Gellan-Based Hydrogel as a Drug Delivery System for Caffeic Acid Phenethyl Ester in the Treatment of Oral Candida albicans Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of CAPE-GG Formulations
2.2. Ultraviolet-Visible (UV-Vis) Absorption Spectroscopy of CAPE, GG, and CAPE-GG Formulations
2.3. CAPE Release Kinetics
2.4. Microorganisms and Growth Conditions
2.5. Antifungal Activity of CAPE and CAPE-GG Formulations by Determination of Minimum Inhibitory Concentration
2.6. Preparation of C. albicans Suspension for the Planktonic and Biofilm Assays
2.7. Time-Kill Assay in Planktonic Cultures
2.8. Biofilm Assay
2.9. Evaluation of Proteolytic Activity (Sap)
2.10. CAPE Cytotoxicity to Human Keratinocytes (HaCat) Cells
2.11. In Vivo Study in Rat Model of Denture Stomatitis
2.11.1. Animals and Experimental Groups
2.11.2. Preparation of Palatal Devices
2.11.3. Standardization of C. albicans Suspension and Biofilm Formation on Palatal Devices
2.11.4. Installation of Palatal Devices in the Oral Cavity of Animals
2.11.5. Fungal Burden and Histological Analysis
2.12. Statistical Analysis
3. Results
3.1. Gellan Formulations Were Able to Incorporate CAPE and to Provide a Controlled Release
3.2. CAPE-GG Formulations Exhibited Antifungal Activity against C. albicans
3.3. CAPE-GG Formulations Had Effect against Planktonic Cells, Biofilms and Enzymatic Activity of C. albicans
3.4. CAPE Was Not Cytotoxic to Keratinocytes
3.5. GG-CAPE Formulation Reduced the Fungal Burden and Inflammation in Animal Model of Denture Stomatitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Benedict, K.; Jackson, B.R.; Chiller, T.; Beer, K.D. Estimation of Direct Healthcare Costs of Fungal Diseases in the United States. Clin. Infect. Dis. 2019, 68, 1791–1797. [Google Scholar] [CrossRef]
- Quindos, G.; Gil-Alonso, S.; Marcos-Arias, C.; Sevillano, E.; Mateo, E.; Jauregizar, N.; Eraso, E. Therapeutic Tools for Oral Candidiasis: Current and New Antifungal Drugs. Med. Oral Patol. Oral Cir. Bucal. 2019, 24, E172–E180. [Google Scholar] [CrossRef]
- Reda, N.M.; Hassan, R.M.; Salem, S.T.; Yousef, R.H.A. Prevalence and Species Distribution of Candida Bloodstream Infection in Children and Adults in Two Teaching University Hospitals in Egypt: First Report of Candida Kefyr. Infection 2023, 51, 389–395. [Google Scholar] [CrossRef]
- Salerno, C.; Pascale, M.; Contaldo, M.; Esposito, V.; Busciolano, M.; Milillo, L.; Guida, A.; Petruzzi, M.; Serpico, R. Candida-Associated Denture Stomatitis. Med. Oral Patol. Oral Cir. Bucal. 2011, 16, e139–e143. [Google Scholar] [CrossRef]
- Poulain, D. Candida albicans, Plasticity and Pathogenesis. Crit. Rev. Microbiol. 2015, 41, 208–217. [Google Scholar] [CrossRef]
- Pereira, R.; Santos Fontenelle, R.O.; Brito, E.H.S.; Morais, S.M. Biofilm of Candida albicans: Formation, Regulation and Resistance. J. Appl. Microbiol. 2021, 131, 11–22. [Google Scholar] [CrossRef]
- Patil, S.; Rao, R.S.; Majumdar, B.; Anil, S. Clinical Appearance of Oral Candida Infection and Therapeutic Strategies. Front. Microbiol. 2015, 6, 1391. [Google Scholar] [CrossRef] [PubMed]
