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Abstract: Background/Objectives: Multiple sclerosis (MS) is an autoimmune disorder of the central
nervous system (CNS) characterized by myelin and axonal damage with a globally rising inci-
dence. While there is no known cure for MS, various disease-modifying treatments (DMTs) exist,
including those targeting Sphingosine-1-Phosphate Receptors (S1PRs), which play important roles in
immune response, CNS function, and cardiovascular regulation. This study focuses on understanding
how nonsynonymous single nucleotide polymorphisms (rs1299231517, rs1323297044, rs1223284736,
rs1202284551, rs1209378712, rs201200746, and rs1461490142) in the S1PR1’s active site affect the bind-
ing of endogenous ligands, as well as different drugs used in MS management. Methods: Extensive
molecular dynamics simulations and linear interaction energy (LIE) calculations were employed
to predict binding affinities and potentially guide future personalized medicinal therapies. The
empirical parameters of the LIE method were optimized using the binding free energies calculated
from experimentally determined IC50 values. These optimized parameters were then applied to
calculate the binding free energies of S1P to mutated S1PR1, which correlated well with experimen-
tal values, confirming their validity for assessing the impact of SNPs on S1PR1 binding affinities.
Results: The binding free energies varied from the least favorable −8.2 kcal/mol for the wild type
with ozanimod to the most favorable −16.7 kcal/mol for the combination of siponimod with the
receptor carrying the F2055.42L mutation. Conclusions: We successfully demonstrated the differences
in the binding modes, interactions, and affinities of investigated MS drugs in connection with SNPs in
the S1PR1 binding site, resulting in several viable options for personalized therapies depending on the
present mutations.

Keywords: molecular dynamics simulations; personalized therapy; single nucleotide polymorphisms;
SNPs; linear interaction energy; LIE; multiple sclerosis; MS

1. Introduction

Multiple sclerosis (MS) is an autoimmune neurological inflammatory disorder of the
central nervous system (CNS). It leads to myelin and axonal damage in the CNS [1,2]. The
occurrence of MS in the world is rising, the highest being in the developed world [3]. The
onset of MS is usually in adulthood, typically without apparent cause [2–4]. Currently,
no known cure exists, but multiple disease-modifying treatments (DMTs) are available
for different MS variants. DMTs exhibit different mechanisms of action. Among the most
common is the modulation of Sphingosine-1-Phosphate Receptors (S1PRs) [3,4]. S1PRs
belong to the GPCR superfamily of G protein-coupled receptors, and participate in a wide
range of signaling pathways, most notably in immune responses, where they regulate the
egress of lymphocytes from lymph nodes, thereby facilitating their circulation between the
blood and lymphatic systems, which is essential for immune function; CNS, where they are
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involved in physiological functions, including the migration of neuronal progenitor cells,
astrocyte communication, oligodendrocyte survival and myelination, microglial regulation,
and maintaining the blood–brain barrier’s integrity; as well as in cardiovascular systems,
where S1PRs regulate heart rate, vascular tone, blood pressure, vascular maturation, and
play a significant role in endothelial cell function or the development of the vascular
system [5,6]. The activation of S1PRs in immune cells plays an essential role in the regulation
of cytokine release and (auto)-antibody production, which makes them primary drug
targets in MS [5,7].

The S1PR1, a transmembrane protein, has seven transmembrane (TM) domains. A
ligand-binding pocket is located at the extracellular portion of the receptor. Multiple amino
acids are crucial in S1P binding [5], which raises the question what would happen if a
mutation occurred at these positions. If this mutation is nonsynonymous, the binding
pattern of an agonist/antagonist is likely to change, and the drug’s effectiveness may
increase/drop [8,9]. Single nucleotide polymorphisms (SNPs) in the S1PR1 gene are
common in the human population, so determining which ones are relevant in differentiating
drug binding mechanisms may be crucial for understanding differential drug response.
With the rapid development of pharmacogenomics, individuals’ biomarkers and mutations
will be accessed more effectively and quickly, which may lead to personalized medicinal
therapies based on individual’s SNPs [10,11].

Multiple FDA-approved drugs effectively manage different types of MS. They ex-
hibit different mechanisms of action and effectiveness. Our research focused on four
moderately effective drugs with S1PR1 affinity (Figure 1) that are used to treat relaps-
ing forms of MS (RMS) [3,12–14]. The natural endogenic modulator of S1P1–5 receptors,
sphingosine-1-phosphate (Figure 1a), represents a zwitterionic lysophospholipid that con-
sists of a hydrophobic alkyl tail and a negatively charged polar head [15]. The fingolimod
(S)phosphate (FTY720-P) (Figure 1b) forms the first generation of S1PR modulators that was
approved for MS treatment. It acts as an agonist by inducing the Gi activation. However,
because it is nonselective and binds to all S1PR subtypes, except for S1PR2, it exhibits many
adverse side effects, most notably pulmonary epithelial leakage and brain edema [4,15].
Consequently, the second generation of RMS treatment drugs was introduced: siponimod
(BAF312), ozanimod, and ponesimod (Figure 1c–e, respectively). Their selectivity is lim-
ited to S1PR1 and S1PR5, limiting unwanted side effects and reducing undesirable side
effects [4,13–15].

