Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Hydrogel Scaffolds Synthesis
2.3. Hydrogel Scaffold Characterization
2.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.3.2. Scanning Electron Microscopy (SEM)
2.4. Porosity Measurements
2.5. Mechanical Testing
2.6. In Vitro Swelling Study
2.7. Water Contact Angle Measurements
2.8. Adhesiveness Test
2.9. Biocompatibility Probes
2.9.1. In Vitro Cytotoxicity Assay
2.9.2. In Vivo Caenorhabditis Elegans Survival Evaluation
2.9.3. In Vitro Simultaneous Release Study
3. Results and Discussion
3.1. Preparation of the Hydrogel Scaffolds
3.2. Structural Characteristics of the Hydrogel Scaffolds—FTIR Analysis
3.3. Morphology of the Hydrogel Scaffolds—SEM Analysis
3.4. Porosity of the Hydrogel Scaffolds
3.5. Mechanical Properties of the Hydrogel Scaffolds
3.6. Swelling Properties of the Hydrogel Scaffolds
3.7. Hydrophilicity of the Hydrogel Scaffolds
3.8. Adhesion Properties to the Skin Tissue of the Hydrogel Scaffolds
3.9. Biocompatibility Assays of the Hydrogel Scaffolds
3.10. In Vitro Simultaneous Release Properties of the Hydrogel Scaffolds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nourian Dehkordi, A.; Mirahmadi Babaheydari, F.; Chehelgerdi, M.; Raeisi Dehkordi, S. Skin tissue engineering: Wound healing based on stem-cell-based therapeutic strategies. Stem Cell Res. Ther. 2019, 10, 111. [Google Scholar] [CrossRef]
- Eming, S.A.; Krieg, T.; Davidson, J.M.; Hall, R.P. Inflammation in wound repair: Molecular and cellular mechanisms. J. Investig. Dermatol. 2007, 127, 514. [Google Scholar] [CrossRef]
- Kolimi, P.; Narala, S.; Nyavanandi, D.; Youssef, A.A.A.; Dudhipala, N. Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022, 6, 2439. [Google Scholar] [CrossRef]
- Martino, M.M.; Briquez, P.S.; Ranga, A.; Lutolf, M.P.; Hubbell, J.A. Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix. Proc. Natl. Acad. Sci. USA 2013, 110, 4563–4568. [Google Scholar] [CrossRef]
- Ter Horst, B.; Chouhan, G.; Moiemen, N.S.; Grover, L.M. Advances in keratinocyte delivery in burn wound care. Adv. Drug Deliv. Rev. 2017, 123, 18–32. [Google Scholar] [CrossRef]
- Chaudhari, A.A.; Vig, K.; Baganizi, D.R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.R.; Pillai, S.R. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 2016, 17, 1974. [Google Scholar] [CrossRef]
- Agrawal, P.; Soni, S.; Mittal, G.; Bhatnagar, A. Role of polymeric biomaterials as wound healing agents. Int. J. Low. Extrem. Wounds 2014, 13, 180–190. [Google Scholar] [CrossRef]