- Sugio, C.Y.C.; Garcia, A.A.M.N.; Albach, T.; Moraes, G.S.; Bonfante, E.A.; Urban, V.M.; Neppelenbroek, K.H. Candida-Associated Denture Stomatitis and Murine Models: What Is the Importance and Scientific Evidence? J. Fungi 2020, 6, 70. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharya, S.; Sae-Tia, S.; Fries, B.C. Candidiasis and Mechanisms of Antifungal Resistance. Antibiotics 2020, 9, 312. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.d.C.; Junqueira, J.C.; dos Santos, J.D.; de Barros, P.P.; Rossoni, R.D.; Shukla, S.; Fuchs, B.B.; Shukla, A.; Mylonakis, E. Development of Probiotic Formulations for Oral Candidiasis Prevention: Gellan Gum as a Carrier to Deliver Lactobacillus Paracasei 28.4. Antimicrob. Agents Chemother. 2020, 64, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Capoci, I.R.G.; Sakita, K.M.; Faria, D.R.; Rodrigues-Vendramini, F.A.V.; Arita, G.S.; de Oliveira, A.G.; Felipe, M.S.; Maigret, B.; Bonfim-Mendonça, P.d.S.; Kioshima, E.S.; et al. Two New 1,3,4-Oxadiazoles with Effective Antifungal Activity Against Candida Albicans. Front. Microbiol. 2019, 10, 2130. [Google Scholar] [CrossRef]
- Rossoni, R.D.; de Barros, P.P.; de Alvarenga, J.A.; Ribeiro, F.d.C.; Velloso, M.d.S.; Fuchs, B.B.; Mylonakis, E.; Jorge, A.O.C.; Junqueira, J.C. Antifungal Activity of Clinical Lactobacillus Strains against Candida albicans Biofilms: Identification of Potential Probiotic Candidates to Prevent Oral Candidiasis. Biofouling 2018, 34, 212–225. [Google Scholar] [CrossRef]
- Olgierd, B.; Kamila, Ż.; Anna, B.; Emilia, M. The Pluripotent Activities of Caffeic Acid Phenethyl Ester. Molecules 2021, 26, 1335. [Google Scholar] [CrossRef]
- Wan, T.; Wang, Z.; Luo, Y.; Zhang, Y.; He, W.; Mei, Y.; Xue, J.; Li, M.; Pan, H.; Li, W.; et al. FA-97, a New Synthetic Caffeic Acid Phenethyl Ester Derivative, Protects against Oxidative Stress-Mediated Neuronal Cell Apoptosis and Scopolamine-Induced Cognitive Impairment by Activating Nrf2/HO-1 Signaling. Oxid. Med. Cell. Longev. 2019, 2019, 8239642. [Google Scholar] [CrossRef]
- de Barros, P.P.; Rossoni, R.D.; Garcia, M.T.; Kaminski, V.d.L.; Loures, F.V.; Fuchs, B.B.; Mylonakis, E.; Junqueira, J.C. The Anti-Biofilm Efficacy of Caffeic Acid Phenethyl Ester (CAPE) In Vitro and a Murine Model of Oral Candidiasis. Front. Cell. Infect. Microbiol. 2021, 11, 700305. [Google Scholar] [CrossRef]
- Zaitone, S.A.; Ahmed, E.; Elsherbiny, N.M.; Mehanna, E.T.; El-Kherbetawy, M.K.; ElSayed, M.H.; Alshareef, D.M.; Moustafa, Y.M. Caffeic Acid Improves Locomotor Activity and Lessens Inflammatory Burden in a Mouse Model of Rotenone-Induced Nigral Neurodegeneration: Relevance to Parkinson’s Disease Therapy. Pharmacol. Rep. 2019, 71, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Sardi, J.d.C.O.; Gullo, F.P.; Freires, I.A.; Pitangui, N.d.S.; Segalla, M.P.; Fusco-Almeida, A.M.; Rosalen, P.L.; Regasini, L.O.; Mendes-Giannini, M.J.S. Synthesis, Antifungal Activity of Caffeic Acid Derivative Esters, and Their Synergism with Fluconazole and Nystatin against Candida spp. Diagn. Microbiol. Infect. Dis. 2016, 86, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liao, K.; Hang, C. Caffeic Acid Phenethyl Ester Synergistically Enhances the Antifungal Activity of Fluconazole against Resistant Candida Albicans. Phytomedicine 2018, 40, 55–58. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Chen, H.; Sun, R.; Xu, L.; Xiong, Z.; Govender, T.; Xiong, C. An Ionically Crosslinked Hydrogel Containing Vancomycin Coating on a Porous Scaffold for Drug Delivery and Cell Culture. Int. J. Pharm. 2008, 353, 74–87. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.A.; Radwan, R.R.; Raafat, A.I.; Ali, A.E.-H. Antifungal Activity of Oral (Tragacanth/Acrylic Acid) Amphotericin B Carrier for Systemic Candidiasis: In Vitro and in Vivo Study. Drug Deliv. Transl. Res. 2018, 8, 191–203. [Google Scholar] [CrossRef]
- Osmałek, T.; Froelich, A.; Tasarek, S. Application of Gellan Gum in Pharmacy and Medicine. Int. J. Pharm. 2014, 466, 328–340. [Google Scholar] [CrossRef]
