A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Prediction of Potential Targets
2.2. Cell Material and Drugs
2.3. Cell Line and Cell Culture
2.4. Cell Viability Assay
2.5. Cytotoxicity Assay
2.6. Cell Morphology Visualization
2.7. Data Analysis
3. Results
3.1. Targets of the Drugs
3.2. Central Nervous System Drugs Present Promising Antineoplastic Activity against Squamous Cell Carcinoma of the Bladder Cells
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer Statistiscs, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef]
- Martin, J.W.; Carballido, E.M.; Ahmed, A.; Farhan, B.; Dutta, R.; Smith, C.; Youssef, R.F. Squamous cell carcinoma of the urinary bladder: Systematic review of clinical characteristics and therapeutic approaches. Arab J. Urol. 2016, 14, 183–191. [Google Scholar] [CrossRef] [PubMed]
- Michaud, D.S. Chronic inflammation and bladder cancer. Urol. Oncol. Semin. Orig. Investig. 2007, 25, 260–268. [Google Scholar] [CrossRef]
- Shokeir, A.A. Squamous cell carcinoma of the bladder: Pathology, diagnosis and treatment. BJU Int. 2004, 93, 216–220. [Google Scholar] [CrossRef]
- Efared, B.; Bako, A.B.A.; Idrissa, B.; Alhousseini, D.; Boureima, H.S.; Sodé, H.C.; Nouhou, H. Urinary bladder Schistosoma haematobium-related squamous cell carcinoma: A report of two fatal cases and literature review. Trop. Dis. Travel Med. Vaccines 2022, 8, 3. [Google Scholar] [CrossRef] [PubMed]
- Yohana, C.; Bakuza, J.S.; Kinung’hi, S.M.; Nyundo, B.A.; Rambau, P.F. The trend of schistosomiasis related bladder cancer in the laze zone, Tanzania: A retrospective review over 10 years period. Infect. Agent. Cancer 2023, 18, 10. [Google Scholar] [CrossRef]
- Gouveia, M.J.; Santos, J.; Brindley, P.J.; Rinaldi, G.; Lopes, C.; Santos, L.L.; Correia da Costa, J.M.; Vale, N. Estrogen-like metabolites and DNA-adducts in urogenital schistosomiasis-associated bladder cancer. Cancer Lett. 2015, 359, 226–232. [Google Scholar] [CrossRef]
- Vale, N.; Gouveia, M.J.; Rinaldi, G.; Santos, J.; Santos, L.L.; Brindley, P.J.; Correia da Costa, J.M. The role of estradiol metabolism in urogenital schistosomiasis-induced bladder cancer. Tumor Biol. 2017, 39, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Stensland, K.D.; Zaid, H.; Broadwin, M.; Sorcini, A.; Canes, D.; Galsky, M.; Moinzadeh, A. Comparative effectiveness of treatment strategies for squamous cell carcinoma of the bladder. Eur. Urol. Oncol. 2020, 3, 509–514. [Google Scholar] [CrossRef]
- Niraula, S.; Seruga, B.; Ocana, A.; Shao, T.; Goldstein, R.; Tannock, I.F.; Amir, E. The price we pay for progress: A meta-analysis of harms of newly approved anticancer drugs. Drugs J. Clin. Oncol. 2012, 30, 3012–3019. [Google Scholar] [CrossRef]
- Pantziarka, P.; Sukhtame, V.; Meheus, L.; Sukhatme, V.P.V.V.; Bouche, G. Repurposing non-cancer drugs in oncology-how many drugs are out there? bioRxiv 2017, 1, 197434. [Google Scholar]
- Bertolini, F.; Sukhatme, V.P.; Bouche, G. Drug repurposing in oncology-patient and health systems opportunities. Nat. Rev. Clin. Oncol. 2015, 12, 732–742. [Google Scholar] [CrossRef]