In this work, we aim to determine the impact of different nonsynonymous mutations
in the S1PR1 binding site on the binding of S1P and related drugs (Figure 1). Xu et al. [15],
Parril et al. [16] and Fujiwara et al. [17] proposed several amino acids within the binding
pocket of S1PR1 that can participate in the binding of S1P and related drugs. S1P has
experimentally shown different binding affinities based on the mutations in the binding
site [16,17], demonstrating that different mutations near the ligand can indeed cause
binding alterations, making these studies well-suited for validating our LIE α and β

parameters. To predict the affinities and binding modes of drugs based on the mutations in
the S1PR1 binding site we implemented the linear interaction energy (LIE) method. The
optimized empirical [18,19] α and β parameters were used on a set of known SNPs (Table 1)
to determine the binding differences in the investigated drugs. We searched for SNPs
that result in nonsynonymous mutations within the S1PR1 binding site and that could
potentially change the binding pattern of S1P or the investigated drugs. We prepared a
comprehensive list of SNPs in the S1PR1 (UniProt ID: P21453), regardless of their frequency
in the population. From this list, we selected amino-acid residues located within 5 Å of S1P
in the receptor binding site.
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Figure 1. Chemical structures of the endogenic natural mediator and drugs used in MS treatment with
a known S1PR1 action. (a) Sphingosine-1-phosphate (S1P); (b) fingolimod (S) phosphate (FTY720-P);
(c) siponimod (BAF312); (d) ozanimod; and (e) ponesimod.
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Table 1. Known reference SNPs with corresponding amino-acid variants; occurrence (frequency) in
general population and potential impact.

SNPs
Reference SNP Variant Frequency Potential Impact

rs1299231517 M1243.32T 0.000004 possibly damaging
rs1323297044 V1323.40M 0.000004 probably damaging
rs1223284736 F2055.42L 0.000004 possibly damaging
rs1202284551 T2075.44I 0.00011 benign
rs1209378712 T2115.48P 0.000008 possibly damaging
rs201200746 A2937.35T 0.000004 benign

rs1461490142 A2937.35V 0.000007 benign

As seen in Table 1, the frequencies of the selected SNPs were very low in the general
population. However, low-frequency and rare variants can still exert a major impact on
disease [20,21], even when they are not prevalent in the general population. We did not
possess data on the frequency of the selected SNPs, specifically in MS patients, and as such,
we did not focus on population-level frequencies in our study. However, if these SNPs
existed in a patient, they could significantly affect drug binding to the S1PR1, potentially
altering treatment outcomes. Therefore, the utility of our research lies in its application
for personalized treatment, providing insights relevant to individual patients rather than
to broader populations. Although some of the investigated SNPs were predicted to have
damaging effects on protein structure (categorized as “possibly damaging” or “probably
damaging”), our research focused on their potential impact on drug binding rather than on
inherent structural changes. This distinction was important because it aligned well with
our aim to support personalized treatment strategies.

The M1243.32T mutation changed methionine’s longer hydrophobic side chain to a
polar threonine, allowing potential hydrogen bonding. In V1323.40M, small valine be-
came larger methionine. F2055.42L lost pi-stacking potential, possibly reducing binding
affinity. T2075.44I swapped polar threonine for nonpolar isoleucine, eliminating hydrogen
bonding. T2115.48P also disrupted hydrogen bonding, and A2937.35T replaced nonpolar
alanine with polar threonine, capable of hydrogen bonding. A2937.35V showed a small
increase in hydrophobicity. These mutations may directly affect binding or indirectly alter
protein dynamics.

To determine which SNPs and corresponding protein mutations impacted the dif-
ferentiation of drug-receptor binding, we combined extensive molecular dynamic (MD)
simulations and LIE calculations to calculate the free energies of ligand–receptor bind-
ing. MD simulations proved valuable for researching binding mechanisms for drugs [22]
and natural compounds [23]. We conducted extensive MD simulations of S1PR1 proteins
with bound endogenic ligand or drugs (Figure 1) in combination with 15 mutations in
the binding region of the receptor, resulting in ≥26 µs of simulation time. The LIE was
used to compare how different mutations influenced the drugs’ binding. The method was
previously successfully applied to predict the inhibitor affinity in Alzheimer’s disease target
Aβ40 protofibril [24] and HIV-1 protease [25]; additionally, it was also used to provide
mechanistic insights into the action of polyphenolic compounds [23].