- Chandel, A.K.S.; Nutan, B.; Raval, I.H.; Jewrajka, S.K. Self-Assembly of Partially Alkylated Dextran-Graft-Poly[(2-Dimethylamino)Ethyl Methacrylate] Copolymer Facilitating Hydrophobic/Hydrophilic Drug Delivery and Improving Conetwork Hydrogel Properties. Biomacromolecules 2018, 19, 1142–1153. [Google Scholar] [CrossRef] [PubMed]
- Salunke, S.R.; Patil, S.B. Ion Activated in Situ Gel of Gellan Gum Containing Salbutamol Sulphate for Nasal Administration. Int. J. Biol. Macromol. 2016, 87, 41–47. [Google Scholar] [CrossRef]
- Jalil, A.; Asim, M.H.; Le, N.-M.N.; Laffleur, F.; Matuszczak, B.; Tribus, M.; Bernkop–Schnürch, A. S-Protected Gellan Gum: Decisive Approach towards Mucoadhesive Antimicrobial Vaginal Films. Int. J. Biol. Macromol. 2019, 130, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.S.; Tumursukh, N.-E.; Choi, J.H.; Song, Y.; Jeon, G.; Kim, N.E.; Kim, S.J.; Kim, N.; Song, J.E.; Khang, G. Modified Gellan Gum-Based Hydrogel with Enhanced Mechanical Properties for Application as a Cell Carrier for Cornea Endothelial Cells. Int. J. Biol. Macromol. 2023, 236, 123878. [Google Scholar] [CrossRef] [PubMed]
- de Alvarenga, J.A.; de Barros, P.P.; de Camargo Ribeiro, F.; Rossoni, R.D.; Garcia, M.T.; dos Santos Velloso, M.; Shukla, S.; Fuchs, B.B.; Shukla, A.; Mylonakis, E.; et al. Probiotic Effects of Lactobacillus Paracasei 28.4 to Inhibit Streptococcus Mutans in a Gellan-Based Formulation. Probiotics Antimicrob. Proteins 2021, 13, 506–517. [Google Scholar] [CrossRef] [PubMed]
- Shukla, S.; Shukla, A. Tunable Antibiotic Delivery from Gellan Hydrogels. J. Mater. Chem. B 2018, 6, 6444–6458. [Google Scholar] [CrossRef] [PubMed]
- Maiti, S.; Ranjit, S.; Mondol, R.; Ray, S.; Sa, B. Al+3 Ion Cross-Linked and Acetalated Gellan Hydrogel Network Beads for Prolonged Release of Glipizide. Carbohydr. Polym. 2011, 85, 164–172. [Google Scholar] [CrossRef]
- Muthukumar, T.; Song, J.E.; Khang, G. Biological Role of Gellan Gum in Improving Scaffold Drug Delivery, Cell Adhesion Properties for Tissue Engineering Applications. Molecules 2019, 24, 4514. [Google Scholar] [CrossRef]
- Agnihotri, S.A.; Jawalkar, S.S.; Aminabhavi, T.M. Controlled Release of Cephalexin through Gellan Gum Beads: Effect of Formulation Parameters on Entrapment Efficiency, Size, and Drug Release. Eur. J. Pharm. Biopharm. 2006, 63, 249–261. [Google Scholar] [CrossRef]
- Shukla, S.; Favata, J.; Srivastava, V.; Shahbazmohamadi, S.; Tripathi, A.; Shukla, A. Effect of Polymer and Ion Concentration on Mechanical and Drug Release Behavior of Gellan Hydrogels Using Factorial Design. J. Polym. Sci. 2020, 58, 1365–1379. [Google Scholar] [CrossRef]
- Kubo, W. Oral Sustained Delivery of Paracetamol from in Situ-Gelling Gellan and Sodium Alginate Formulations. Int. J. Pharm. 2003, 258, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zhu, L.; Ao, J. A Novel in Situ Gel Base of Deacetylase Gellan Gum for Sustained Ophthalmic Drug Delivery of Ketotifen: In Vitro and in Vivo Evaluation. Drug Des. Dev. Ther. 2015, 9, 3943. [Google Scholar] [CrossRef]
- Junqueira, J.C.; Vilela, S.F.G.; Rossoni, R.D.; Barbosa, J.O.; Costa, A.C.B.P.; Rasteiro, V.M.C.; Suleiman, J.M.A.H.; Jorge, A.O.C. Oral Colonization by Yeasts in HIV-Positive Patients in Brazil. Rev. Inst. Med. Trop. Sao Paulo 2012, 54, 17–24. [Google Scholar] [CrossRef]
- CLSI Standard M27-A4; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed. Clinical and Laboratory Standards Institute (CLSI): Wayne, PA, USA, 2017.
