 mm/s | 100 | 80 °C | Capsule-shaped tablet, “Caplet” | [57] | ||
Levodopa, Benserazide, and Pramipexole * | PVA, PVP, VA, EVA | Mannitol, fumed silica | 100 and 180 | 20 | 1.85 | Co-rotating twin-screw extruder (Pharmalab HME 16, Thermo Fisher Scientific, Rockford, IL, USA | Fusion 360 (Autodesk, San Rafael, CA, USA) | Prusa 3D printer (Prusa i3 Mk3, Prusa research, Prague, Czech Republic) | 150 °C | 10 mm/s | 100 | 0.4 mm | 70 °C | Various designs * | [67] | |
Paracetamol and ibuprofen | PLA | Water: glycerol: gelatin | 180 | 15 * | 1.75 | Noztek Pro hot melt extruder (Noztek, UK) | Autodesk® 3ds Max® Design version 2018 (Autodesk Inc., San Rafael, CA, USA | MakerBot Replicator Experimental 2X dual FDM 3D printer (MakerBot Industries, Brooklyn, NY, USA) | 80 °C | 50–65 mm/s | 25, 50, 75 | 1.52 mm nozzle size | 75 °C | LegoTM-like design | [52] | |
Hydroxychloroquine, IgG, gp120, and coumarin | 160 and 150 | 100 | 1.6 | HAAKE™ MiniLab II Micro Compounder (ThermoFisher | Simplify3D v3.1 (Simplify3D, LLC, Blue Ash, OH, USA) | lab-developed Cartesian 3D printer | 220 °C | 15 mm/s | 25 to 100 | 210 micrometer | Intra-vaginal rings | [75] | ||||
Nifedipine 20 mg, gliclazide 10 mg, simvastatin 10 mg | HPC (5%), HPMCAS (36.5%), | PEG 4000 (7.5%), magnesium stearate (1%) | NFD 160 °C, SMV at 135 °C, and GLZ at 145 °C | 30 rpm | 2 mm | Noztek touch single-screw extruder (Shoreham, UK) | Tinkercad® | Anycubic Mega Zero | 160 °C for NFD, 140 °C for GLZ, and 155 °C | 30 mm/s | 100 | 0.4 mm | 0.1 mm | Rounded tablets | [111] | |
Diltiazem, propranolol, and hydrochlorothiazide | PEG 400 (1% w/w) | 175 | 45 rpm | 1.6 mm | Noztek Touch, Noztek England | AutoCAD 2016® | MakerBot® Replicator 2X Desktop 3D printer, MakerBot Inc, USA) | 190 °C | 10 mm/s | 100% | 0.2 mm | 0.2 mm | 100 °C | Hollow, Cheerio-shaped dosage forms | [112] |
Characterization | Extruded Filament | Dosage Form | References |
---|---|---|---|
Mechanical properties | √ | [51,53,67,70,73,75,111,112] | |
DSC | √ | √ | [51,53,56,57,68,70,72,73,110,111,112] |
TGA | √ | √ | [51,53,57,68,72,73,110,112] |
XRD/XPRD | √ | √ | [51,53,72,73,111,112] |
Drug content | √ | √ | [51,52,53,56,68,72,73,110,112] |
In vitro release studies | √ | √ | [51,52,53,56,57,67,68,70,72,73,75,110,111,112] |
SEM | √ | √ | [51,52,53,56,57,70,72,73,110,111,112] |
FTIR | √ | √ | [53,70,111,112] |
In vivo | √ | √ | [110] |
Micro-CT | √ | [57] | |
Raman | √ | [53,68,112] | |
Stability | √ | [56,73] | |
Morphology | √ | [51,53,56,67,70,73,111,112] | |
TEM | √ | [57] | |
Ex vivo | √ | [111,112] |
Advantages | Disadvantages |
---|---|
Low cost Portable Ease of use High resolution and precision On-demand manufacturing Produce small batches Tailored medication Easy control of constituents Control design and type of dosage form Dosage flexibility and variability Improve patient case management Ease of control of printing parameters No stability issues Opportunity for drug development, testing, and manufacturing Polypill Decreased polypharmacy Increased patient compliance Single-product production pipeline Manufacturing and distribution at the same place | Unsuitable for thermolabile drugs Reduced options of thermoplastic materials with desired properties Low drug loading Not suitable for up-scale production Slower than conventional methods |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, H.; Al-Tabakha, M.M.A.; Chan, S.Y. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics 2024, 16, 1285. https://doi.org/10.3390/pharmaceutics16101285
Yasin H, Al-Tabakha MMA, Chan SY. Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics. 2024; 16(10):1285. https://doi.org/10.3390/pharmaceutics16101285
Chicago/Turabian StyleYasin, Haya, Moawia M. A. Al-Tabakha, and Siok Yee Chan. 2024. "Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review" Pharmaceutics 16, no. 10: 1285. https://doi.org/10.3390/pharmaceutics16101285
APA StyleYasin, H., Al-Tabakha, M. M. A., & Chan, S. Y. (2024). Fabrication of Polypill Pharmaceutical Dosage Forms Using Fused Deposition Modeling 3D Printing: A Systematic Review. Pharmaceutics, 16(10), 1285. https://doi.org/10.3390/pharmaceutics16101285