The objective of this study was to examine the impact of specific S1PR1 SNPs on drug
binding affinities, with the aim to support personalized treatment strategies for multiple
sclerosis. This study’s workflow (Figure 2) involved initially selecting relevant SNPs based
on predicted functional impacts, followed by computational modeling to construct both
wild-type and SNP–mutant receptor structures. Molecular dynamics simulations were
subsequently executed to observe the changes in receptor dynamics, and the binding
affinities of MS drugs were calculated using the linear interaction energy methodology.
This step-by-step approach offers insights into SNP-specific variations in drug interactions
and provides a computational foundation for future experimental validation.
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Figure 2. Workflow of this study. For the optimization of the empirical LIE parameters, wild-type
systems with different drugs were prepared and subjected to MD simulations. The optimized α

and β parameters were then used in subsequent steps: the validation of the parameters with MD
simulations of the mutated systems bound with sphingosine-1-phosphate (S1P), the exploration of
SNP-based binding modes where different SNPs were introduced, and finally, the performance of
MD simulations for all the examined drugs.

2. Materials and Methods

The structures of S1PR1 with co-crystalized S1P (PDB ID: 7VIE, chain D) and the
investigated drugs, fingolimod (PDB ID: 7EO2, chain A), siponimod (PDB ID: 7TD4, chain
D), and ozanimod (PDB ID: 7EW0, chain D) were downloaded from the RCSB Protein
Data Bank (PDB). The system with ponesimod was prepared using a molecular docking
procedure. We used the protein structure from the complex with co-crystalized S1P (PDB
ID: 7VIE, chain D), where S1P served as a reference ligand for the molecular docking
procedure performed with CmDock (https://gitlab.com/Jukic/cmdock (accessed on 2
February 2023)) [26]. The docking grid was applied as a sphere around the reference ligand
with a 12 Å radius. During molecular docking, explicit waters were not considered. We
executed 100 runs and subsequently obtained 100 potential docked poses of ponesimod.
Based on the docking score, we selected the best docked pose to prepare the system with
ponesimod for further simulations.

We applied CHARMM-GUI [27,28] for the preparation of simulation systems. S1PR1
with bound ligand was placed in a hydrated bilayer of POPC (1-palmytoyl-2-leoyl-sn-
glycero-3-phosphatidylcholine lipids). Protein–ligand systems were prepared using the
CHARMM36m force field [29] with WYF for an improved description of potential π-
cation interactions and solvated within the cubic TIP3P water model box with the edge
size of 125 Å and periodic boundary conditions. Subsequently, Na+ and Cl− ions were
added to achieve electroneutrality and the physiological 0.15 M neutralizing concentration.
All the ligands were prepared to correspond to the physiological conditions at pH 7
(Figure 1). We also prepared systems with only ligands solvated by the TIP3P water
and added physiological concentrations of ions for neutralization as needed by the LIE
calculations, while running the MD simulations under identical conditions to the protein–

https://gitlab.com/Jukic/cmdock
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ligand complexes. For each system, we combined the coordinate files of proteins and
water molecules, then performed 50 steps each of both steepest descent and adopted basis
Newton–Raphson energy minimizations to eliminate steric clashes and to optimize the
atomic coordinates of the solute.

For MD simulations, the MD program NAMD [30,31] was used. The smooth Particle
Mesh Ewald method [32] was applied to compute long-range electrostatic interactions.
225ps of heating and equilibration per system were performed with the HOOVER thermo-
stat (constant particle number N, constant volume V, constant temperature T). The main
production runs were performed for 100 ns per system with a 2fs time step starting after
the final equilibration step. All the production MD simulations used the NPT ensemble
(constant particle number N, constant pressure P = 1 bar, and constant T = 310.15 K). Five
independent parallels of each system were produced, applying different random seed
values, comprising ≥26 µs of MD simulations. All the simulated systems are collected
in Table 2.

Table 2. Overview of prepared systems. For the LIE calculations the five systems with ligands in
aqueous solution were prepared (non-bound ligand energies). For the optimization of the α and β

parameters, the three systems with wild-type S1PR1 and S1P, fingolimod, and ponesimod ligand
were prepared. An additional two with wild-type systems were prepared for the comparison of the
mutation impact on the siponimod and ozanimod binding. The validation of the LIE method was
performed with nine S1P systems. Thirty-five systems representing the most frequent SNPs were
prepared in combination with S1P and all the investigated drugs.

