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Abstract: Background: The SARS-CoV-2 pandemic has highlighted niclosamide (NIC) as a promising
treatment for COVID-19. However, its clinical application is limited due to its poor water solubility,
resulting in low bioavailability. Methods: To address this issue, we developed a AuNP-HA-NIC
system, which combines gold nanoparticles with hyaluronic acid to enhance drug delivery. Our
comprehensive characterization of the system revealed that hyaluronic acid with specific molecular
weights, particularly those exposed to electron-beam irradiation between 2 and 20 kGy, produced
the most stable nanoparticles for efficient drug loading and delivery. Results: Additionally, the
AuNP-HA-NIC system exhibits a significant sensitivity to pH changes, which is a critical feature
for targeted drug release. Under acidic conditions mimicking the stomach and small intestine,
minimal drug release was observed, indicating the effective prevention of premature drug release in
the gastrointestinal tract. Furthermore, the integration of a targeting aptamer established specific
binding abilities towards the SARS-CoV-2 spike protein, distinguishing it from other coronaviruses.
Conclusions: As research progresses, and with further in vivo testing and optimization, the AuNP-
HA-NIC–aptamer system holds great promise as a game-changer in the field of antiviral therapeutics,
particularly in the battle against COVID-19.

Keywords: hyaluronic acid; gold nanoparticle; drug delivery; controlled release; one-pot synthesis;
poorly water-soluble drug; niclosamide

1. Introduction

COVID-19, declared a pandemic in 2020, has affected more than 700 million people
and caused over 7 million deaths by 2024 [1,2]. Despite the availability of SARS-CoV-2
vaccines, new variants of the virus continue to emerge, emphasizing the need for addi-
tional treatments. Numerous companies including Merck & Co., Pfizer, and Shionogi have
developed anti-SARS-CoV-2 drugs like Lagevrio (Molnupiravir) [3,4], Paxlovid (Ritonavir-
boosted Nirmatrelvir) [5], and Xocova (Ensitrelvir) [6], kickstarting a competition for an
effective and user-friendly COVID-19 treatment. Among them, Remdesivir, an injectable
formulation for COVID-19 treatment [7–9], is the most notable and initially showed promis-
ing results. However, side effects such as bradycardia and hypotension, which can weaken
heart function, have been reported, albeit very rarely.

It was hypothesized that Remdesivir might bind to receptors abundantly present
on the surface of cardiac cells, potentially leading to these side effects. After testing its
interaction with approximately 350 different receptors, it was confirmed that Remdesivir
binds and activates the urotensin receptor, which influences cardiovascular contraction [10].
Therefore, developing new Remdesivir formulations is critical to providing a safer and
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more effective COVID-19 treatment. These side effects can limit the patient population that
can be treated, and different strains of the virus can reduce the effectiveness of treatment,
making it necessary to develop different treatment strategies.

Niclosamide (NIC) has been the subject of active research in the fields of anti-cancer [11,12],
anti-inflammatory [13], and antiviral treatments [14]. It has proven particularly effective in
combating viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV) [15]
and severe acute respiratory syndrome coronavirus (SARS-CoV) [16], the precursors to
SARS-CoV-2. While the broad-spectrum antiviral ability of NIC was discovered in 2004 [17],
the mechanisms behind its effectiveness were only uncovered in 2019. Against SARS-CoV-2,
NIC acts by (1) inhibiting the process of endocytosis, (2) reducing autophagy, and (3) halting
viral replication [18]. Notably, considerable antiviral activity was demonstrated in SARS-
CoV-2-infected VERO cells at a dose of 0.16 µM (57.14 ng/mL) [19]. In this paper, NIC
showed 40-fold higher SARS-CoV-2 antiviral activity than Remdesivir and 26-fold higher
than chloroquine [20]. These findings highlight the potential of NIC as a potent antiviral
agent and underscore the urgent need for further research and development of NIC-based
formulations to effectively combat COVID-19.