- de Barros, P.P.; Scorzoni, L.; Ribeiro, F.d.C.; Fugisaki, L.R.d.O.; Fuchs, B.B.; Mylonakis, E.; Jorge, A.O.C.; Junqueira, J.C.; Rossoni, R.D. Lactobacillus Paracasei 28.4 Reduces in Vitro Hyphae Formation of Candida Albicans and Prevents the Filamentation in an Experimental Model of Caenorhabditis Elegans. Microb. Pathog. 2018, 117, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Sumiyoshi, M.; Miyazaki, T.; Makau, J.N.; Mizuta, S.; Tanaka, Y.; Ishikawa, T.; Makimura, K.; Hirayama, T.; Takazono, T.; Saijo, T.; et al. Novel and Potent Antimicrobial Effects of Caspofungin on Drug-Resistant Candida and Bacteria. Sci. Rep. 2020, 10, 17745. [Google Scholar] [CrossRef]
- Fraga-Silva, T.F.d.C.; Munhoz-Alves, N.; Mimura, L.A.N.; de Oliveira, L.R.C.; Figueiredo-Godoi, L.M.A.; Garcia, M.T.; Oliveira, E.S.; Ishikawa, L.L.W.; Zorzella-Pezavento, S.F.G.; Bonato, V.L.D.; et al. Systemic Infection by Non-Albicans Candida Species Affects the Development of a Murine Model of Multiple Sclerosis. J. Fungi 2022, 8, 386. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Pinto Ribeiro, A.; Carolina da Silva, A.; de Camargo Ribeiro, F.; Sabino, C.F.; Junqueira, J.C.; de Paula Ramos, L.; Dias de Oliveira, L.; Bastos Campos, T.M.; Marques de Melo Marinho, R. Biofilm Formation and Cell Viability on Monolithic Zirconia with Silver-Doped Sodalime Glass. J. Mech. Behav. Biomed. Mater. 2022, 131, 105222. [Google Scholar] [CrossRef]
- Moraes, G.S.; Albach, T.; Sugio, C.Y.C.; Cachoeira, V.S.; Kiratcz, F.; Claudino, M.; Campagnoli, E.B.; Pochapski, M.T.; dos Santos, F.A.; Neppelenbroek, K.H.; et al. A Novel Rat Model of Denture Stomatitis and the Role of Antibiotics in the Development of the Disease. Med. Mycol. 2022, 60, myac092. [Google Scholar] [CrossRef]
- Lie Tobouti, P.; Casaroto, A.R.; de Almeida, R.S.C.; de Paula Ramos, S.; Dionísio, T.J.; Porto, V.C.; Santos, C.F.; Lara, V.S. Expression of Secreted Aspartyl Proteinases in an Experimental Model of Candida Albicans-Associated Denture Stomatitis. J. Prosthodont. 2016, 25, 127–134. [Google Scholar] [CrossRef]
- Moraes, G.S.; Albach, T.; Ramos, I.E.; Kopacheski, M.G.; Cachoeira, V.S.; Sugio, C.Y.C.; Arrais, C.A.G.; Neppelenbroek, K.H.; Urban, V.M. A Novel Acrylic Resin Palatal Device Contaminated with Candida Albicans Biofilm for Denture Stomatitis Induction in Wistar Rats. J. Appl. Oral Sci. 2021, 29, e20200865. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, F.; Tsao, C.; Liu, S.; Jain, P.; Sinclair, A.; Hung, H.-C.; Bai, T.; Wu, K.; Jiang, S. Zwitterionic Gel Encapsulation Promotes Protein Stability, Enhances Pharmacokinetics, and Reduces Immunogenicity. Proc. Natl. Acad. Sci. USA 2015, 112, 12046–12051. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, C.T.; Boakye-Agyeman, F.; Brinkman, C.L.; Reid, J.M.; Patel, R.; Bajzer, Z.; Dadsetan, M.; Yaszemski, M.J. Controlled Delivery of Vancomycin via Charged Hydrogels. PLoS ONE 2016, 11, e0146401. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Liu, R.; Chen, H.-L.; Zhang, W.; Wang, X.; Zhang, X.-D.; Li, W.-L.; Hai, C.-X. Enhanced Antioxidant Effect of Caffeic Acid Phenethyl Ester and Trolox in Combination against Radiation Induced-Oxidative Stress. Chem. Biol. Interact. 2014, 207, 7–15. [Google Scholar] [CrossRef]