Ligand Variant Purpose

S1P

water
To obtain non-bound ligand energies

(LIE calculations)

fingolimod
siponimod
ozanimod

ponesimod

S1P

WT
Optimization of α and β parameters (S1P,

fingolimod, ponesimod),
comparison of the mutation impact (all)

fingolimod
siponimod
ozanimod

ponesimod

S1P

N1012.60I

Validation of optimized α and
β parameters

N1012.60K
E1213.29A
E1213.29Q
W2696.48A
W2696.48E
R2927.34A
R2927.34V

M1243.32T

Investigated SNPs

S1P V1323.40M
fingolimod F2055.42L
siponimod T2075.44I
ozanimod T2115.48P

ponesimod A2937.35T
A2937.35V

WT—wild type.

To apply the LIE method, we optimized its empirical α and β parameters for the
simulation results of mutated systems to reproduce the experimentally determined IC50
values for S1P, fingolimod, and ponesimod. From measured IC50 values, the ∆Gexp values
were calculated as

∆Gexp = RTlnIC50, (1)
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where R is the universal gas constant, T is the temperature, and IC50 is the experimental
inhibition constant of each drug. In the calculations of ∆Gexp, we applied the temperature
T = 310.15 K, and this was also the temperature used in our simulations. The values of
∆Gexp variated between −13 and −11 kcal/mol and were applied for determining the two
empirical LIE parameters, α and β. We calculated the binding energies of all systems as

∆Gbind = α
(〈

EvdW
〉

bound
−

〈
EvdW

〉
free

)
+ β

(〈
Eelec

〉
bound

−
〈

Eelec
〉

free

)
, (2)

where EvdW and Eelec represent van der Waals and electrostatic interaction energies between
the ligand and surrounding atoms, which can be either solvent (free state) or solvated protein
(bound state). ⟨ ⟩ denotes the average of energies throughout the MD trajectory [18,33].

We conducted further in-depth analysis of the interactions between the ligands and
the amino acids of the S1PR1 binding pocket using a Protein–Ligand Interaction Profiler
(PLIP) [34]. We compiled all the interactions throughout all the five MD parallels for the
wild-type and mutated systems. Then, we reviewed the occupancy of each interaction and
prepared corresponding visual representations.

Finally, a redocking analysis was conducted to validate the docked pose of the ponesi-
mod. We collected the protein structures used in the preparation of MD simulations and
removed the co-crystallized S1P, fingolimod, siponimod, and ozanimod. We then redocked
all the drugs back to their respective targets. The RMSD values between the co-crystallized
and redocked poses of each drug were calculated to validate the method and the docked
pose of the ponesimod.

3. Results and Discussion

The structures of the S1PR1 with different ligands remained stable during MD simula-
tions, and no significant modifications to the protein structures or ligand positions were
detected (Figures S1–S53).

3.1. Empirical Parameter Optimization for LIE Calculations

To successfully use the LIE method to determine the influence of SNPs on drug binding,
the empirical α and β parameters had to be optimized. First, we calculated the ∆Gexp values
from the experimentally determined IC50 values (Table 3).

Table 3. Experimentally determined IC50 values for S1P, fingolimod phosphate, and ozanimod, and
the corresponding calculated ∆Gexp values. We used average ∆Gexp values for S1P and fingolimod
phosphate in the LIE optimization. A standard deviation (st. dev.) was also reported.

S1P Fingolimod Phosphate Ponesimod
IC50 [M] ∆Gexp [kcal/mol] IC50 [M] ∆Gexp [kcal/mol] IC50 [M] ∆Gexp [kcal/mol]

1.60 x 10-10 [35] −13.90 2.80 x 10-10 [36] −13.56 1.30 x 10-8 [37] −11.19
4.70 x 10-10 [38] −13.24 2.10 x 10-9 [39] −12.31
6.70 x 10-10 [40] −13.02 2.20 x 10-9 [39] −12.29
1.40 x 10-9 [41] −12.56
1.40 x 10-9 [42] −12.56
1.40 x 10-9 [43] −12.56

average −12.97 average −12.72
st. dev. 0.49 st. dev. 0.59

We collected van der Waals and electrostatic interaction energies from MD simula-
tions for each parallel in the main simulations. The average interaction energies for each
production run were calculated using Equation (2) (Table S1), and the initial ∆Gbind was
determined for each protein–ligand MD simulation using the average interaction energies
of the non-bound ligand simulation. The empirical α and β parameters were initially set to
0.161 and 0.48, respectively [18,19]. We then performed parameter optimization, where we