While the antiviral efficacy of NIC has been demonstrated in many aspects, its low
bioavailability has limited its active use in viral treatment. The low bioavailability of
NIC is primarily due to its low solubility in water, which makes it difficult for NIC to
be absorbed in the body [21]. To maximize therapeutic benefits and reduce potential
side effects, various strategies have been employed utilizing water-soluble polymers [22],
lipids, surfactants [23], and inorganic materials [24,25]. However, these strategies often face
limitations such as complex manufacturing processes, potential toxicity, and inconsistent
drug release profiles. To overcome these challenges, various methods, such as utilizing
4-toluic acid dithiobenzoate (TAD) and chemically conjugating with polyethylene glycol
(PEG), have been explored to encapsulate NIC in a polymer matrix to improve its release
control and bioavailability [21]. While these methods show promise, they also present
challenges related to stability and scalability. As an alternative, hyaluronic acid (HA)
offers significant potential for NIC formulation. HA is a bio-derived polymer that exhibits
different physical properties, such as viscosity, depending on its molecular weight, which
has a significant impact on nanoparticle synthesis [26].

In this study, we utilized a one-pot synthesis strategy to load NIC onto AuNP-HA,
enhancing bioavailability and achieving controlled release, based on the findings from a
previous study. Various molecular weights of HA were obtained through electron-beam
irradiation, with smaller polymer sizes observed at higher energy levels. An aptamer
targeting the SARS-CoV-2 spike protein was attached to the AuNPs, creating a targeted
drug delivery system. The formulated AuNP-HA-NIC showed high drug encapsulation
efficiency (DEE) and drug loading capacity (DLC), and its precise targeting was validated
using the fluorescent SARS-CoV-2 spike protein, indicating a novel approach in NIC delivery.

2. Materials and Methods
2.1. Materials

Gold(III) chloride trihydrate (HAuCl4, 99.9%), sodium borohydride (NaBH4), NIC,
phosphate-buffered saline (PBS, pH 7.4), pepsin, hydrochloric acid (1 M), sodium bicar-
bonate, bovine serum albumin (BSA), tween 20, and NTA-Atto 550 were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Ethanol was obtained from Daejung Chemicals and
Metals (Siheung-si, Republic of Korea). The medical-grade HA powder was sourced from
Hyundai Bioland, with the specified Lot No. HA022002 (Cheongju-si, Republic of Korea).
The C2C12 cell line (CRL-1772) and fetal bovine serum (FBS, Cat. No. 30-2020) were
obtained from American Type Culture Collection (ATCC, Manassas, VA, USA). Dulbecco’s
Modified Eagle’s Medium (DMEM, Cat. No. SH30243) and penicillin/streptomycin (Cat.
No. SV30010) were purchased from Hyclone (Logan, UT, USA). Dojindo Laboratories in
Japan provided the Cell Counting Kit-8 (CCK-8). Aptamer was synthesized by Bioneer
(Daejeon, Republic of Korea), and its sequence is described in Table S1. Spike proteins
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associated with SARS-CoV-2 and human coronavirus were obtained from Sino Biological
(Beijing, China).

2.2. Electron-Beam Irradiation of HA

HA powder was dissolved in distilled water (DW). Subsequently, 22.5 mL of the HA
solution with a concentration of 10 mg/mL was transferred to a 50 mL centrifuge tube.
For electron-beam (e-beam) irradiation, a high-frequency linear electron accelerator was
utilized, having an electron energy parameter of 5 MeV and a 50 kW power specifica-
tion. By adjusting the electric current and modulating the conveyor speed, the e-beam
irradiation dose was applied from 1 kGy to 50 kGy. Following irradiation, a freeze-drying
procedure, using the Advantage Plus EL-85 model from SP Scientific (Warminster, PA,
USA), was applied to the HA samples, ensuring they were preserved for prolonged periods.
The polymer dimensions and accurate mass of the treated HA samples were evaluated
using a combination of high-performance liquid chromatography (HPLC, 1260, Agilent
Technologies, Santa Clara, CA, USA) and a multi-angle light scattering detector (MALS;
Dawn Heleos II and Optilab T-rEX, Wyatt Technology Corp., Santa Barbara, CA, USA) as
described in a previous study [26]. The dynamic viscosity of the HA samples, after diluting
them to 5 mg/mL, was gauged at ambient temperature using a rotary viscometer, model
WVS-2M, produced by Daihan (Busan, Republic of Korea).

