CBD and THC in Special Populations: Pharmacokinetics and Drug–Drug Interactions
Abstract
:1. Introduction
1.1. Brief Overview of CBD and THC
1.2. Importance of Understanding Pharmacokinetics and Drug Interactions
1.3. Significance of Studying Special Populations
2. CBD/THC PK-Based Drug Interactions
2.1. Overview of Drug Interactions Involving CBD and THC
2.2. Mechanisms of CBD and THC Interactions with Other Drugs
2.3. Genetic Variations May Impact CBD/THC PK and Drug Interactions
3. CBD/THC Studies in Special Populations
3.1. Pregnancy and Lactation
3.1.1. Overview of Research on CBD/THC Use during Pregnancy and Lactation
3.1.2. PK Considerations in Pregnant and Lactating Women
3.1.3. Potential Drug Interactions and Safety Concerns for this Population
3.2. Pediatrics
3.2.1. Overview of Studies Investigating CBD/THC in Pediatric Populations
3.2.2. PK Profiles and Considerations in Pediatric Patients
3.2.3. Drug Interactions and Their Impact on Pediatric Populations
3.3. Older Adults
3.3.1. Overview of Studies Exploring CBD/THC in Older Adult Populations
3.3.2. Age-Related Changes in PK and Implications for CBD/THC
3.3.3. Drug Interactions and Considerations for Older Adult Populations
3.4. Patients with Hepatic or Renal Impairment
3.4.1. Overview of Studies Examining CBD/THC in Patients with Hepatic or Renal Impairment
3.4.2. Impact of Hepatic Impairment on CBD/THC PK
3.4.3. Impact of Renal Impairment on CBD/THC PK
3.4.4. Drug Interactions and Considerations for Patients with Hepatic or Renal Impairment
3.5. Other Special Populations
3.5.1. CBD/THC Studies in Cancer Patients
3.5.2. CBD/THC Studies in Patients with Neurological Disorders
3.5.3. CBD/THC Studies in Other Special Populations
4. Conclusions
4.1. Summary of Key Findings on CBD/THC PK and Drug Interactions
4.2. Implications for Special Populations and Other Considerations
4.3. Future Research Directions and Areas of Further Investigation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cox, E.J.; Maharao, N.; Patilea-Vrana, G.; Unadkat, J.D.; Rettie, A.E.; McCune, J.S.; Paine, M.F. A Marijuana-Drug Interaction Primer: Precipitants, Pharmacology, and Pharmacokinetics. Pharmacol. Ther. 2019, 201, 25–38. [Google Scholar] [CrossRef]
- Lafaye, G.; Karila, L.; Blecha, L.; Benyamina, A. Cannabis, Cannabinoids, and Health. Dialogues Clin. Neurosci. 2017, 19, 309–316. [Google Scholar] [CrossRef]
- Zhou, Z.; Paine, M.F.; Spindle, T.R.; Huang, S.; Zhang, L. Cannabis for Medical Use: Clinical Pharmacology Perspectives on Scientific and Regulatory Challenges. Clin. Pharmacol. Ther. 2022, 111, 732–735. [Google Scholar] [CrossRef] [PubMed]
- Lucas, C.J.; Galettis, P.; Schneider, J. The Pharmacokinetics and the Pharmacodynamics of Cannabinoids. Br. J. Clin. Pharmacol. 2018, 84, 2477–2482. [Google Scholar] [CrossRef] [PubMed]
- Kesner, A.J.; Lovinger, D.M. Cannabis Use, Abuse, and Withdrawal: Cannabinergic Mechanisms, Clinical, and Preclinical Findings. J. Neurochem. 2021, 157, 1674–1696. [Google Scholar] [CrossRef]
- Pertwee, R. The Diverse CB1 and CB2 Receptor Pharmacology of Three Plant Cannabinoids: D9-Tetrahydrocannabinol, Cannabidiol and D9-Tetrahydrocannabivarin. Br. J. Pharmacol. 2008, 153, 199–215. [Google Scholar] [CrossRef] [PubMed]
- Oberbarnscheidt, T.; Miller, N.S. The Impact of Cannabidiol on Psychiatric and Medical Conditions. J. Clin. Med. Res. 2020, 12, 393–403. [Google Scholar] [CrossRef]