Pharmaceutics 2024, 16, 1413 8 of 17

searched for the optimal α and β parameters that brought the computed data for wild-type
S1PR1 with bound S1P, fingolimod, ozanimod closest to the experimentally determined
values. The optimized empirical α and β parameters were 0.46 and 0.09, respectively. The
low β value can be directly connected to the fact that we had bound zwitterions, charged
molecules, and halogens. Almlöf et al. [19] described different models for determining
β, where the authors showed that different hydrogen bond-donating groups lower the
beta parameter. Similarly, Rifai et al. [44] and Ngo et al. [24] successfully applied the LIE
method on SIRT1 and Aβ40 protofibril, respectively, with equally small or even negative β

parameters. The average values of computed binding free energies for S1P, fingolimod phos-
phate, and ponesimod with wild-type S1PR1 were −13.76, −11.60, and −11.25 kcal/mol,
respectively. Therefore, after minimizing the empirical parameters, the computed binding
energies agreed well with the experimental values. To confirm our optimized empirical α
and β parameters, we performed the validation with S1P bound to S1PR1, with different
mutations within the binding site. Optimized α and β parameters were thus used for the
∆Gbind calculations of different S1PR1 mutants with S1P (Table 1) for method validation.
Its results are presented in Table 4 with the average values of parallel MD simulations and
the corresponding standard deviations.

Table 4. Computed results for method validation with S1P bound to mutated S1PR1. Mutations
were selected based on the experimental findings by Parril et al. [16] and Fujiwara et al. [17]. For
each mutant, the average binding free energy and its standard deviation were calculated. All the
calculated free energies are collected in Table S1.

Variant Average Binding Free Energy [kcal/mol] Standard Deviation

WT −13.76 1.42
N1012.60I −12.11 1.66
N1012.60K −13.59 0.84
E1213.29A −11.58 3.32
E1213.29Q −12.24 3.11
W2696.48A −11.18 0.94
W2696.48E −14.15 2.14
R2927.34A −13.48 1.72
R2927.34V −13.23 1.77

WT—wild type.

Comparing our results with the experimental values from Parril et al. [16] and Fujiwara
et al. [17], we can see that the N101I mutation was less favorable than the N101K mutation,
as well as that the E121A mutation was less favorable than the E121Q mutation. The
binding free energies of both the E121 mutants and R292 mutants were higher than of
the WT; also, the E121 mutations were less favorable than the R292 mutations. This is
all in agreement with the radioligand binding assays performed by Parril et al. [16]. The
mutation W269E was more favorable than W269A with a large difference in the binding
free energies, which again coincides with findings by Fujiwara et al. [17].

3.2. SNP-Based Binding Modes

Using the optimized parameters for LIE calculations, we compared the impact of the
known SNPs in the binding site of S1PR1 (Table 5) on drug binding. In what follows, we
focus on each drug individually and compare the impact of mutations on their binding
to S1PR1.



Pharmaceutics 2024, 16, 1413 9 of 17

Table 5. Calculated binding free energies of S1P and investigated drugs to the S1PR1 binding site in
combination with different SNPs. The average free energy [kcal/mol] and the standard deviation
were calculated for each variant. All the calculated interaction energies are collected in Supporting
Information Table S2.

Variant
S1P Fingolimod Siponimod Ozanimod Ponesimod

Average St. dev. Average St. dev. Average St. dev. Average St. dev. Average St. dev.

WT −13.76 1.42 −11.60 2.00 −14.62 0.37 −8.22 0.54 −11.25 0.40
M1243.32T −13.56 1.03 −11.29 0.68 −15.99 0.62 −12.72 0.26 −13.18 0.50
V1323.40M −12.82 0.85 −10.95 0.67 −16.12 1.01 −12.76 0.57 −13.47 0.46
F2055.42L −13.51 1.54 −10.83 1.19 −16.72 0.49 −12.56 0.74 −13.90 0.95
T2075.44I −13.29 0.98 −11.36 1.00 −16.55 0.55 −11.85 0.54 −14.06 0.32
T2115.48P −13.24 0.43 −11.88 0.85 −15.98 0.79 −12.37 0.76 −13.12 0.46
A2937.35T −12.50 1.40 −11.87 0.87 −16.71 0.92 −12.31 0.42 −14.09 0.56
A2937.35V −12.67 0.78 −11.72 0.99 −16.52 0.44 −12.38 0.69 −14.21 0.52

WT—wild type.

The S1PR1 modulation regulated the recirculation of lymphocytes between the blood
and lymphoid tissues. The binding of the modulator downmodulated the egress of the T
and B cells from lymph nodes. Therefore, the stronger the binding of the modulator, the
lower the inflammatory response, which formed a key mechanism in MS regulation [6,15].