2.3. Synthesis of Niclosamide-Incorporated HA–Gold Nanoparticles (AuNP-HA-NIC)

In 0.8 mL of distilled water (DW), 50 mg of HAuCl4 and 8 mg of the e-beam irradiated
HA were mixed for 5 min at room temperature. Following the mixing, 19 mL of a NIC
solution (8 mg/mL in ethanol) was added to the mixture. Immediately thereafter, 0.2 mL
of NaBH4 (50 mg/mL in DW) was added. The mixture was stirred continuously for 24 h
until the color of the solution transitioned from yellow to red-purple. Subsequently, the
precipitate was collected via centrifugation at 17,000× g for 15 min and thoroughly washed
three times with ethanol.

2.4. Characterization of AuNP-HA-NIC

The particle size and morphology analysis of the AuNP-HA-NIC was conducted using
a Cs-corrected scanning transmission electron microscope (TEM; JEM-ARM 200F, JEOL,
Tokyo, Japan). Absorption spectra were acquired using a UV–visible spectrometer (UV–Vis;
Biomate 3S, Thermo Fisher Scientific, Waltham, MA, USA). Colloidal properties including
zeta potential and hydrodynamic size were assessed using dynamic light scattering (DLS;
ELSZ-1000, Otsuka Electronics Co. Ltd., Osaka, Japan), with samples being adequately
dispersed and diluted in DW.

2.5. Evaluation of Drug Encapsulation Efficiency (DEE) and Drug Loading Capacity (DLC)

The nanoparticle suspensions were centrifuged at 17,000× g for 5 min, after which
the supernatants were collected. Drug encapsulation efficiency (DEE) and drug loading
capacity (DLC) were assessed by measuring the absorption intensity of the supernatants
using a microplate reader (Synergy H1; BioTek, Winooski, VT, USA) within the wavelength
range of 300–700 nm. The DEE and DLC were computed according to the equations
below [27]:

DEE(%) =
AMTtotal − AMT f ree

AMTtotal
× 100 (1)

DLC(%) =
AMTtotal − AMT f ree

Wn
× 100 (2)

In these equations, AMTtotal represents the total amount of NIC, AMTfree denotes the
amount of free NIC in the supernatant, and Wn is the weight of the nanoparticles after
freeze drying. All measurements were conducted in triplicate, with the reported values
representing mean values along with standard deviations.
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2.6. NIC Release Study

The NIC release patterns over time were studied using various solutions containing
0.5% (wt/wt) tween 20 [28–30]: phosphate-buffered saline (PBS, pH 7.4), simulated gastric
fluid, simulated intestinal fluid, and simulated blood plasma. The simulated gastric and
intestinal fluids were designed to replicate the typical oral administration environment.
To make the simulated gastric fluid, 2.0 g of sodium chloride and 3.2 g of pepsin were
mixed in DW. The mixture was then titrated with 1 M hydrochloric acid until it reached a
pH of 1.5, and the total volume was adjusted to 1 L [26,27]. The simulated intestinal fluid
was prepared by dissolving 2.0 g of sodium chloride and 3.2 g of pepsin in DW, keeping
a composition akin to the gastric fluid. The pH was then adjusted to 6.8 by adding a
measured amount of 1.12 M sodium bicarbonate [21]. For the simulated blood plasma, 50 g
of albumin was introduced to 1 L of PBS (devoid of Ca2+ and Mg2+). For each assay, 10 mg
of nanoparticles was dispersed into 50 mL of the respective solution and kept at 36.5 ◦C
with gentle shaking in a shaker incubator. After extracting 1 mL samples at specific time
points, they were centrifuged at 17,000× g for 5 min and then passed through a syringe filter.
The released NIC in these samples was quantified using a microplate reader, measuring
the absorbance at 330 nm wavelength. Every experiment was conducted three times to
ensure consistency.

2.7. Synthesis of Aptamer-Conjugated AuNP-HA-NIC

For the conjugation of aptamers, thiol-functional-group-modified aptamers (50 pM,
0.16 mL) were incrementally added to AuNPs (4 pM, 74.4 µg/mL, 1 mL) in the pres-
ence of TCEP (50 pM, 0.32 mL) in 3.52 mL of PBS, totaling a volume of 5 mL, with the
comprehensive reagent ratio being 1:2:2 for AuNP–aptamer–TCEP across a span of 24 h.
Post-conjugation, the unattached aptamers were eliminated by centrifugation at 15,000 rpm
for 10 min.