- Tham, M.; Yilmaz, O.; Alaverdashvili, M.; Kelly, M.E.M.; Denovan-Wright, E.M.; Laprairie, R.B. Allosteric and Orthosteric Pharmacology of Cannabidiol and Cannabidiol-dimethylheptyl at the Type 1 and Type 2 Cannabinoid Receptors. Br. J. Pharmacol. 2019, 176, 1455–1469. [Google Scholar] [CrossRef]
- Chung, H.; Fierro, A.; Pessoa-Mahana, C.D. Cannabidiol Binding and Negative Allosteric Modulation at the Cannabinoid Type 1 Receptor in the Presence of Delta-9-Tetrahydrocannabinol: An In Silico Study. PLoS ONE 2019, 14, e0220025. [Google Scholar] [CrossRef]
- Britch, S.C.; Babalonis, S.; Walsh, S.L. Cannabidiol: Pharmacology and Therapeutic Targets. Psychopharmacology 2021, 238, 9–28. [Google Scholar] [CrossRef]
- Story, G.; Briere, C.-E.; McClements, D.J.; Sela, D.A. Cannabidiol and Intestinal Motility: A Systematic Review. Curr. Dev. Nutr. 2023, 7, 101972. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Majid, F.; Eckl, V.; Morton Reynolds, C. Herbal Supplement Sales in US Increase by Record-Breaking 17.3% in 2020. Available online: https://www.herbalgram.org/resources/herbalgram/issues/131/table-of-contents/hg131-mkrpt/ (accessed on 31 January 2024).
- Smith, T.; Resetar, H.; Morton, C. US Sales of Herbal Supplements Increase by 9.7% in 2020; Herbalgram Report; American Botanical Council: Austin, TX, USA., 2021. [Google Scholar]
- Jazz Pharmaceuticals EPIDIOLEX (Cannabidiol) Prescribing Information. Available online: https://pp.jazzpharma.com/pi/epidiolex.en.USPI.pdf (accessed on 12 November 2023).
- Jazz Pharmaceuticals Epidyolex (Cannabidiol) Product Information. Available online: https://www.ema.europa.eu/en/documents/product-information/epidyolex-epar-product-information_en.pdf (accessed on 12 November 2023).
- Nichols, J.M.; Kaplan, B.L.F. Immune Responses Regulated by Cannabidiol. Cannabis Cannabinoid Res. 2020, 5, 12–31. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Scuderi, C.; Valenza, M.; Togna, G.I.; Latina, V.; De Filippis, D.; Cipriano, M.; Carratù, M.R.; Iuvone, T.; Steardo, L. Cannabidiol Reduces Aβ-Induced Neuroinflammation and Promotes Hippocampal Neurogenesis through PPARγ Involvement. PLoS ONE 2011, 6, e28668. [Google Scholar] [CrossRef] [PubMed]
- De Filippis, D.; Esposito, G.; Cirillo, C.; Cipriano, M.; De Winter, B.Y.; Scuderi, C.; Sarnelli, G.; Cuomo, R.; Steardo, L.; De Man, J.G.; et al. Cannabidiol Reduces Intestinal Inflammation through the Control of Neuroimmune Axis. PLoS ONE 2011, 6, e28159. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Radwan, M.M.; Majumdar, C.G.; Church, J.C.; Freeman, T.P.; ElSohly, M.A. New Trends in Cannabis Potency in USA and Europe during the Last Decade (2008–2017). Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 5–15. [Google Scholar] [CrossRef]
- Alkem Labs. Marinol (Dronabinol) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2006/018651s025s026lbl.pdf (accessed on 2 November 2023).
- Benuvia. Syndros (Dronabinol) [Package Insert]. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/205525s003lbl.pdf (accessed on 2 November 2023).
- Jazz Pharmaceuticals, Inc. Sativex (Delta-9-Tetrahydrocannabinol and Cannabidiol) Oromucosal Spray Electronic Medicines Compendium. Available online: https://www.medicines.org.uk/emc/product/602/ (accessed on 12 November 2023).