- Huang, S.; Fu, X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J. Control. Release 2010, 142, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Sukmana, I. Bioactive polymer scaffold for fabrication of vascularized engineering tissue. J. Artif. Organs 2012, 15, 215–224. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Xiao, Z.; Long, H.; Ma, K.; Zhang, J.; Ren, X.; Zhang, J. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci. Rep. 2018, 8, 1616. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.G.; Gostynska, N.; Montesi, M.; Panseri, S.; Sprio, S.; Kon, E.; Marcacci, M.; Tampieri, A.; Sandri, M. Investigation of different cross-linking approaches on 3D gelatin scaffolds for tissue engineering application: A comparative analysis. Int. J. Biol. Macromol. 2017, 95, 1199–1209. [Google Scholar] [CrossRef]
- Poursamar, S.A.; Hatami, J.; Lehner, A.N.; da Silva, C.L.; Ferreira, F.C.; Antunes, A.P.M. Potential application of gelatin scaffolds prepared through in situ gas foaming in skin tissue engineering. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 315–322. [Google Scholar] [CrossRef]
- Kumar, P.T.S.; Praveen, G.; Raj, M.; Chennazhi, K.P.; Jayakumar, R. Flexible, micro-porous chitosan-gelatin hydrogel/nanofibrin composite bandages for treating burn wounds. RSC Adv. 2014, 4, 65081–65087. [Google Scholar] [CrossRef]
- Cao, Y.; Shen, X.; Chen, Y.; Guo, J.; Chen, Q.; Jiang, X. pH-Induced self-assembly and capsules of sodium alginate. Biomacro Mol. 2005, 6, 2189–2196. [Google Scholar] [CrossRef]
- Ghalei, S.; Nourmohammadi, J.; Solouk, A.; Mirzadeh, H. Enhanced cellular response elicited by addition of amniotic fluid to alginate hydrogel-electrospun silk fibroin fibers for potential wound dressing application. Colloids Surf. B. 2018, 172, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Babić Radić, M.M.; Filipović, V.V.; Vuković, J.S.; Vukomanović, M.; Ilic-Tomic, T.; Nikodinovic-Runic, J.; Tomić, S.L. 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Scaffolds Reinforced with Nano TiO2 as a Promising Curcumin Release Platform. Polymers 2023, 15, 1643. [Google Scholar] [CrossRef] [PubMed]
- Robinson, W. Stimulation of healing wounds: By allantoin occurring in maggot secretions and of wide biological distribution. J. Bone Jt. Surg. 1935, 17, 267. [Google Scholar]
- Araújo, L.U.; Grabe-Guimarães, A.; Mosqueira, V.C.F.; Carneiro, C.M.; Silva-Barcellos, N.M. Profile of wound healing process induced by allantoin. Acta Cir. Bras. 2010, 25, 460–466. [Google Scholar] [CrossRef]
- Khayyal, M.T.; el-Ghazaly, M.A.; el-Khatib, A.S. Mechanisms involved in the antiinflammatory effect of propolis extract. Drugs Under Exp. Clin. Res. 1993, 9, 197–203. [Google Scholar]
- Natarajan, K.; Singh, S.; Burke, T.R., Jr.; Grunberger, D.; Aggarwal, B.B. Caffeic acid phenethyl ester is a potent and specific inhibitor of activation of nuclear transcription factor NF-kappa B. Proc. Natl. Acad. Sci. USA 1996, 93, 9090–9095. [Google Scholar] [CrossRef] [PubMed]
- Pascual, C.; Gonzalez, R.; Torricella, R.G. Scavenging action of propolis extract against oxygen radicals. J. Ethnopharmacol. 1994, 41, 9–13. [Google Scholar] [CrossRef]