2.8. Targeting Efficiency of Aptamer-Conjugated AuNP-HA-NIC

To investigate the targeting efficiency of the aptamer-conjugated AuNP-HA-NIC,
NTA-Atto 550 was attached to the prepared SARS-CoV-2 His-tag spike protein. A total
of 200 pmol of spike protein and 800 pmol of NTA-Atto 550 were used, resulting in a
final concentration of 1 mg/mL with PBS as the solvent. The mixture of spike protein and
NTA-Atto 550 was stirred in the dark for 1 h, with NTA binding to the His-tag portion of the
spike protein. The corresponding fluorescence was observed at an excitation wavelength of
550 nm and an emission wavelength of 580 nm. Subsequently, the prepared SARS-CoV-2-
NTA-Atto 550 and AuNP-HA-NIC-Apt were reacted in the dark for 1 h at varying ratios of
2:1, 1:1, 1:2, and 1:5, respectively. AuNP-HA-NIC without the aptamer was utilized as a
control. Additionally, to verify specificity, the HCoV-NL63 spike protein was tested using
the same method.

2.9. Cytotoxicity Assay

The cytotoxicity of AuNP-HA-NIC was evaluated in vitro using the C2C12 cell line, a
subclone derived from mouse myoblast cells, through the CCK-8 assay. AuNPs and NIC
were prepared as controls, while AuNP-HA(20)-NIC and AuNP-HA(20)-NIC-Apt served
as the test samples. Each of these samples was diluted to concentrations of 5, 50, and
500 µg/mL in the cell culture medium. Cells were cultivated in DMEM enriched with 10%
FBS and 1% penicillin/streptomycin and incubated at 37 ◦C in a humidified environment
containing 5% CO2. The cells were dispensed into 96-well culture plates at a density of
5.0 × 103 cells per well and were cultured for 24 h. After cell attachment, they were treated
with either the target samples or controls for another 24 h. Following this, a mixture of
CCK-8 reagent and DMEM medium (in a 1:5 ratio) was added to the cells, which were then
incubated for an additional 4 h. The absorbance was gauged using a microplate reader
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(Synergy H1, BioTek, Winooski, VT, USA) at a wavelength of 450 nm. Cell viability was
determined using the following equation:

Cell viability (%) =
Asample − Ablank

Acontrol − Ablank
× 100

Here, Asample denotes the absorbance of the samples, Ablank represents the absorbance
of the blank (comprising DMEM medium and CCK-8 solution), and Acontrol refers to the
absorbance of the control group (non-treated). The experimental procedures were replicated
six times, and the reported data embody the mean value along with the standard deviation.

3. Results and Discussion
3.1. Characterization of AuNP-HA-NIC

The overall process of synthesizing the AuNP-HA-NIC is illustrated in Figure 1, and
the detailed chemical structures of the NIC, aptamer and HA are depicted in Figure S1. HA
of varying molecular weights was prepared by e-beam irradiation at doses of 2, 5, 10, 20,
and 50 kGy [26], as shown in Table S2, which presents the molecular weights and viscosities
of each irradiated HA solution. Although NIC is insoluble in water but highly soluble in
organic solvents such as ethanol, we initially confirmed that gold nanoparticles could be
synthesized in ethanol-based solvents. However, redox reactions do not occur well in pure
organic solvents, making it difficult to synthesize nanoparticles. For this reason, we found
the optimal conditions and confirmed that nanoparticles are well synthesized in a 97%
ethanol solvent without NIC precipitation (Figure S2). In this optimized method, HA of
varying molecular weights followed by the reduction of HAuCl4 in DW with NaBH4 were
used to form AuNPs. Niclosamide was then incorporated into the AuNPs in an ethanol
(EtOH) solution. The final product consisted of AuNP-HA with incorporated niclosamide
and an attached targeting aptamer, designed for selective targeting of the SARS-CoV-2
spike protein.
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Figure 1. Schematic illustration of the synthesis process for AuNP-HA-NIC. Figure 1. Schematic illustration of the synthesis process for AuNP-HA-NIC.