- Świsłocka, R. Spectroscopic (FT-IR, FT-Raman, UV Absorption, 1H and 13C NMR) and Theoretical (in B3LYP/6-311++G** Level) Studies on Alkali Metal Salts of Caffeic Acid. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 100, 21–30. [Google Scholar] [CrossRef]
- Zhang, N.; Li, X.; Ye, J.; Yang, Y.; Huang, Y.; Zhang, X.; Xiao, M. Effect of Gellan Gum and Xanthan Gum Synergistic Interactions and Plasticizers on Physical Properties of Plant-Based Enteric Polymer Films. Polymers 2020, 12, 121. [Google Scholar] [CrossRef] [PubMed]
- Altan Kamer, D.D.; Gumus, T.; Palabiyik, I.; Demirci, A.S.; Oksuz, O. Grape Pomace as a Promising Source for Gellan Gum Production. Food Hydrocoll. 2021, 114, 106584. [Google Scholar] [CrossRef]
- Ismail, N.; Mat Amin, K.; Razali, M. Antibacterial Study of Gellan Gum (GG) Film Incorporated Norfloxacin. J. Pure Appl. Microbiol. 2019, 13, 1095–1102. [Google Scholar] [CrossRef]
- Fernandes, F.P.; Fortes, A.C.; da Cruz Fonseca, S.G.; Breitkreutz, J.; Ferraz, H.G. Manufacture and Characterization of Mucoadhesive Buccal Films Based on Pectin and Gellan Gum Containing Triamcinolone Acetonide. Int. J. Polym. Sci. 2018, 2018, 2403802. [Google Scholar] [CrossRef]
- Hoare, T.R.; Kohane, D.S. Hydrogels in Drug Delivery: Progress and Challenges. Polymer 2008, 49, 1993–2007. [Google Scholar] [CrossRef]
- Zimmermann, E.S.; Ferreira, L.M.; Denardi, L.B.; Sari, M.H.M.; Cervi, V.F.; Nogueira, C.W.; Alves, S.H.; Cruz, L. Mucoadhesive Gellan Gum Hydrogel Containing Diphenyl Diselenide-Loaded Nanocapsules Presents Improved Anti-Candida Action in a Mouse Model of Vulvovaginal Candidiasis. Eur. J. Pharm. Sci. 2021, 167, 106011. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, R.; Lei, L.; Yang, Y.; Hu, T. Drug Delivery Systems for Oral Disease Applications. J. Appl. Oral Sci. 2022, 30, e20210349. [Google Scholar] [CrossRef]
- Pérez-González, N.; Espinoza, L.C.; Rincón, M.; Sosa, L.; Mallandrich, M.; Suñer-Carbó, J.; Bozal-de Febrer, N.; Calpena, A.C.; Clares-Naveros, B. Gel Formulations with an Echinocandin for Cutaneous Candidiasis: The Influence of Azone and Transcutol on Biopharmaceutical Features. Gels 2023, 9, 308. [Google Scholar] [CrossRef]
- Teng, Y.; Li, S.; Tang, H.; Tao, X.; Fan, Y.; Huang, Y. Medical Applications of Hydrogels in Skin Infections: A Review. Infect. Drug Resist. 2023, 16, 391–401. [Google Scholar] [CrossRef]
- Arpa, M.D.; Yoltaş, A.; Onay Tarlan, E.; Şenyüz, C.Ş.; Sipahi, H.; Aydın, A.; Üstündağ Okur, N. New Therapeutic System Based on Hydrogels for Vaginal Candidiasis Management: Formulation–Characterization and in Vitro Evaluation Based on Vaginal Irritation and Direct Contact Test. Pharm. Dev. Technol. 2020, 25, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Gulati, M.; Nobile, C.J. Candida Albicans Biofilms: Development, Regulation, and Molecular Mechanisms. Microbes Infect. 2016, 18, 310–321. [Google Scholar] [CrossRef] [PubMed]