- Sud’ina, G.F.; Mirzoeva, O.K.; Pushkareva, M.A.; Korshunova, G.A.; Sumbatyan, N.V.; Varfolomeev, S.D. Caffeic acid phenethyl ester as a lipoxygenase inhibitor with antioxidant properties. FEBS Lett. 1993, 329, 21–24. [Google Scholar] [CrossRef]
- Doersch, K.M.; Newell-Rogers, M.K. The impact of quercetin on wound healing relates to changes in αV and β1 integrin expression. Exp. Biol. Med. 2017, 242, 1424–1431. [Google Scholar] [CrossRef]
- Kang, W.; Cui, Y.; Qin, L.; Yang, Y.; Zhao, Z.; Wang, X.; Liu, X.A. Novel robust adsorbent for efficient oil/water separation: Magnetic carbon nanospheres/graphene composite aerogel. J. Hazard. Mater. 2020, 392, 122499. [Google Scholar] [CrossRef] [PubMed]
- Babić Radić, M.M.; Filipović, V.V.; Vukomanović, M.; Nikodinović Runić, J.; Tomić, L.S. Degradable 2-Hydroxyethyl Methacrylate/Gelatin/Alginate Hydrogels Infused by Nanocolloidal Graphene Oxide as Promising Drug Delivery and Scaffolding Biomaterials. Gels 2021, 8, 22. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.L.; Peppas, N.A. Measurement of swelling force in ionic polymer networks. III. Swelling force of interpolymer complexes. J. Control. Release 1995, 37, 77–280. [Google Scholar] [CrossRef]
- Peppas, N.A. Analysis of Fickian and non-Fickian drug release from polymer. Pharm. Acta Helv. 1985, 60, 110–111. [Google Scholar] [PubMed]
- Babić, M.M.; Antić, K.M.; Vuković, J.S.; Božić, B.Ð.; Davidović, S.Z.; Filipović, J.M.; Tomić, S.L. Oxaprozin/poly(2-hydroxyethyl acrylate/itaconic acid hydrogels: Morphological, thermal, swelling, drug release and antibacterial properties. J. Mater. Sci. 2015, 50, 906–922. [Google Scholar] [CrossRef]
- Fei, F.; Sanjoy, S.; Donny, H.P. Biomimetic Hydrogels to Promote Wound Healing. Front. Bioeng. Biotechnol. 2021, 9, 718377. [Google Scholar] [CrossRef]
- Hansen, M.B.; Nielsen, S.E.; Berg, K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J. Immunol. Methods 1989, 119, 203–210. [Google Scholar] [CrossRef]
- Stiernagle, T. Maintenance of C. elegans; WormBook: Pasadena, CA, USA, 2006; pp. 1–11. [Google Scholar]
- Vuković, J.S.; Filipović, V.V.; Babić Radić, M.M.; Vukomanović, M.; Milivojevic, D.; Ilic-Tomic, T.; Nikodinovic-Runic, J.; Tomić, S.L. In Vitro and In Vivo Biocompatible and Controlled Resveratrol Release Performances of HEMA/Alginate and HEMA/Gelatin IPN Hydrogel Scaffolds. Polymers 2022, 14, 4459–4479. [Google Scholar] [CrossRef] [PubMed]
- Djapović, M.; Milivojevic, D.; Ilic-Tomic, T.; Lješević, M.; Nikolaivits, E.; Topakas, E.; Maslak, V.; Nikodinovic-Runic, J. Synthesis and characterization of polyethylene terephthalate (PET) precursors and potential degradation products: Toxicity study and application in discovery of novel PETases. Chemosphere 2021, 275, 130005. [Google Scholar] [CrossRef] [PubMed]