As shown in Figure 2, the physical morphology of the NIC-incorporated HA-coated
AuNPs (AuNP-HA-NIC) was investigated. The samples were labeled as AuNP-HA(X)-
NIC, where X represents the e-beam irradiation dose with a kGy unit. Spherical shapes and
smooth surfaces were observed for the particles of the AuNP-HA(2, 5, 10, and 20)-NIC, with
sizes ranging from approximately 5 to 20 nm. Conversely, the AuNP-HA(0 and 50)-NIC
particles exhibited severe aggregation of numerous smaller particles. As illustrated in
Figure S3, the NIC particles are colored yellow, and the AuNP-HA(0)-NIC also exhibits a
yellow color, indicating that the particles are poorly formed, similar to the TEM image. In
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addition, the AuNP-HA(5, 10, and 20)-NIC in DW after ethanol washing showed a clear
red color without precipitation, indicating that the particles were evenly dispersed.
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The size of drug delivery carriers is a paramount factor in crafting antiviral medi-
cations, given that the engineered particles must infiltrate virally infected cells without
negatively impacting surrounding healthy cells [30]. To attain a clear understanding of size
distribution, dynamic light scattering (DLS) analysis was performed on all AuNP-HA-NIC
formulations [26]. The particle-size ranges for AuNP-HA(5, 10, 20)-NIC were 7.9–16.9 nm
(average size: 14.5 nm), 6.7–25.4 nm (average size: 14.7 nm), and 5.9–24.3 nm (average
size: 14.6 nm), respectively. In contrast, the hydrodynamic size of AuNP-HA(2)-NIC was
significantly larger, at 308.1 nm. The AuNP-HA(0, 50)-NIC formulations showcased heavy
aggregation, aligning with the conclusions derived from the TEM images. These formula-
tions failed to adequately incorporate the NIC, resulting in inadequate particle formation.
Smaller particle sizes, approximately 15 nm, are highly favorable for AuNP-HA-NIC, as
they enable seamless entry into infected cells, promoting antiviral actions [31].

Figure 3b demonstrates that the zeta potential of the AuNP-HA-NIC possesses nega-
tive potential at pH 7.0, confirming that the HA particles were fully coated on the AuNP
surface. The surface charge is critical in the interaction between nanoparticles and biological
substances. The negative surface of AuNP-HA-NIC is likely to enhance the stability of the
nanoparticles in systemic circulation [32]. Furthermore, AuNP-HA(0, 2, 5, and 50)-NIC
exhibited a significantly more negative surface charge compared to AuNP-HA(10 and 20).
This disparity in surface charge could be due to the presence of NIC, which inherently
has a high negative charge. Figure 3c displays the UV–Vis spectra of the nanoparticles.
AuNP-HA(5, 10, and 20)-NIC demonstrate a characteristic absorption band within the
500–600 nm range, with a distinct narrow half-peak width. Conversely, AuNP-HA(2 and
50)-NIC exhibit red-shifted absorption, signifying particle aggregation. In the case of
AuNP-HA(0)-NIC, the absorption band was absent, implying that nanoparticles were
not formed.
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(b) Zeta potential measurements of AuNP-HA-NIC at different e-beam irradiation doses, indicating
the surface charge of the particles. (c) UV–Vis absorption spectra of AuNP-HA-NIC, illustrating the
effect of e-beam irradiation dose on the optical properties of the nanoparticles.

3.2. Drug Encapsulation Efficiency and Drug Loading Capacity

The drug encapsulation efficiency (DEE) and drug loading capacity (DLC) of AuNP-
HA-NIC were evaluated by measuring the weights of the initial input amount of NIC, free
NIC in the supernatants, and the synthesized nanoparticles. DEE reflects the proportion of
drugs integrated into the synthesized nanoparticles relative to the initial amount of drug
input, while DLC denotes the mass ratio of drugs to the synthesized nanoparticles. As
shown in Figure 4, the DEEs and DLCs exhibited very similar behavior. For AuNP-HA(20)-
NIC, more than half of the NIC was successfully incorporated into the particles. In the case
of AuNP-HA(0)-NIC, it was confirmed that no NIC was loaded.
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With low-molecular-weight HA, as many covalent bonds constituting the polymer are
decomposed compared to high-molecular-weight HA, the contribution of intermolecular
interactions surpasses that of covalent bonds when synthesizing the HA layer of the AuNP-
HA. Consequently, NIC might be more easily incorporated into the HA layer composed
of low-molecular-weight HA, resulting in an increase in both DEE and DLC. On the
other hand, AuNP-HA(50)-NIC exhibited low DEE and DLC due to a decrease in the
specific surface area of the particles caused by aggregation, resulting in insufficient drug
entrapment.