- De Vita, D.; Friggeri, L.; D’Auria, F.D.; Pandolfi, F.; Piccoli, F.; Panella, S.; Palamara, A.T.; Simonetti, G.; Scipione, L.; Di Santo, R.; et al. Activity of Caffeic Acid Derivatives against Candida Albicans Biofilm. Bioorganic Med. Chem. Lett. 2014, 24, 1502–1505. [Google Scholar] [CrossRef]
- Alfarrayeh, I.; Pollák, E.; Czéh, Á.; Vida, A.; Das, S.; Papp, G. Antifungal and Anti-Biofilm Effects of Caffeic Acid Phenethyl Ester on Different Candida Species. Antibiotics 2021, 10, 1359. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, M.; Teixeira, M.C. Candida Biofilms: Threats, Challenges, and Promising Strategies. Front. Med. 2018, 5, 28. [Google Scholar] [CrossRef] [PubMed]
- Al-Fattani, M.A.; Douglas, L.J. Penetration of Candida Biofilms by Antifungal Agents. Antimicrob. Agents Chemother. 2004, 48, 3291–3297. [Google Scholar] [CrossRef]
- Karami, F.; Torabiardekani, N.; Moradi, M.; Zare, A.; Mojahedtaghi, M.; Khorram, M.; Jafari, M.; Jabrodini, A.; Kamkar, M.; Zomorodian, K.; et al. Chitosan-Based Emulgel and Xerogel Film Containing Thymus Pubescens Essential Oil as a Potential Wound Dressing. Carbohydr. Polym. 2023, 318, 121156. [Google Scholar] [CrossRef] [PubMed]
- Torabiardekani, N.; Karami, F.; Khorram, M.; Zare, A.; Kamkar, M.; Zomorodian, K.; Zareshahrabadi, Z. Encapsulation of Zataria Multiflora Essential Oil in Polyvinyl Alcohol/Chitosan/Gelatin Thermo-Responsive Hydrogel: Synthesis, Physico-Chemical Properties, and Biological Investigations. Int. J. Biol. Macromol. 2023, 243, 125073. [Google Scholar] [CrossRef]
- Rapala-Kozik, M.; Bochenska, O.; Zajac, D.; Karkowska-Kuleta, J.; Gogol, M.; Zawrotniak, M.; Kozik, A. Extracellular Proteinases of Candida Species Pathogenic Yeasts. Mol. Oral Microbiol. 2018, 33, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Gow, N.A.R.; Latge, J.-P.; Munro, C.A. The Fungal Cell Wall: Structure, Biosynthesis, and Function. In The Fungal Kingdom; ASM Press: Washington, DC, USA, 2017; pp. 267–292. [Google Scholar]
- Meylani, V.; Sembiring, L.; Fudholi, A.; Wibawa, T. Differentiated Sap (4–6) Gene Expression of Candida Albicans Isolates from HIV-Positive Patients with Oral Candidiasis and Commensals in Healthy Individuals. Microb. Pathog. 2021, 158, 105075. [Google Scholar] [CrossRef]
- Zawrotniak, M.; Bochenska, O.; Karkowska-Kuleta, J.; Seweryn-Ozog, K.; Aoki, W.; Ueda, M.; Kozik, A.; Rapala-Kozik, M. Aspartic Proteases and Major Cell Wall Components in Candida Albicans Trigger the Release of Neutrophil Extracellular Traps. Front. Cell. Infect. Microbiol. 2017, 7, 414. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Khan, M.S.; Alshehrei, F.; Al-Ghamdi, S.B.; Bamaga, M.A.; Al-Thubiani, A.S.; Alam, M.Z. Virulence and Biofilms as Promising Targets in Developing Antipathogenic Drugs against Candidiasis. Future Sci. OA 2020, 6, FSO440. [Google Scholar] [CrossRef]
- Costa, C.R.; Jesuíno, R.S.A.; de Aquino Lemos, J.; de Fátima Lisboa Fernandes, O.; Hasimoto e Souza, L.K.; Passos, X.S.; do Rosário Rodrigues Silva, M. Effects of Antifungal Agents in Sap Activity of Candida Albicans Isolates. Mycopathologia 2010, 169, 91–98. [Google Scholar] [CrossRef]