- Koosha, M.; Aalipour, H.; Sarraf Shirazi, M.J.; Jebali, A.; Chi, H.; Hamedi, S.; Wang, N.; Li, T.; Moravvej, H. Physically Crosslinked Chitosan/PVA Hydrogels Containing Honey and Allantoin with Long-Term Biocompatibility for Skin Wound Repair: An In Vitro and In Vivo Study. J. Funct. Biomater. 2021, 12, 61. [Google Scholar] [CrossRef] [PubMed]
- Chuysinuan, P.; Thanyacharoen, T.; Thongchai, K.; Techasakul, S.; Ummartyotin, S. Preparation of chitosan/hydrolyzed collagen/hyaluronic acid based hydrogel composite with caffeic acid addition. Int. J. Biol. Macromol. 2020, 162, 1937–1943. [Google Scholar] [CrossRef]
- Moghadam, M.; Saeed Seyed Dorraji, M.; Dodangeh, F.; Ashjari, H.R.; Mousavi, S.N.; Rasoulifard, M.H. Design of a new light curable starch-based hydrogel drug delivery system to improve the release rate of quercetin as a poorly water-soluble drug. Eur. J. Pharm. Sci. 2022, 174, 106191. [Google Scholar] [CrossRef] [PubMed]
- Mugundan, S.; Rajamannan, G.; Viruthagiri, N.; Shanmugam, R.; Gobi, P. Synthesis and characterization of undoped and cobalt-doped TiO2 nanoparticles via sol-gel technique. Appl. Nanosci. 2015, 5, 449–456. [Google Scholar] [CrossRef]
- Chang, M.C.; Tanaka, J. FT-IR study for hydroxyapatite/collagen nanocomposite cross-linked by glutaraldehyde. Biomaterials 2002, 23, 4811–4818. [Google Scholar] [CrossRef]
- Abazovic, N.D.; Comor, M.I.; Comor, M.D.; Dramicanin, D.J.; Jovanovic, S.P.; Nedeljković, J.M. Photoluminescence of anatase and rutile TiO2 particles. J. Phys. Chem. B 2006, 110, 25366–25370. [Google Scholar] [CrossRef]
- Das, D.; Bang, S.; Zhang, S.; Noh, I. Bioactive Molecules Release and Cellular Responses of Alginate-Tricalcium Phosphate Particles Hybrid Gel. Nanomaterials 2017, 7, 389. [Google Scholar] [CrossRef]
- Zhao, K.; Feng, L.; Li, Z.; Fu, Y.; Zhang, X.; Wei, J.; Wei, S. Preparation, characterization and photocatalytic degradation properties of a TiO2/calcium alginate composite film and the recovery of TiO2 nanoparticles. RSC Adv. 2014, 4, 51321–51329. [Google Scholar] [CrossRef]
- Urruela-Barrios, R.; Ramírez-Cedillo, E.; Díaz de León, A.; Alvarez, A.J.; Ortega-Lara, W. Alginate/Gelatin Hydrogels Reinforced with TiO2 and β-TCP Fabricated by Microextrusion-based Printing for Tissue Regeneration. Polymers 2019, 11, 457. [Google Scholar] [CrossRef] [PubMed]
- Vadav, P.; Beniwal, G.; Saxena, K.K. A review on pore and porosity in tissue engineering. Mater. Today Proc. 2021, 44, 2623. [Google Scholar] [CrossRef]
- Staruch, R.M.; Glass, G.E.; Rickard, R.; Hettiaratchy, S.P.; Butler, P.E.M. Injectable pore-forming hydrogel scaffolds for complex wound tissue engineering: Designing and controlling their porosity and mechanical properties. Tissue Eng. Part. B Rev. 2017, 23, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.C.; Wu, L.B.; Jing, D.Y.; Ding, J.D. A comparative study of porous scaffolds with cubic and spherical macropores. Polymer 2005, 46, 4979–4985. [Google Scholar] [CrossRef]