As can be observed in Table 5, all the investigated mutations lowered the binding
affinity of S1P, likely resulting in the impaired endogenic modulation of S1PR1. If we
compare the binding affinities of drugs and the endogenic modulator S1P, we notice that
while S1P is the most effective in combination with the wild-type form, the investigated
drugs presented better calculated binding affinity when at least one SNP was present. This
is an important finding, as we do not want S1P to severely interfere with the drug binding,
since this could result in ineffective therapy. The siponimod exhibited the most favorable
binding in all the simulated systems. However, since the success of a drug therapy in an
individual depends not only on the binding free energy, but also on other factors, including
pharmacokinetics and how the patient accepts the drug and its potential side effects, we,
therefore, focused on comparing the impact of the mutations on each drug individually.

Analyzing the binding affinities of drugs according to different SNPs revealed that
some mutation–drug combinations are more favorable than others, as one can observe
from the plotted heatmap (Figure 3). The binding affinity of fingolimod phosphate was
influenced by specific mutations, with minor variations observed compared to the wild
type. Notably, the mutations T2115.48P, A2937.35T, and A2937.35V enhanced the binding
of the drug relative to the wild type (Table 5). In contrast, siponimod, ozanimod, and
ponesimod exhibited consistently improved binding across all the examined mutations,
characterized by significantly lower binding energies. Among these, siponimod demon-
strated the highest binding affinity in the presence of the F2055.42L, A2937.35T, T2075.44I,
and A2937.35V mutations. Similarly, the ponesimod shared a binding mode analogous to
siponimod, although with a slightly different preference for mutations. Both the siponimod
and the ponesimod showed a reduced binding affinity to the wild type and the T2115.48P
mutant. Ozanimod exhibited a different binding mode than the other modulators. The
mutations V1323.40M, M1243.32T, and F2055.42L increased the binding affinity of ozanimod
the most while the T2075.44I increased the binding affinity the least.
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while value 10 means that the compound had the most favorable binding free energy.

To sum up the overall results, if a patient would exhibit the M1243.32T or V1323.40M
mutation, a reasonable choice would be ozanimod, because its binding free energy with
these mutants was one of the most favorable. Moreover, if the F2055.42L mutation was
present in the S1PR1 binding site, the siponimod would be a sensible choice, with ozanimod
and ponesimod as potential substitutions. When the T2075.44I mutation occurs, preferred
therapy drugs would be siponimod and ponesimod. In the case of the T2115.48P mutant,
a favorable drug based on our calculations would be fingolimod phosphate. Moreover,
when the mutants A2937.35T or A2937.35V occur, there are three options that could work
well: siponimod, ponesimod, and fingolimod phosphate, with ozanimod also being a
potential choice.

To further investigate the differences between binding modes, we prepared a detailed
interaction analysis for all the systems reported in Table 5 using PLIP. For better clarity of
the obtained results, we focused on the interactions with ≥25.0% occupancy throughout
each MD simulation. The interaction analysis of all the systems is presented in Supporting
Information Tables S3–S7. However, to better explain the main findings emphasizing the
critical impacts of SNPs on binding affinities and interaction types we here highlight two
prototypical examples: first, the difference in S1P binding to wild types (the strongest bind-
ing) and to proteins with the A2937.35T mutation (the weakest binding); and the second,
the difference in siponimod binding to wild types (the weakest binding) and to proteins
with the A2937.35T mutation (one of the strongest bindings).The interaction analysis of
S1P bound to the wild type (Figure 4a) and to the A2937.35T mutant (Figure 4b) revealed
that S1P in the wild-type forms more hydrophobic interactions with multiple amino acids,
including A2937.35. In the A2937.35T mutant protein, S1P did not interact with threonine293,
likely due to steric hindrance from threonine’s longer side chain, which also obstructed
the interaction with the polar head of the S1P. Additionally, the hydrogen bonding of S1P
was stronger in the wild type compared to the A2937.35T mutant. These findings are crucial
because they highlight how specific mutations can drastically alter the binding affinity of a
natural ligand, potentially impacting a receptor’s normal function and the effectiveness of
endogenous modulation. Figure 5 highlights the interaction analysis of siponimod binding