- Bochenska, O.; Rapala-Kozik, M.; Wolak, N.; Aoki, W.; Ueda, M.; Kozik, A. The Action of Ten Secreted Aspartic Proteases of Pathogenic Yeast Candida Albicans on Major Human Salivary Antimicrobial Peptide, Histatin 5. Acta Biochim. Pol. 2016, 63, 533–537. [Google Scholar] [CrossRef]
- Nawaz, A.; Pärnänen, P.; Kari, K.; Meurman, J.H. Proteolytic Activity and Cytokine Up-Regulation by Non-Albicans Candida Albicans. Arch Microbiol. 2015, 197, 533–537. [Google Scholar] [CrossRef]
- Yin, W.; Zhang, Z.; Shuai, X.; Zhou, X.; Yin, D. Caffeic Acid Phenethyl Ester (CAPE) Inhibits Cross-Kingdom Biofilm Formation of Streptococcus Mutans and Candida Albicans. Microbiol. Spectr. 2022, 10, e0157822. [Google Scholar] [CrossRef]
- Zhao, W.-X. Effect of Caffeic Acid Phenethyl Ester on Proliferation and Apoptosis of Hepatic Stellate Cells in Vitro. World J. Gastroenterol. 2003, 9, 1278. [Google Scholar] [CrossRef]
- Pagano, M.; Faggio, C. The Use of Erythrocyte Fragility to Assess Xenobiotic Cytotoxicity. Cell Biochem. Funct. 2015, 33, 351–355. [Google Scholar] [CrossRef]
- Fırat, F.; Özgül, M.; Türköz Uluer, E.; Inan, S. Effects of Caffeic Acid Phenethyl Ester (CAPE) on Angiogenesis, Apoptosis and Oxidatıve Stress in Various Cancer Cell Lines. Biotech. Histochem. 2019, 94, 491–497. [Google Scholar] [CrossRef]
- Possamai Rossatto, F.C.; Tharmalingam, N.; Escobar, I.E.; d’Azevedo, P.A.; Zimmer, K.R.; Mylonakis, E. Antifungal Activity of the Phenolic Compounds Ellagic Acid (EA) and Caffeic Acid Phenethyl Ester (CAPE) against Drug-Resistant Candida Auris. J. Fungi 2021, 7, 763. [Google Scholar] [CrossRef]
- Borman, A.M. Of Mice and Men and Larvae: Galleria mellonella to Model the Early Host-Pathogen Interactions after Fungal Infection. Virulence 2018, 9, 9–12. [Google Scholar] [CrossRef]
- Sakima, V.T.; Vega-Chacón, Y.; Cerri, P.S.; Shokeen, B.; Lux, R.; Mima, E.G. de O. A Denture Use Model Associated with Candida spp. in Immunocompetent Male and Female Rats. J. Fungi 2022, 8, 466. [Google Scholar] [CrossRef] [PubMed]
- Sultan, A.S.; Rizk, A.M.; Vila, T.; Ji, Y.; Masri, R.; Jabra-Rizk, M.A. Digital Design of a Universal Rat Intraoral Device for Therapeutic Evaluation of a Topical Formulation against Candida -Associated Denture Stomatitis. Infect. Immun. 2019, 87, 1110–1128. [Google Scholar] [CrossRef] [PubMed]
- Irmak, M.K.; Fadillioglu, E.; Sogut, S.; Erdogan, H.; Gulec, M.; Ozer, M.; Yagmurca, M.; Gozukara, M.E. Effects of Caffeic Acid Phenethyl Ester and Alpha-Tocopherol on Reperfusion Injury in Rat Brain. Cell Biochem. Funct. 2003, 21, 283–289. [Google Scholar] [CrossRef] [PubMed]
- Fadillioglu, E.; Oztas, E.; Erdogan, H.; Yagmurca, M.; Sogut, S.; Ucar, M.; Irmak, M.K. Protective Effects of Caffeic Acid Phenethyl Ester on Doxorubicin-Induced Cardiotoxicity in Rats. J. Appl. Toxicol. 2004, 24, 47–52. [Google Scholar] [CrossRef]
- Ehtiati, S.; Alizadeh, M.; Farhadi, F.; Khalatbari, K.; Ajiboye, B.O.; Baradaran Rahimi, V.; Askari, V.R. Promising Influences of Caffeic Acid and Caffeic Acid Phenethyl Ester against Natural and Chemical Toxins: A Comprehensive and Mechanistic Review. J. Funct. Foods 2023, 107, 105637. [Google Scholar] [CrossRef]