- Verbaanderd, C.; Meheus, L.; Huys, I.; Pantziarka, P. Repurposing drugs in oncology: Next steps. Trends Cancer 2017, 3, 543–546. [Google Scholar] [CrossRef]
- Antoszczak, M.; Markowska, A.; Markowska, J.; Huczynski, A. Old wine in new bottles: Drug repurposing in oncology. Eur. J. Pharmacol. 2020, 866, 172784. [Google Scholar] [CrossRef]
- Duarte, D.; Guerreiro, I.; Vale, N. Novel strategies for cancer combat: Drug combination using repurposed drugs induces synergistic growth inhibition of MCF-7 breast and HT-29 colon cancer cells. Curr. Issues Mol. Biol. 2022, 44, 4930–4949. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Falcão, S.I.; El Mehdi, I.; Vilas-Boas, M.; Vale, N. Honeybee venom synergistically enhances the cytotoxic effect of CNS drugs in HT-29 colon and MCF-7 breast cancer cell lines. Pharmaceutics 2022, 14, 511. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Nunes, M.; Ricardo, S.; Vale, N. Combination of antimalarial and CNS drugs with antineoplastic agents in MCF-7 breast and HT-29 colon cancer cells: Biosafety evaluation and mechanism of action. Biomolecules 2022, 12, 1490. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Cardoso, A.; Vale, N. Synergistic growth inhibition of HT-29 colon and MCF-7 breast cancer cells with simultaneous and sequential combinations of antineoplastics and CNS drugs. Int. J. Mol. Sci. 2021, 10, 7408. [Google Scholar] [CrossRef] [PubMed]
- Duarte, D.; Vale, N. Antidepressant drug sertraline against human cancer cells. Biomolecules 2022, 12, 1513. [Google Scholar] [CrossRef] [PubMed]
- Nunes, M.; Duarte, D.; Vale, N.; Ricardo, S. Pitavastatin and ivermectin enhance the efficacy of paclitaxel in chemoresistant high-grade serous carcinoma. Cancers 2022, 14, 4357. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.; Araújo, D.; Pereira, M.; Lopes, B.; Sousa, P.; Sousa, A.C.; Coelho, A.; Rêma, A.; Alvites, R.; Faria, F.; et al. Repurposing benzotropine, natamycin and nitazoxanide using drug combination and characterization of gastric cancer cell lines. Biomedicines 2023, 11, 799. [Google Scholar] [CrossRef]
- Abdelaleem, M.; Ezzat, H.; Osama, M.; Megahed, A.; Alaa, W.; Gaber, A.; Shafei, A.; Refaat, A. Prospects for repurposing CNS drugs for cancer treatment. Oncol. Rev. 2019, 13, 411. [Google Scholar] [CrossRef]
- Siddiqui, S.; Deshmukh, A.J.; Mudaliar, P.; Nalawade, A.J.; Iyer, D.; Aich, J. Drug repurposing: Re-inventing therapies for cancer without re-entering the development pipeline-a review. J. Egypt. Nat. Cancer Inst. 2022, 34, 33. [Google Scholar] [CrossRef]
- Sertraline|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB01104 (accessed on 16 August 2023).
- Kowalska, M.; Nowaczyk, J.; Fijałkowski, Ł.; Nowaczyk, A. Paroxetine-Overview of the Molecular Mechanisms of Action. Int. J. Mol. Sci. 2021, 22, 1662. [Google Scholar] [CrossRef]
- Paroxetine|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB00715 (accessed on 16 August 2023).
- Ban, A.T. Fifty years chlorpromazine: A historical perspective. Neuropsychiatr. Dis. Treat. 2007, 3, 495–500. [Google Scholar]
- Chlorpromazine|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB00477 (accessed on 18 August 2023).