Pharmaceutics 2024, 16, 1413 11 of 17

to the wild type (a) and to the A2937.35T mutant (b). Siponimod forms more hydrogen
bonds with the A2937.35T mutant protein. Moreover, the loss of hydrophobic interac-
tions between siponimod and threonine, present in the mutant protein, was also evident.
This is important, as it demonstrates that certain mutations can enhance drug binding
through increased hydrogen bonding, while simultaneously losing hydrophobic interac-
tions, which could inform the design of more effective therapeutic agents tailored to specific
genetic profiles.
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Figure 4. The interaction analysis of S1P (green) binding to (a) the wild type and (b) the A2937.35T
mutant. Black dotted lines depict hydrogen bonds, blue dotted lines depict hydrophobic interactions,
and orange dotted lines in combination with orange spheres depict salt bridges. For better clarity of
the obtained results, we focused on the interactions with ≥25.0% occupancy throughout each MD
simulation. A representative snapshot from the corresponding MD trajectory was applied. Implicit
hydrogen atoms are not shown for better clarity.
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Figure 5. The interaction analysis of siponimod (purple) binding to (a) the wild type and (b) the
A2937.35T mutant. Black dotted lines depict hydrogen bonds, blue dotted lines depict hydrophobic
interactions, and orange dotted lines in combination with orange spheres depict salt bridges. For bet-
ter clarity of the obtained results, we focused on the interactions with ≥25.0% occupancy throughout
each MD simulation. A representative snapshot from the corresponding MD trajectory is applied.
Implicit hydrogen atoms are not shown for better clarity.

3.3. Ponesimod Pose Validation

The docked ponesimod pose was validated through a redock procedure, where we
applied CmDock (https://gitlab.com/Jukic/cmdock (accessed on 2 February 2023)) [26] to
redock S1P, and fingolimod, siponimod, and ozanimod to their S1PR1 crystal structures.
The binding grid was determined with a 12 Å radius. Due to their flexibility, we considered
the ten highest-scoring poses for each ligand and selected three poses per ligand with

https://gitlab.com/Jukic/cmdock


Pharmaceutics 2024, 16, 1413 13 of 17

the lowest RMSD (Table 6). The RMSD values for S1P and fingolimod phosphate were
higher due to their flexible alkyl tail, but the poses were still very similar (Figure 6). In
contrast, the RMSD values for ponesimod and ozanimod were lower due to their more rigid
structures (Figure 7).

Table 6. Energies and RMSDs of redocked S1P, fingolimod phosphate, siponimod, and ozanimod.
Three poses with the lowest RMSD were selected among the ten highest-scoring poses.

S1P Fingolimod Siponimod Ozanimod
Energy

[kJ/mol] RMSD [Å]
Energy

[kJ/mol] RMSD [Å]
Energy

[kJ/mol] RMSD [Å]
Energy

[kJ/mol] RMSD [Å]

−12.52 3.43 −8.40 4.09 −24.00 1.09 −18.45 1.25
−11.98 3.32 −8.26 2.71 −22.95 0.97 −18.15 2.61
−11.54 2.41 −8.14 2.46 −21.07 1.32 −17.70 1.34
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4. Conclusions

In this study, we examined how nonsynonymous mutations in the S1PR1’s binding
site affect ligand and drug binding in MS treatment by employing MD simulations and LIE
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calculations to predict binding affinities and guide personalized therapies. Structures of
S1PR1 with co-crystallized S1P, fingolimod, siponimod, and ozanimod were obtained from
the RCSB Protein Data Bank (PDB). The system with ponesimod was prepared via molecular
docking applying the S1P structure as a reference ligand. Extensive MD simulations were
performed using NAMD, encompassing over 26 µs of trajectories across various systems.
LIE calculations were utilized to determine the binding free energies of the investigated
compounds, with the parameter optimization based on experimentally determined IC50
values. The optimized α and β parameters were 0.46 and 0.09, respectively, and were
subsequently applied to calculate the binding free energies of the investigated compounds
in conjunction with different known mutations.

Our findings indicate that S1P binds most favorably to the wild-type S1PR1, while
mutations reduce the affinity of this natural modulator. Conversely, these mutations
positively affected drug binding. We demonstrated the potential for personalized therapy,
as different drugs exhibited varying binding affinities depending on the mutations present.
We proposed distinct personalized treatment options based on seven known SNPs in
the S1PR1 binding site. In this study, we focused on analyzing the effect of individual
SNPs on drug binding to the S1PR1. However, as there exists the possibility of multiple
nonsynonymous SNPs in the binding site, our developed methodology using molecular
docking, MD simulations, and optimized LIE parameters, is well suited to be also applied in
such cases. Last but not least, redocking analyses validated the docked pose of ponesimod
by comparing the RMSD values between co-crystallized and redocked positions of S1P,
fingolimod, siponimod, and ozanimod.