- Jazz Pharmaceuticals, Inc. Sativex (Delta-9-Tetrahydrocannabinol and Cannabidiol) Oromucosal Spray. Available online: https://www.jazzpharma.com/medicines/our-medicines/ (accessed on 12 November 2023).
- Brown, J.D.; Winterstein, A.G. Potential Adverse Drug Events and Drug-Drug Interactions with Medical and Consumer Cannabidiol (CBD) Use. J. Clin. Med. 2019, 8, 989. [Google Scholar] [CrossRef] [PubMed]
- Miller, I.; Scheffer, I.E.; Gunning, B.; Sanchez-Carpintero, R.; Gil-Nagel, A.; Perry, M.S.; Saneto, R.P.; Checketts, D.; Dunayevich, E.; Knappertz, V. Dose-Ranging Effect of Adjunctive Oral Cannabidiol vs Placebo on Convulsive Seizure Frequency in Dravet Syndrome: A Randomized Clinical Trial. JAMA Neurol. 2020, 77, 613–621. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, K.; Ofori, S.; Hines, L.; Taylor, G.; Adams, S.; Freeman, T.P. Association of Cannabis Potency with Mental Ill Health and Addiction: A Systematic Review. Lancet Psychiatry 2022, 9, 736–750. [Google Scholar] [CrossRef]
- Barrus, D.G.; Capogrossi, K.L.; Cates, S.C.; Gourdet, C.K.; Peiper, N.C.; Novak, S.P.; Lefever, T.W.; Wiley, J.L. Tasty THC: Promises and Challenges of Cannabis Edibles. Methods Rep. RTI Press 2016, 2016. [Google Scholar] [CrossRef]
- Hines, L.A.; Freeman, T.P.; Gage, S.H.; Zammit, S.; Hickman, M.; Cannon, M.; Munafo, M.; MacLeod, J.; Heron, J. Association of High-Potency Cannabis Use with Mental Health and Substance Use in Adolescence. JAMA Psychiatry 2020, 77, 1044–1051. [Google Scholar] [CrossRef]
- Pichini, S.; Mannocchi, G.; Berretta, P.; Zaami, S.; Pirani, F.; Pacifici, R.; Busardò, F.P. Δ9-Tetrahydrocannabinol and Cannabidiol Time Courses in the Sera of “Light Cannabis” Smokers: Discriminating Light Cannabis Use from Illegal and Medical Cannabis Use. Ther. Drug Monit. 2020, 42, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Busardò, F.P.; Pérez-Acevedo, A.P.; Pacifici, R.; Mannocchi, G.; Gottardi, M.; Papaseit, E.; Pérez-Mañá, C.; Martin, S.; Poyatos, L.; Pichini, S.; et al. Disposition of Phytocannabinoids, Their Acidic Precursors and Their Metabolites in Biological Matrices of Healthy Individuals Treated with Vaporized Medical Cannabis. Pharmaceuticals 2021, 14, 59. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Acevedo, A.P.; Pacifici, R.; Mannocchi, G.; Gottardi, M.; Poyatos, L.; Papaseit, E.; Pérez-Mañá, C.; Martin, S.; Busardò, F.P.; Pichini, S.; et al. Disposition of Cannabinoids and Their Metabolites in Serum, Oral Fluid, Sweat Patch and Urine from Healthy Individuals Treated with Pharmaceutical Preparations of Medical Cannabis. Phytother. Res. 2021, 35, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Stella, B.; Baratta, F.; Della Pepa, C.; Arpicco, S.; Gastaldi, D.; Dosio, F. Cannabinoid Formulations and Delivery Systems: Current and Future Options to Treat Pain. Drugs 2021, 81, 1513–1557. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Bialer, M. Critical Aspects Affecting Cannabidiol Oral Bioavailability and Metabolic Elimination, and Related Clinical Implications. CNS Drugs 2020, 34, 795–800. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, K.; Willette, S.; Lucker, B.F.; Kovar, S.E.; Holguin, F.O.; Guzman, I. The Effects of Food on Cannabidiol Bioaccessibility. Molecules 2021, 26, 3573. [Google Scholar] [CrossRef]