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Toschi, L.; Finocchiaro, G.; Bartolini, S.; Gioia, V.; Cappuzzo, F. Role of gemcitabine in cancer therapy. Future Oncol. 2005, 1, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Waller, C.F. Imatinib mesylate. Recent results. Cancer Res. 2018, 212, 1–27. [Google Scholar]
- Yu, S.; Sun, L.; Jiao, Y.; Lee, L.T.O. The Role of G Protein-coupled Receptor Kinases in Cancer. Int. J. Biol. Sci. 2018, 14, 189–203. [Google Scholar] [CrossRef]
- Chaudhary, P.K.; Kim, S. An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021, 10, 3288. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, M.; Turnbull, T.; Sebastian, S.; Kempson, I. The MTT Assay: Utility, Limitations, Pitfalls, and Interpretation in Bulk and Single-Cell Analysis. Int. J. Mol. Sci. 2021, 22, 12827. [Google Scholar] [CrossRef] [PubMed]
- Mazziotta, C.; Lanzillotti, C.; Gafà, R.; Touzé, A.; Durand, M.A.; Martini, F.; Rotondo, J.C. The Role of Histone Post-Translational Modifications in Merkel Cell Carcinoma. Front. Oncol. 2022, 12, 832047. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Turcan, S. Epigenetic Drugs and Their Immune Modulating Potential in Cancers. Biomedicines 2022, 10, 211. [Google Scholar] [CrossRef]
- Talevi, A.; Talevi, A.; Bellera, C.L. Challenges and opportunities with drug repurposing: Finding strategies to find alternative uses of therapeutics. Expert. Opin. Drug Discov. 2020, 15, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.; Peng, R.K.; Guo, C.L.; Li, A.; Yang, X.M.; Zeng, R.; Li, Y.L.; Gu, J.; Ouyang, Q. Discovery of sertraline and its derivatives able to combat drug-resistant gastric cancer cell via inducing apoptosis. Bioorganic Med. Chem. Lett. 2021, 41, 127997. [Google Scholar] [CrossRef]
- Radin, D.P.; Patel, P. A current perspective on the oncopreventive and oncolytic properties of selective serotonin reuptake inhibitors. Biomed. Pharmacother. 2017, 87, 636–639. [Google Scholar] [CrossRef]
- Zheng, Y.; Chang, X.; Huang, Y.; He, D. The application of antidepressant drugs in cancer treatment. Biomed. Pharmacother. 2023, 157, 113985. [Google Scholar] [CrossRef]
- Chinnapaka, S.; Bakthavachalam, V.; Munirathinam, G. Repurposing antidepressant sertraline as a pharmacological drug to target prostate cancer stem cells: Dual activation of apoptosis and autophagy signaling by deregulating redox balance. Am. J. Cancer Res. 2020, 10, 2043–2065. [Google Scholar]
- Gil-Ad, I.; Zolokov, A.; Lomnitski, L.; Taler, M.; Bar, M.; Luria, D.; Ram, E.; Weizman, A. Evaluation of the potential anti-cancer activity of the antidepressant sertraline in human colon cancer cell lines and in colorectal cancer-xenografted mice. Int. J. Oncol. 2008, 33, 277–286. [Google Scholar] [CrossRef]
- Jiang, X.; Lu, W.; Shen, X.; Wang, Q.; Lv, J.; Liu, M.; Cheng, F.; Zhao, Z.; Pang, X. Repurposing Sertraline Sensitizes Non-Small Cell Lung Cancer Cells to Erlotinib by Inducing Autophagy. JCI Insight 2018, 3, e98921. [Google Scholar] [CrossRef]
- Jang, W.-J.; Jung, S.K.; Vo, T.T.L.; Jeong, C.-H. Anticancer activity of paroxetine in human colon cancer cells: Involvement of MET and ERBB3. J. Cell Mol. Med. 2019, 23, 1106–1115. [Google Scholar] [CrossRef] [PubMed]