The primary limitation of this study is its reliance solely on computational results
without direct experimental validation. This reliance may impact the accuracy of the
predicted effects of SNPs on drug binding affinities and receptor dynamics. Additionally,
the limited availability of population-specific data on SNP prevalence in multiple sclerosis
patients restricts our ability to assess the generalization of our findings. These factors
may affect the broader applicability of our results. Future experimental studies, including
in vitro and in vivo validations, are crucial to confirm our computational predictions and
to explore their clinical relevance in personalized treatment strategies.

This study establishes an important foundation for understanding how specific SNPs
can alter drug binding affinities and interactions with the S1PR1, thereby paving the way
for personalized treatment strategies in multiple sclerosis. Serving as a critical initial
computational step, our findings can guide future experimental research and clinical
studies, ultimately combining computational predictions with real-world applications in
precision medicine.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/pharmaceutics16111413/s1, Table S1: computed results for method
validation with S1P bound to mutated S1PR1 for all the parallels; Table S2: calculated binding free
energies of S1P and investigated drugs to the S1PR1 binding site in combination with different SNPs
for all the parallels; Table S3: A detailed interaction analysis for all the systems with bound S1P
using PLIP. For better clarity of the obtained results, we focused on the interactions with ≥25.0%
occupancy throughout each MD simulation. The ligand–atom numbering for S1P is presented in
Figure S54; Table S4: A detailed interaction analysis for all the systems with bound fingolimod
using PLIP. For better clarity of the obtained results, we focused on the interactions with ≥25.0%
occupancy throughout each MD simulation. The ligand–atom numbering for fingolimod phosphate
is presented in Figure S55; Table S5: A detailed interaction analysis for all the systems with bound
siponimod using PLIP. For better clarity of the obtained results, we focused on the interactions with
≥25.0% occupancy throughout each MD simulation. The ligand–atom numbering for siponimod
is presented in Figure S56; Table S6: A detailed interaction analysis for all the systems with bound
ozanimod using PLIP. For better clarity of the obtained results, we focused on the interactions with
≥25.0% occupancy throughout each MD simulation. The ligand–atom numbering for ozanimod is
presented in Figure S57; Table S7: A detailed interaction analysis for all the systems with bound
ponesimod using PLIP. For better clarity of the obtained results, we focused on the interactions with
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≥25.0% occupancy throughout each MD simulation. The ligand–atom numbering for ponesimod
is presented in Figure S58; Figures S1–S5: RMSD of S1P, fingolimod, siponimod, ozanimod, and
ponesimod, respectively, in water in relation to the frames with five parallel simulations. A total
of 200 frames coincided with 100 ns of simulation; Figures S6–S10: RMSD of (a) wild-type S1PR1
protein and (b) S1P, fingolimod, siponimod, ozanimod, and ponesimod, respectively, in relation to
the frames with five parallel simulations. A total of 200 frames coincided with 100 ns of simulation;
Figures S11–S18: RMSD of (a) protein with N1012.60K, E1213.29A, E1213.29Q, W2696.48A, W2696.48E,
R2927.34A, R2927.34V mutations, respectively, and (b) S1P in relation to the frames with five parallel
simulations. A total of 200 frames coincided with 100 ns of simulation; Figures S19–S25: RMSD of (a)
protein with M1243.32T, V1323.40M, F2055.42L, T2075.44I, T2115.48P, A2937.35T, A2937.35V mutations,
respectively, and (b) S1P in relation to the frames with five parallel simulations. A total of 200 frames
coincided with 100 ns of simulation; Figures S26–S32: RMSD of (a) protein with M1243.32T, V1323.40M,
F2055.42L, T2075.44I, T2115.48P, A2937.35T, A2937.35V mutations, respectively, and (b) fingolimod in
relation to the frames with five parallel simulations. A total of 200 frames coincided with 100 ns of
simulation; Figures S33–S39: RMSD of (a) protein with M1243.32T, V1323.40M, F2055.42L, T2075.44I,
T2115.48P, A2937.35T, A2937.35V mutations, respectively, and (b) siponimod in relation to the frames
with five parallel simulations. A total of 200 frames coincided with 100 ns of simulation; Figures
S40–S46: RMSD of (a) protein with M1243.32T, V1323.40M, F2055.42L, T2075.44I, T2115.48P, A2937.35T,
A2937.35V mutations, respectively, and (b) ozanimod in relation to the frames with five parallel
simulations. A total of 200 frames coincided with 100 ns of simulation; Figures S47–S53: RMSD of (a)
protein with M1243.32T, V1323.40M, F2055.42L, T2075.44I, T2115.48P, A2937.35T, A2937.35V mutations,
respectively, and (b) ponesimod in relation to the frames with five parallel simulations. A total of 200
frames coincided with 100 ns of simulation; Figures S54–S58: S1P, fingolimod, siponimod, ozanimod,
and ponesimod structures with atom numbering, respectively.
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