- Martinez Naya, N.; Kelly, J.; Corna, G.; Golino, M.; Polizio, A.H.; Abbate, A.; Toldo, S.; Mezzaroma, E. An Overview of Cannabidiol as a Multifunctional Drug: Pharmacokinetics and Cellular Effects. Molecules 2024, 29, 473. [Google Scholar] [CrossRef] [PubMed]
- Yeung, C.H.T.; Beers, J.L.; Jackson, K.D.; Edginton, A.N. Verifying in Vitro-determined Enzyme Contributions to Cannabidiol Clearance for Exposure Predictions in Human through Physiologically-based Pharmacokinetic Modeling. CPT Pharmacomet. Syst. Pharmacol. 2023, 12, 320–332. [Google Scholar] [CrossRef]
- Jiang, R.; Yamaori, S.; Takeda, S.; Yamamoto, I.; Watanabe, K. Identification of Cytochrome P450 Enzymes Responsible for Metabolism of Cannabidiol by Human Liver Microsomes. Life Sci. 2011, 89, 165–170. [Google Scholar] [CrossRef]
- Mazur, A.; Lichti, C.F.; Prather, P.L.; Zielinska, A.K.; Bratton, S.M.; Gallus-Zawada, A.; Finel, M.; Miller, G.P.; Radomińska-Pandya, A.; Moran, J.H. Characterization of Human Hepatic and Extrahepatic UDP-Glucuronosyltransferase Enzymes Involved in the Metabolism of Classic Cannabinoids. Drug Metab. Dispos. 2009, 37, 1496–1504. [Google Scholar] [CrossRef]
- Huestis, M.A. Human Cannabinoid Pharmacokinetics. Chem. Biodivers. 2007, 4, 1770–1804. [Google Scholar] [CrossRef]
- Huestis, M.A.; Sempio, C.; Newmeyer, M.N.; Andersson, M.; Barnes, A.J.; Abulseoud, O.A.; Blount, B.C.; Schroeder, J.; Smith, M.L. Free and Glucuronide Urine Cannabinoids after Controlled Smoked, Vaporized and Oral Cannabis Administration in Frequent and Occasional Cannabis Users. J. Anal. Toxicol. 2020, 44, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Bardhi, K.; Coates, S.; Watson, C.J.W.; Lazarus, P. Cannabinoids and Drug Metabolizing Enzymes: Potential for Drug-Drug Interactions and Implications for Drug Safety and Efficacy. Expert. Rev. Clin. Pharmacol. 2022, 15, 1443–1460. [Google Scholar] [CrossRef] [PubMed]
- Matheson, J.; Sproule, B.; Di Ciano, P.; Fares, A.; Le Foll, B.; Mann, R.E.; Brands, B. Sex Differences in the Acute Effects of Smoked Cannabis: Evidence from a Human Laboratory Study of Young Adults. Psychopharmacology 2020, 237, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Sallam, N.A.; Peterson, C.S.; Baglot, S.L.; Kohro, Y.; Trang, T.; Hill, M.N.; Borgland, S.L. Sex Differences in Plasma, Adipose Tissue, and Central Accumulation of Cannabinoids, and Behavioral Effects of Oral Cannabis Consumption in Male and Female C57BL/6 Mice. Int. J. Neuropsychopharmacol. 2023, 26, pyad055. [Google Scholar] [CrossRef] [PubMed]
- Millar, S.A.; Stone, N.L.; Yates, A.S.; O’Sullivan, S.E. A Systematic Review on the Pharmacokinetics of Cannabidiol in Humans. Front. Pharmacol. 2018, 9, 1365. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.; Amaral, C.; Teixeira, N.; Correia-da-Silva, G. Cannabis Sativa: Much More beyond Δ9-Tetrahydrocannabinol. Pharmacol. Res. 2020, 157, 104822. [Google Scholar] [CrossRef]