- Ramage, G.; Tomsett, K.; Wickes, B.L.; López-Ribot, J.L.; Redding, S.W. Denture Stomatitis: A Role for Candida Biofilms. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2004, 98, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Iyer, M.S.; Gujjari, A.K.; Paranthaman, S.; Abu Lila, A.S.; Almansour, K.; Alshammari, F.; Khafagy, E.-S.; Arab, H.H.; Gowda, D.V. Development and Evaluation of Clove and Cinnamon Supercritical Fluid Extracts-Loaded Emulgel for Antifungal Activity in Denture Stomatitis. Gels 2022, 8, 33. [Google Scholar] [CrossRef] [PubMed]
- Czerninski, R.; Pikovsky, A.; Gati, I.; Friedman, M.; Steinberg, D. Comparison of the Efficacy of a Novel Sustained Release Clotrimazole Varnish and Clotrimazole Troches for the Treatment of Oral Candidiasis. Clin. Oral Investig. 2015, 19, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Singh Chandel, A.K.; Kannan, D.; Nutan, B.; Singh, S.; Jewrajka, S.K. Dually Crosslinked Injectable Hydrogels of Poly(Ethylene Glycol) and Poly[(2-Dimethylamino)Ethyl Methacrylate]-b-Poly(N-Isopropyl Acrylamide) as a Wound Healing Promoter. J. Mater. Chem. B 2017, 5, 4955–4965. [Google Scholar] [CrossRef]
Strain | MIC (µg/mL) | |||||
---|---|---|---|---|---|---|
CAPE | GG 0.6% + CAPE | GG 0.7% + CAPE | GG 0.8% + CAPE | GG 0.9% + CAPE | GG 1.0% + CAPE | |
C. albicans SC5314 | 64 | 512 | 512 | >512 | >512 | >512 |
C. albicans 70 | 32 | 128 | 128 | 256 | 256 | 512 |
Range | 32–64 | 128–512 | 128–512 | 265–> 512 | 256–> 512 | 512–> 512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia, M.T.; Carmo, P.H.F.d.; Figueiredo-Godoi, L.M.A.; Gonçalves, N.I.; Lima, P.M.N.d.; Ramos, L.d.P.; Oliveira, L.D.d.; Borges, A.L.S.; Shukla, A.; Junqueira, J.C. Gellan-Based Hydrogel as a Drug Delivery System for Caffeic Acid Phenethyl Ester in the Treatment of Oral Candida albicans Infections. Pharmaceutics 2024, 16, 298. https://doi.org/10.3390/pharmaceutics16030298
Garcia MT, Carmo PHFd, Figueiredo-Godoi LMA, Gonçalves NI, Lima PMNd, Ramos LdP, Oliveira LDd, Borges ALS, Shukla A, Junqueira JC. Gellan-Based Hydrogel as a Drug Delivery System for Caffeic Acid Phenethyl Ester in the Treatment of Oral Candida albicans Infections. Pharmaceutics. 2024; 16(3):298. https://doi.org/10.3390/pharmaceutics16030298
Chicago/Turabian StyleGarcia, Maíra Terra, Paulo Henrique Fonseca do Carmo, Lívia Mara Alves Figueiredo-Godoi, Natália Inês Gonçalves, Patrícia Michelle Nagai de Lima, Lucas de Paula Ramos, Luciane Dias de Oliveira, Alexandre Luiz Souto Borges, Anita Shukla, and Juliana Campos Junqueira. 2024. "Gellan-Based Hydrogel as a Drug Delivery System for Caffeic Acid Phenethyl Ester in the Treatment of Oral Candida albicans Infections" Pharmaceutics 16, no. 3: 298. https://doi.org/10.3390/pharmaceutics16030298
APA StyleGarcia, M. T., Carmo, P. H. F. d., Figueiredo-Godoi, L. M. A., Gonçalves, N. I., Lima, P. M. N. d., Ramos, L. d. P., Oliveira, L. D. d., Borges, A. L. S., Shukla, A., & Junqueira, J. C. (2024). Gellan-Based Hydrogel as a Drug Delivery System for Caffeic Acid Phenethyl Ester in the Treatment of Oral Candida albicans Infections. Pharmaceutics, 16(3), 298. https://doi.org/10.3390/pharmaceutics16030298