- Cakil, Y.D.; Ozunal, Z.G.; Kayali, D.G.; Aktas, R.G.; Saglam, E. Anti-proliferative effects of paroxetine alone or in combination with sorafenib in HepG2 cells. Braz. J. Pharm. Sci. 2022, 58, e201148. [Google Scholar] [CrossRef]
- Matteoni, S.; Matarrese, P.; Ascione, B.; Buccarelli, M.; Ricci-Vitiani, L.; Pallini, R.; Villani, V.; Pace, A.; Paggi, M.G.; Abbruzzese, C. Anticancer Properties of the Antipsychotic Drug Chlorpromazine and Its Synergism with Temozolomide in Restraining Human Glioblastoma Proliferation In Vitro. Front. Oncol. 2021, 11, 635472. [Google Scholar] [CrossRef] [PubMed]
- Chou, C.T.; He, S.; Jan, C.R. Paroxetine-induced apoptosis in human osteosarcoma cells: Activation of p38 MAP kinase and caspase-3 pathways without involvement of [Ca2+]i elevation. Toxicol. Appl. Pharmacol. 2007, 218, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.W.; Kim, E.J.; Nyiramana, M.M.; Shin, E.J.; Jin, H.; Ryu, J.H.; Kang, K.R.; Lee, G.W.; Kim, H.J.; Han, J.; et al. Paroxetine Induces Apoptosis of Human Breast Cancer MCF-7 Cells through Ca2+-and p38 MAP Kinase-Dependent ROS Generation. Cancers 2019, 11, 64. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.C.; Chou, C.T.; Pan, C.C.; Hsieh, Y.D.; Liang, W.Z.; Chao, D.; Tsai, J.Y.; Liao, W.C.; Kuo, D.H.; Shieh, P.; et al. Paroxetine-induced Ca2+ movement and death in OC2 human oral cancer cells. Chin. J. Physiol. 2011, 54, 310–317. [Google Scholar]
- Joensuu, H.; Dimitrijevic, S. Tyrosine kinase inhibitor imatinib (STI571) as an anticancer agent for solid tumours. Ann. Med. 2001, 33, 451–455. [Google Scholar] [CrossRef]
- Chien, J.-M.; Chou, C.-T.; Pan, C.-C.; Kuo, D.-H.; Shieh, P.; Ho, C.-M.; Chu, S.-T.; Su, H.-H.; Chi, C.-C.; Jan, C.-R. The mechanism of sertraline-induced [Ca2+]i rise in human OC2 oral cancer cells. Hum. Exp. Toxicol. 2011, 30, 1635–1643. [Google Scholar] [CrossRef]
- Darkin, S.; McQuillan, J.; Ralph, R.K. Chlorpromazine: A potential anticancer agent? Biochem. Biophys. Res. Commun. 1984, 125, 184–191. [Google Scholar] [CrossRef]
- Yde, C.W.; Clausen, M.P.; Bennetzen, M.V.; Lykkesfeldt, A.E.; Mouritsen, O.G.; Guerra, B. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anti-Cancer Drugs 2009, 20, 723–735. [Google Scholar] [CrossRef] [PubMed]
- Syed, S.K.; Christopherson, R.I.; Roufogalis, B.D. Chlorpromazine transport in membrane vesicles from multidrug resistant CCRF-CEM cells. Biochem. Mol. Biol. Int. 1996, 39, 687–696. [Google Scholar] [CrossRef]
- Shin, S.Y.; Kim, C.G.; Kim, S.H.; Kim, Y.S.; Lim, Y.; Lee, Y.H. Chlorpromazine activates p21Waf1/Cip1 gene transcription via early growth response-1 (Egr-1) in C6 glioma cells. Exp. Mol. Med. 2010, 42, 395–405. [Google Scholar] [CrossRef]
- Xu, F.; Xi, H.; Liao, M.; Zhang, Y.; Ma, H.; Wu, M.; Xue, Q.; Sun, H.; Zhang, Y.; Xia, Y. Repurposed antipsychotic chlorpromazine inhibits colorectal cancer and pulmonary metastasis by inducing G2/M cell cycle arrest, apoptosis, and autophagy. Cancer Chemother. Pharmacol. 2022, 89, 331–346. [Google Scholar] [CrossRef]
- Kamgar-Dayhoff, P.; Brelidze, T.I. Multifaceted effect of chlorpromazine in cancer: Implications for cancer treatment. Oncotarget 2021, 12, 1406–1426. [Google Scholar] [CrossRef] [PubMed]