- Kebede, L.; Masoomi Dezfooli, S.; Seyfoddin, A. Medicinal Cannabis Pharmacokinetics and Potential Methods of Delivery. Pharm. Dev. Technol. 2022, 27, 202–214. [Google Scholar] [CrossRef] [PubMed]
- Huestis, M.A. Pharmacokinetics and Metabolism of the Plant Cannabinoids, Δ9-Tetrahydrocannabinol, Cannabidiol and Cannabinol. In Cannabinoids; Handbook of Experimental Pharmacology; Springer: Berlin/Heidelberg, Germany, 2005; pp. 657–690. [Google Scholar] [CrossRef]
- Morrison, G.; Crockett, J.; Blakey, G.; Sommerville, K. A Phase 1, Open-Label, Pharmacokinetic Trial to Investigate Possible Drug-Drug Interactions between Clobazam, Stiripentol, or Valproate and Cannabidiol in Healthy Subjects. Clin. Pharm. Drug Dev. 2019, 8, 1009–1031. [Google Scholar] [CrossRef]
- VanLandingham, K.E.; Crockett, J.; Taylor, L.; Morrison, G. A Phase 2, Double-Blind, Placebo-Controlled Trial to Investigate Potential Drug-Drug Interactions between Cannabidiol and Clobazam. J. Clin. Pharmacol. 2020, 60, 1304–1313. [Google Scholar] [CrossRef]
- Ben-Menachem, E.; Gunning, B.; Arenas Cabrera, C.M.; VanLandingham, K.; Crockett, J.; Critchley, D.; Wray, L.; Tayo, B.; Morrison, G.; Toledo, M. A Phase II Randomized Trial to Explore the Potential for Pharmacokinetic Drug–Drug Interactions with Stiripentol or Valproate When Combined with Cannabidiol in Patients with Epilepsy. CNS Drugs 2020, 34, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Gaston, T.E.; Bebin, E.M.; Cutter, G.R.; Liu, Y.; Szaflarski, J.P.; the UAB CBD Program. Interactions between Cannabidiol and Commonly Used Antiepileptic Drugs. Epilepsia 2017, 58, 1586–1592. [Google Scholar] [CrossRef]
- Wheless, J.W.; Dlugos, D.; Miller, I.; Oh, D.A.; Parikh, N.; Phillips, S.; Renfroe, J.B.; Roberts, C.M.; Saeed, I.; Sparagana, S.P.; et al. Pharmacokinetics and Tolerability of Multiple Doses of Pharmaceutical-Grade Synthetic Cannabidiol in Pediatric Patients with Treatment-Resistant Epilepsy. CNS Drugs 2019, 33, 593–604. [Google Scholar] [CrossRef] [PubMed]
- Geffrey, A.L.; Pollack, S.F.; Bruno, P.L.; Thiele, E.A. Drug-Drug Interaction between Clobazam and Cannabidiol in Children with Refractory Epilepsy. Epilepsia 2015, 56, 1246–1251. [Google Scholar] [CrossRef] [PubMed]
- Tanwir, A.; Szabó, C.Á. Non-Convulsive Status Epilepticus in the Setting of Cannabidiol Adjunctive Therapy. Epileptic Disord. 2022, 24, 713–718. [Google Scholar] [CrossRef] [PubMed]
- Cortopassi, J. Warfarin Dose Adjustment Required after Cannabidiol Initiation and Titration. Am. J. Health Syst. Pharm. 2020, 77, 1846–1851. [Google Scholar] [CrossRef] [PubMed]
- Damkier, P.; Lassen, D.; Christensen, M.M.H.; Madsen, K.G.; Hellfritzsch, M.; Pottegård, A. Interaction between Warfarin and Cannabis. Basic. Clin. Pharmacol. Toxicol. 2019, 124, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Grayson, L.; Vines, B.; Nichol, K.; Szaflarski, J.P.; UAB CBD Program. An Interaction between Warfarin and Cannabidiol, a Case Report. Epilepsy Behav. Case Rep. 2018, 9, 10–11. [Google Scholar] [CrossRef] [PubMed]