3.3. In Vitro Drug Release Study

To verify NIC release characteristics of the AuNP-HA-NICs, an in vitro NIC release
study was conducted for both intravenous and oral administration cases. For intravenous
administration, a solution mimicking blood was used, while for oral administration, so-
lutions simulating gastric and intestinal fluids were prepared. Figure 5a shows the time-
dependent release profiles of NIC in general bio-fluid, PBS (pH 7.4), containing 0.5% (wt/wt)
tween 20. Except AuNP-HA(50)-NIC, the AuNP-HA-NICs released over 60% of NIC in PBS
within 1 h, with no additional release observed after 30 h. In contrast, the release rate for
AuNP-HA(50)-NIC was notably low, below 30%. For AuNP-HA(0)-NIC, since the NIC was
not encapsulated in the nanoparticles, it was excluded from the NIC release test conditions.
Furthermore, it was found that the release of NIC from AuNP-HA(2, 5, 10, and 20)-NIC
was enhanced as the e-beam irradiation dose of HA increased.
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Figure 5. In vitro release profiles of niclosamide from AuNP-HA-NIC synthesized with varying
e-beam irradiation doses under different conditions. (a) Release in PBS (pH 7.4) containing 0.5%
tween 20, (b) release in simulated plasma solution (pH 7.4), (c) release in simulated gastric fluid
(pH 1.5), and (d) release in simulated intestinal fluid (pH 6.8).

To predict the drug release behavior for intravenous administration, the AuNP-HA-
NICs were treated with the simulated plasma solution (Figure 5b). For AuNP-HA(5, 10,
and 20)-NIC, there was a rapid release in the first 2 h, followed by a gradual release of
the remaining NIC, resulting in a high release rate of more than 90% at 50 h. However,
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AuNP-HA(2 and 50)-NIC had lower maximum release rates, 70% and 50%, respectively,
unlike AuNP-HA(5, 10, and 20)-NIC.

For oral administration, simulated gastric and simulated intestinal fluids were used
to predict in vivo drug release behavior (Figure 5c,d). Negligible release was observed in
the simulated gastric fluid, whereas leaching of NIC was observed for free NIC. In the
simulated intestinal fluid, unlike the simulated gastric fluid, we found that the release was
efficient. The initial release behavior varied depending on the molecular weight of HA,
with AuNP-HA(50)-NIC showing a significantly lower release of NIC. For AuNP-HA(2, 5,
10, and 20)-NIC, the smaller the molecular weight of HA, the slower the release, and finally,
more than 95% of the NIC was released.

These results confirm that the AuNP-HA drug carriers can be properly transported
to the intestine without loss of drugs through the digestive system by oral administration,
and that the percentage of drug release can be easily varied depending on the e-beam
irradiation dose of HA. The drug release rate of the AuNP-HA drug carriers changes with
pH; as the pH increases, the HA matrix begins to swell due to the dissolution of carboxyl
groups (COO-) in the HA, enabling the release of NIC from AuNP-HA. Oral intake of NIC is
influenced by the physiological environment. The pH gradient changes across the digestive
tract from the stomach to the intestine [33,34]. In the acidic gastric environment, several
pH-induced reactions, including oxidation, hydrolysis, and deamination, can reduce drug
efficacy. However, in the case of AuNP-HA-NIC, HA inhibits drug release under acidic
conditions in the stomach and promotes successful release at high pH in the intestine,
minimizing systemic adverse effects and increasing therapeutic efficacy.