- Matteoni, S.; Matarrese, P.; Ascione, B.; Ricci-Vitiani, L.; Pallini, R.; Villani, V.; Pace, A.; Paggi, M.G.; Abbruzzese, C. Chlorpromazine induces cytotoxic autophagy in glioblastoma cells via endoplasmic reticulum stress and unfolded protein response. J. Exp. Clin. Cancer Res. 2021, 40, 347. [Google Scholar] [CrossRef] [PubMed]
- Weeks, J.C.; Roberts, W.M.; Leasure, C.; Suzuki, B.M.; Robinson, K.J.; Currey, H.; Wangchuck, P.; Eichenbergen, R.M.; Saxton, A.D.; Bird, T.D.; et al. Sertraline, paroxetine, and chlorpromazine are rapidly acting anthelminthic drugs capable of clinical repurposing. Sci. Rep. 2018, 8, 975. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans; A Review of Human Carcinogens; IARC Monographs on the Evaluation of Carcinogenic Risks to Human Biological Agents; International Agency for Research on Cancer: Lyon, France, 2012; Volume 100B, pp. 356–363. [Google Scholar]
Drugs | Target Class | Target (Common Name) | Role of Target |
---|---|---|---|
5-Fluorouracil | Transferase | TYMS | Biosynthesis of thymidylate |
Gemcitabine | Transferase Enzyme | TK1 CDA | Recycling and regenerating thymidine for DNA synthesis DNA and RNA synthesis |
Imatinib | Kinase Electrochemical transporter | HIPK4 SLC22A2 | Regulates phosphorylation Mediates the transport of a variety of organic cations |
Sertraline | Family A G protein-coupled receptor | CHRM4 HTR2B | Adenylyl cyclase inhibition Inhibition of serotonin |
Paroxetine | CHRM4 CHRM5 | Adenylyl cyclase inhibition Adenylate cyclase inhibition | |
Chlorpromazine | CHRM4 HTR2B | Adenylyl cyclase inhibition Inhibition of serotonin |
Class of Drug | Drug | IC50 (µM) |
---|---|---|
Central nervous system | Sertraline | 1.90 |
Paroxetine | 8.45 | |
Chlorpromazine | 5.03 | |
Antineoplastic | 5-FU | 4.10 |
Gemcitabine | 0.0116 | |
Imatinib | >10.00 |
Drug | Type of Cancer | Cell Line | IC50 (µM) | References |
---|---|---|---|---|
Sertraline | Breast | MCF-7 | 2.22 | [38] |
Gastric | SGC-7901/DDP | 18.73 | [39,41] | |
Prostate | PC3 | N.D. | [40] | |
DU145 | [40] | |||
LNCaP | [40] | |||
PSCS 1 | [40] | |||
Colon | HT-29 | 2.45 | [15] | |
14.7 | [42] | |||
LS1034 | 13.1 | [42] | ||
Lung | A549 | 11.10 | [43] | |
H522 | 10.50 | |||
PC9/R | 9.60 | |||
H1975 | 9.40 | |||
Paroxetine | Colon | HCT116 | 13.50 | [44] |
HT-29 | 7.01 | |||
Liver | HepG2 | 7.30 | [45] | |
Chlorpromazine | Glioblastoma | T98G | 10.3 | [46] |
U-87 MG | 10.4 | |||
U-251 MG | 10.6 | |||
TS#1 2 | 21.6 | |||
TS#83 2 | 18.4 | |||
TS#163 2 | 15.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gouveia, M.J.; Ribeiro, E.; Vale, N. A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5. Pharmaceutics 2024, 16, 212. https://doi.org/10.3390/pharmaceutics16020212
Gouveia MJ, Ribeiro E, Vale N. A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5. Pharmaceutics. 2024; 16(2):212. https://doi.org/10.3390/pharmaceutics16020212
Chicago/Turabian StyleGouveia, Maria João, Eduarda Ribeiro, and Nuno Vale. 2024. "A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5" Pharmaceutics 16, no. 2: 212. https://doi.org/10.3390/pharmaceutics16020212
APA StyleGouveia, M. J., Ribeiro, E., & Vale, N. (2024). A Surprising Repurposing of Central Nervous System Drugs against Squamous Cell Carcinoma of the Bladder, UM-UC-5. Pharmaceutics, 16(2), 212. https://doi.org/10.3390/pharmaceutics16020212