- Hsu, A.; Painter, N.A. Probable Interaction between Warfarin and Inhaled and Oral Administration of Cannabis. J. Pharm. Pract. 2020, 33, 915–918. [Google Scholar] [CrossRef]
- Yamreudeewong, W.; Wong, H.K.; Brausch, L.M.; Pulley, K.R. Probable Interaction between Warfarin and Marijuana Smoking. Ann. Pharmacother. 2009, 43, 1347–1353. [Google Scholar] [CrossRef]
- Zullino, D.F.; Delessert, D.; Eap, C.B.; Preisig, M.; Baumann, P. Tobacco and Cannabis Smoking Cessation Can Lead to Intoxication with Clozapine or Olanzapine. Int. Clin. Psychopharmacol. 2002, 17, 141–143. [Google Scholar] [CrossRef] [PubMed]
- Vierke, C.; Marxen, B.; Boettcher, M.; Hiemke, C.; Havemann-Reinecke, U. Buprenorphine-Cannabis Interaction in Patients Undergoing Opioid Maintenance Therapy. Eur. Arch. Psychiatry Clin. Neurosci. 2021, 271, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Leino, A.D.; Emoto, C.; Fukuda, T.; Privitera, M.; Vinks, A.A.; Alloway, R.R. Evidence of a Clinically Significant Drug-Drug Interaction between Cannabidiol and Tacrolimus. Am. J. Transpl. 2019, 19, 2944–2948. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi-Fakhari, D.; Agricola, K.D.; Tudor, C.; Krueger, D.; Franz, D.N. Cannabidiol Elevates Mechanistic Target of Rapamycin Inhibitor Levels in Patients with Tuberous Sclerosis Complex. Pediatr. Neurol. 2020, 105, 59–61. [Google Scholar] [CrossRef] [PubMed]
- Wiemer-Kruel, A.; Stiller, B.; Bast, T. Cannabidiol Interacts Significantly with Everolimus—Report of a Patient with Tuberous Sclerosis Complex. Neuropediatrics 2019, 50, 400–403. [Google Scholar] [CrossRef]
- Thai, C.; Tayo, B.; Critchley, D. A Phase 1 Open-Label, Fixed-Sequence Pharmacokinetic Drug Interaction Trial to Investigate the Effect of Cannabidiol on the CYP1A2 Probe Caffeine in Healthy Subjects. Clin. Pharmacol. Drug Dev. 2021, 10, 1279–1289. [Google Scholar] [CrossRef] [PubMed]
- Anderson, L.L.; Doohan, P.T.; Oldfield, L.; Kevin, R.C.; Arnold, J.C.; Berger, M.; Amminger, G.P.; McGregor, I.S. Citalopram and Cannabidiol: In Vitro and In Vivo Evidence of Pharmacokinetic Interactions Relevant to the Treatment of Anxiety Disorders in Young People. J. Clin. Psychopharmacol. 2021, 41, 525–533. [Google Scholar] [CrossRef]
- Jusko, W.J.; Gardner, M.J.; Mangione, A.; Schentag, J.J.; Koup, J.R.; Vance, J.W. Factors Affecting Theophylline Clearances: Age, Tobacco, Marijuana, Cirrhosis, Congestive Heart Failure, Obesity, Oral Contraceptives, Benzodiazepines, Barbiturates, and Ethanol. J. Pharm. Sci. 1979, 68, 1358–1366. [Google Scholar] [CrossRef] [PubMed]
- Jusko, W.J.; Schentag, J.J.; Clark, J.H.; Gardner, M.; Yurchak, A.M. Enhanced Biotransformation of Theophylline in Marihuana and Tobacco Smokers. Clin. Pharmacol. Ther. 1978, 24, 405–410. [Google Scholar] [CrossRef]
- Sands, T.T.; Rahdari, S.; Oldham, M.S.; Caminha Nunes, E.; Tilton, N.; Cilio, M.R. Long-Term Safety, Tolerability, and Efficacy of Cannabidiol in Children with Refractory Epilepsy: Results from an Expanded Access Program in the US. CNS Drugs 2019, 33, 47–60. [Google Scholar] [CrossRef]