3.4. Targeted Drug Delivery

As NIC is a drug that act directly on the virus, targeted delivery to SARS-CoV-2
is necessary to improve the therapeutic effectiveness of COVID-19. To achieve targeted
delivery of NIC, an aptamer was applied to AuNP-HA(20)-NIC that can selectively target
the spike protein of SARS-CoV-2. As depicted in Figure 6, the His-tagged SARS-CoV-2 spike
protein was conjugated with Ni-NTA-Atto 550 to perform a fluorescence quenching assay
demonstrating the specific binding of AuNP-HA-NIC-Apt to the SARS-CoV-2 spike protein.
This assay shows the interaction with the targeting aptamer, resulting in fluorescence
quenching due to specific binding. The phenomenon analyzed is that when AuNP-HA-
NIC-Apt and the spike protein bind, the fluorescence is quenched by the AuNPs, whereas
when they cannot bind, the fluorescence intensity does not change.
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As shown in Figure 7a, in the AuNP-HA-NIC without the targeting aptamer, the
fluorescence of the spike protein remained unchanged, similar to the control, while the
fluorescence signals were quenched by using AuNP-HA-NIC-Apt. By varying the target–
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particle ratios of 2:1, 1:1, 1:2, and 1:5, it was observed that higher quantities led to more
fluorescence quenching due to binding with the spike protein. This result confirmed that
AuNP-HA-NIC-Apt effectively targets the SARS-CoV-2 spike protein. Conversely, in the
case of the non-targeted human coronavirus spike protein, HCoV-NL63, no fluorescence
quenching was observed even when AuNP-HA-NIC-Apt was introduced (Figure 7b). These
results clearly confirm that AuNP-HA-NIC-Apt exhibits specific binding to the SARS-CoV-2
spike protein.
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3.5. Cytotoxicity Test

An in vitro cytotoxicity test was performed to assess the toxicity of the targeted drug
delivery nanocarrier. In this assay, a non-treated condition and NiSO4-treated condition
were employed as a negative control and a positive control, respectively. For the samples,
AuNP-HA(20)-NIC and AuNP-HA(20)-NIC-Apt were administered to each well at concen-
trations of 5, 50, and 500 µg/mL for 24 h. Figure 8 shows the cell viability results of free
NIC and the samples in comparison to the assay control. The reliability of this assay was
sufficiently secured because the negative control confirmed that the cells grew well, while
the positive control confirmed that the cell viability was less than 10%.
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For the samples, it was found that all had the same level of cell viability. Although
there were slight decreases in cell viability as the amount of NIC increased, it was clear that
this change was due to the pharmacological action and not the toxicity of the drug delivery
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system itself. As a result, we demonstrated that AuNP-HA-based drug delivery vehicles
can be used as effective carriers to deliver poorly water-soluble drugs without exhibiting
any significant toxicity.

4. Conclusions

In this study, we developed a AuNP-HA-NIC system as a novel drug delivery platform
aimed at combating the SARS-CoV-2 virus. By employing a one-pot synthesis strategy,
we successfully loaded NIC onto AuNP-HA, enhancing bioavailability and achieving
controlled release. The use of various molecular weights of HA obtained through e-beam
irradiation resulted in the most stable nanoparticles, particularly at an irradiation level of
20 kGy. The AuNP-HA-NIC system demonstrated high DEE and DLC, with its effectiveness
further validated by physicochemical analysis. The system’s pH responsiveness ensures
targeted drug release in the intestinal tract, minimizing premature release in the stomach. In
addition, the targeted drug delivery was achieved by attaching an aptamer to the AuNPs,
which specifically binds to the SARS-CoV-2 spike protein, ensuring precise targeting
and improved therapeutic efficacy. The low cytotoxicity of the nanoparticle system, as
evidenced by cell viability tests, underscores its potential as a safe and effective antiviral
agent. As further in vivo testing and optimization continue, the AuNP-HA-NIC system
holds significant promise for advancing antiviral therapeutics, particularly in the fight
against COVID-19.
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//www.mdpi.com/article/10.3390/pharmaceutics16101288/s1, Figure S1: (a) Chemical structure of
niclosamide, (b) Sequence and secondary structure of SARS-CoV-2 spike protein targeting aptamer,
and (c) Chemical structure of hyaluronic acid and its degradation profile after e-beam irradiation;
Figure S2: Solubility and dispersion stability of AuNP-HA-NIC nanoparticles synthesized in different
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demonstrating the dispersion and color change of NIC-incorporated HA-coated AuNPs (AuNP-
HA-NIC) synthesized with different e-beam irradiation doses (0, 2, 5, 10, 20, and 50 kGy) in 97%
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(10 mg/mL, 22.5 ◦C)).
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