- Dorishetty, P.; Dutta, N.K.; Choudhury, N.R. Bioprintable tough hydrogels for tissue engineering applications. Adv. Colloid. Interface Sci. 2020, 281, 102163. [Google Scholar] [CrossRef]
- Li, S.; Chen, N.; Li, X.; Li, Y.; Xie, Z.; Ma, Z.; Zhao, J.; Hou, H.; Yuan, X. Bioinspired double-dynamic-bond crosslinked bioadhesive enables post-wound closure care. Adv. Funct. Mater. 2020, 30, 17. [Google Scholar]
- Balakrishnan, B.; Soman, D.; Payanam, U.; Laurent, A.; Labarre, D.; Jayakrishnan, A. A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomater. 2017, 53, 343–354. [Google Scholar] [CrossRef]
- Honglei, C.; Junwen, C.; Luoxiao, R.; Kun, Y.; Bitao, L.; Guangqian, L.; Fangying, D.; Fei, L. An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing. Carbohydr. Polym. 2018, 201, 522–531. [Google Scholar]
- Jin, Q.; Xin, Z.; Yongping, L.; Tianlong, Z.; Peter, M.X.; Baolin, G. Antibacterial adhesive injectable hydrogels with rapid self-healing, extensibility and compressibility as wound dressing for joints skin wound healing. Biomaterials 2018, 183, 185–199. [Google Scholar]
- Wittkowski, P.; Marx-Stoelting, P.; Violet, N.; Fetz, V.; Schwarz, F.; Oelgeschläger, M.; Schönfelder, G.; Vogl, S. Caenorhabditis elegans as a promising alternative model for environmental chemical mixture effect assessment-A comparative study. Environ. Sci. Technol. 2019, 53, 12725–12733. [Google Scholar] [CrossRef]
- Xiong, H.; Pears, C.; Woollard, A. An enhanced C. elegans based platform for toxicity assessment. Sci. Rep. 2017, 7, 9839. [Google Scholar] [CrossRef] [PubMed]
Sample | Gelatin (g) | Sodium Alginate (g) | Allantoin (g) | Quercetin (g) | Caffeic Acid (g) | TiO2 (g) |
---|---|---|---|---|---|---|
HSG | 1.2 | 0 | 0.06 | 0.06 | 0.06 | 0 |
HSGA | 0.6 | 0.6 | 0.06 | 0.06 | 0.06 | 0 |
HSG3A | 0.3 | 0.9 | 0.06 | 0.06 | 0.06 | 0 |
TiO2/HSG | 1.2 | 0 | 0.06 | 0.06 | 006 | 0.06 |
TiO2/HSGA | 0.6 | 0.6 | 0.06 | 0.06 | 0.06 | 0.06 |
TiO2/HSG3A | 0.3 | 0.9 | 0.06 | 0.06 | 006 | 0.06 |
Sample | Porosity (%) | Young’s Modulus (MPa) | Contact Angle | Equilibrium Degree of Swelling (qe) |
---|---|---|---|---|
HSG | 92.42 ± 4.3 | 3.52 ± 0.16 | 77.55° | 8.99 ± 0.5 |
HSGA | 95.52 ± 3.9 | 2.46 ± 0.12 | 43.70° | 15.66 ± 0.7 |
HSG3A | 96.74 ± 4.0 | 1.53 ± 0.08 | 0° | 25.38 ± 1.3 |
TiO2/HSG | 88.33 ± 3.2 | 4.29 ± 0.21 | 0° | 7.10 ± 0.4 |
TiO2/HSGA | 90.10 ± 3.3 | 3.34 ± 0.16 | 0° | 12.48 ± 0.5 |
TiO2/HSG3A | 92.92 ± 3.5 | 4.24 ± 0.21 | 0° | 15.16 ± 0.6 |
Hydrogel Scaffold | Released % of Allantoin | Released % of Caffeic Acid | Released % of Quercetin | |||
---|---|---|---|---|---|---|
6 h | 12 h | 6 h | 12 h | 6 h | 12 h | |
HSG | 44 ± 2.0 | 50 ± 1.2 | 56 ± 2.1 | 65 ± 1.5 | 66 ± 2.2 | 79 ± 1.6 |