- Stott, C.; White, L.; Wright, S.; Wilbraham, D.; Guy, G. A Phase I, Open-Label, Randomized, Crossover Study in Three Parallel Groups to Evaluate the Effect of Rifampicin, Ketoconazole, and Omeprazole on the Pharmacokinetics of THC/CBD Oromucosal Spray in Healthy Volunteers. Springerplus 2013, 2, 236. [Google Scholar] [CrossRef]
- Brown, S.A.; Boyd, K.; Thomason, A.R. Geriatric Pharmacotherapy Case Series: Potential Drug Interactions with Antiplatelet Medications and Cannabidiol-A Focus on P2Y12 Inhibitors. Sr. Care Pharm. 2023, 38, 141–147. [Google Scholar] [CrossRef]
- Smythe, M.A.; Wu, W.; Garwood, C.L. Anticoagulant Drug–Drug Interactions with Cannabinoids: A Systematic Review. Pharmacotherapy 2023, 43, 1327–1338. [Google Scholar] [CrossRef]
- Kosel, B.W.; Aweeka, F.T.; Benowitz, N.L.; Shade, S.B.; Hilton, J.F.; Lizak, P.S.; Abrams, D.I. The Effects of Cannabinoids on the Pharmacokinetics of Indinavir and Nelfinavir. AIDS 2002, 16, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Madden, K.; Tanco, K.; Bruera, E. Clinically Significant Drug-Drug Interaction between Methadone and Cannabidiol. Pediatrics 2020, 145, e20193256. [Google Scholar] [CrossRef]
- Manini, A.F.; Yiannoulos, G.; Bergamaschi, M.M.; Hernandez, S.; Olmedo, R.; Barnes, A.J.; Winkel, G.; Sinha, R.; Jutras-Aswad, D.; Huestis, M.A.; et al. Safety and Pharmacokinetics of Oral Cannabidiol When Administered Concomitantly with Intravenous Fentanyl in Humans. J. Addict. Med. 2015, 9, 204–210. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.D.; Gennings, C.; Shih, M. Synergistic Affective Analgesic Interaction between Delta-9-Tetrahydrocannabinol and Morphine. Eur. J. Pharmacol. 2006, 530, 54–58. [Google Scholar] [CrossRef]
- Murray, C.H.; Haney, M.; Foltin, R.W.; Manubay, J.; Bedi, G.; Cooper, Z.D. Smoked Cannabis Reduces Peak Cocaine Plasma Levels and Subjective Effects in a Controlled Drug Administration Study of Polysubstance Use in Men. Drug Alcohol. Depend. 2023, 243, 109757. [Google Scholar] [CrossRef]
- Beers, J.L.; Fu, D.; Jackson, K.D. Cytochrome P450-Catalyzed Metabolism of Cannabidiol to the Active Metabolite 7-Hydroxy-Cannabidiol. Drug Metab. Dispos. 2021, 49, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Beers, J.L.; Authement, A.K.; Isoherranen, N.; Jackson, K.D. Cytosolic Enzymes Generate Cannabinoid Metabolites 7-Carboxycannabidiol and 11-Nor-9-Carboxytetrahydrocannabinol. ACS Med. Chem. Lett. 2023, 14, 614–620. [Google Scholar] [CrossRef]
- Auzmendi, J.; Palestro, P.; Blachman, A.; Gavernet, L.; Merelli, A.; Talevi, A.; Calabrese, G.C.; Ramos, A.J.; Lazarowski, A. Cannabidiol (CBD) Inhibited Rhodamine-123 Efflux in Cultured Vascular Endothelial Cells and Astrocytes Under Hypoxic Conditions. Front. Behav. Neurosci. 2020, 14, 32. [Google Scholar] [CrossRef]
- Brzozowska, N.; Li, K.M.; Wang, X.S.; Booth, J.; Stuart, J.; McGregor, I.S.; Arnold, J.C. ABC Transporters P-Gp and Bcrp Do Not Limit the Brain Uptake of the Novel Antipsychotic and Anticonvulsant Drug Cannabidiol in Mice. PeerJ 2016, 4, e2081. [Google Scholar] [CrossRef]