HSGA | 49 ± 1.8 | 55 ± 1.2 | 70 ± 2.0 | 76 ± 1.2 | 79 ± 2.3 | 86 ± 1.9 |
HSG3A | 73 ± 2.1 | 78 ± 1.5 | 88 ± 1.8 | 94 ± 1.6 | 89 ± 2.7 | 95 ± 1.8 |
TiO2/HSG | 27 ± 1.9 | 33 ± 1.8 | 28 ± 2.2 | 36 ± 1.4 | 36 ± 2.4 | 46 ± 1.9 |
TiO2/HSGA | 34 ± 1.7 | 39 ± 1.5 | 35 ± 2.1 | 45 ± 1.5 | 46 ± 2.6 | 58 ± 1.5 |
TiO2/HSG3A | 37 ± 2.0 | 42 ± 1.5 | 42 ± 2.0 | 52 ± 1.6 | 56 ± 2.4 | 68 ± 1.8 |
Initial Release Period | ||||||
---|---|---|---|---|---|---|
Hydrogel Scaffold | Allantoin | Caffeic Acid | Quercetin | |||
mg/6 h | mg/h | mg/6 h | mg/h | mg/6 h | mg/h | |
HSG | 26.4 ± 1.20 | 4.4 ± 0.20 | 33.6 ± 1.26 | 5.6 ± 0.21 | 39.6 ± 1.32 | 6.6 ± 0.22 |
HSGA | 29.4 ± 1.08 | 4.9 ± 0.18 | 42 ± 1.20 | 7 ± 0.20 | 47.4 ± 1.38 | 7.9 ± 0.23 |
HSG3A | 43.8 ± 1.26 | 7.3 ± 0.21 | 52.8 ± 1.08 | 8.8 ± 0.18 | 53.4 ± 1.62 | 8.9 ± 0.27 |
TiO2/HSG | 16.2 ± 1.14 | 2.7 ± 0.19 | 16.8 ± 1.32 | 2.8 ± 0.22 | 21.6 ± 1.44 | 3.6 ± 0.24 |
TiO2/HSGA | 20.4 ± 1.02 | 3.4 ± 0.17 | 21 ± 1.26 | 3.5 ± 0.21 | 27.6 ± 1.56 | 4.6 ± 0.26 |
TiO2/HSG3A | 22.2 ± 1.20 | 3.7 ± 0.20 | 25.2 ± 1.20 | 4.2 ± 0.20 | 33.6 ± 1.44 | 5.6 ± 0.24 |
Slow Release Period | ||||||
---|---|---|---|---|---|---|
Hydrogel Scaffold | Allantoin | Caffeic Acid | Quercetin | |||
mg/6 h | mg/h | mg/6 h | mg/h | mg/6 h | mg/h | |
HSG | 33.6 ± 1.08 | 0.51 ± 0.18 | 26.4 ± 1.08 | 0.4 ± 0.18 | 20.4 ± 1.44 | 0.31 ± 0.24 |
HSGA | 30.6 ± 1.26 | 0.46 ± 0.21 | 18.0 ± 1.26 | 0.27 ± 0.21 | 12.6 ± 132 | 0.19 ± 0.22 |
HSG3A | 16.2 ± 1.32 | 0.25 ± 0.22 | 7.20 ± 1.38 | 0.11 ± 0.23 | 6.6 ± 1.26 | 0.1 ± 0.21 |
TiO2/HSG | 43.8 ± 1.44 | 0.66 ± 0.24 | 43.2 ± 1.26 | 0.65 ± 0.21 | 38.4 ± 1.08 | 0.58 ± 0.18 |
TiO2/HSGA | 39.6 ± 1.26 | 0.60 ± 0.21 | 39 ± 1.14 | 0.59 ± 0.19 | 32.4 ± 1.14 | 0.49 ± 0.19 |
TiO2/HSG3A | 37.8 ± 1.14 | 0.57 ± 0.19 | 34.8 ± 1.20 | 0.52 ± 0.20 | 26.4 ± 1.32 | 0.4 ± 0.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babić Radić, M.M.; Vukomanović, M.; Nikodinović-Runić, J.; Tomić, S. Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. Pharmaceutics 2024, 16, 372. https://doi.org/10.3390/pharmaceutics16030372
Babić Radić MM, Vukomanović M, Nikodinović-Runić J, Tomić S. Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. Pharmaceutics. 2024; 16(3):372. https://doi.org/10.3390/pharmaceutics16030372
Chicago/Turabian StyleBabić Radić, Marija M., Marija Vukomanović, Jasmina Nikodinović-Runić, and Simonida Tomić. 2024. "Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform" Pharmaceutics 16, no. 3: 372. https://doi.org/10.3390/pharmaceutics16030372
APA StyleBabić Radić, M. M., Vukomanović, M., Nikodinović-Runić, J., & Tomić, S. (2024). Gelatin-/Alginate-Based Hydrogel Scaffolds Reinforced with TiO2 Nanoparticles for Simultaneous Release of Allantoin, Caffeic Acid, and Quercetin as Multi-Target Wound Therapy Platform. Pharmaceutics, 16(3), 372. https://doi.org/10.3390/pharmaceutics16030372