- Holland, M.L.; Allen, J.D.; Arnold, J.C. Interaction of Plant Cannabinoids with the Multidrug Transporter ABCC1 (MRP1). Eur. J. Pharmacol. 2008, 591, 128–131. [Google Scholar] [CrossRef]
- Watanabe, K.; Yamaori, S.; Funahashi, T.; Kimura, T.; Yamamoto, I. Cytochrome P450 Enzymes Involved in the Metabolism of Tetrahydrocannabinols and Cannabinol by Human Hepatic Microsomes. Life Sci. 2007, 80, 1415–1419. [Google Scholar] [CrossRef]
- Kumar, A.R.; Patilea-Vrana, G.I.; Anoshchenko, O.; Unadkat, J.D. Characterizing and Quantifying Extrahepatic Metabolism of (−)-Δ9-Tetrahydrocannabinol (THC) and Its Psychoactive Metabolite, (±)-11-Hydroxy-Δ9-THC (11-OH-THC). Drug Metab. Dispos. 2022, 50, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Nasrin, S.; Watson, C.J.W.; Perez-Paramo, Y.X.; Lazarus, P. Cannabinoid Metabolites as Inhibitors of Major Hepatic CYP450 Enzymes, with Implications for Cannabis-Drug Interactions. Drug Metab. Dispos. 2021, 49, 1070–1080. [Google Scholar] [CrossRef]
- Center for Drug Evaluation and Research (CDER). Clinical Pharmacology and Biopharmaceutics Review (Cannabidiol) [Internet]. U.S. Food and Drug Administration Drugs@FDA. 2017. Available online: https://www.Accessdata.Fda.Gov/Drugsatfda_docs/Nda/2018/210365Orig1s000ClinPharmR.Pdf (accessed on 4 January 2024).
- Nasrin, S.; Watson, C.J.W.; Bardhi, K.; Fort, G.; Chen, G.; Lazarus, P. Inhibition of UDP-Glucuronosyltransferase Enzymes by Major Cannabinoids and Their Metabolites. Drug Metab. Dispos. 2021, 49, 1081–1089. [Google Scholar] [CrossRef]
- Alsherbiny, M.; Li, C. Medicinal Cannabis—Potential Drug Interactions. Medicines 2018, 6, 3. [Google Scholar] [CrossRef]
- Bland, T.M.; Haining, R.L.; Tracy, T.S.; Callery, P.S. CYP2C-Catalyzed Delta9-Tetrahydrocannabinol Metabolism: Kinetics, Pharmacogenetics and Interaction with Phenytoin. Biochem. Pharmacol. 2005, 70, 1096–1103. [Google Scholar] [CrossRef] [PubMed]
- Bonhomme-Faivre, L.; Benyamina, A.; Reynaud, M.; Farinotti, R.; Abbara, C. PRECLINICAL STUDY: Disposition of Δ9Tetrahydrocannabinol in CF1 Mice Deficient in Mdr1a P-glycoprotein. Addict. Biol. 2008, 13, 295–300. [Google Scholar] [CrossRef] [PubMed]
- Spiro, A.S.; Wong, A.; Boucher, A.A.; Arnold, J.C. Enhanced Brain Disposition and Effects of Δ9-Tetrahydrocannabinol in P-Glycoprotein and Breast Cancer Resistance Protein Knockout Mice. PLoS ONE 2012, 7, e35937. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Unadkat, J.D.; Mao, Q. Tetrahydrocannabinol and Its Major Metabolites Are Not (or Are Poor) Substrates or Inhibitors of Human P-Glycoprotein [ATP-Binding Cassette (ABC) B1] and Breast Cancer Resistance Protein (ABCG2). Drug Metab. Dispos. 2021, 49, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Unadkat, J.D.; Mao, Q. Maternal and Fetal Exposure to (-)-Δ9-Tetrahydrocannabinol and Its Major Metabolites in Pregnant Mice Is Differentially Impacted by P-Glycoprotein and Breast Cancer Resistance Protein. Drug Metab. Dispos. 2023, 51, 269–275. [Google Scholar] [CrossRef]
- Qian, Y.; Markowitz, J.S. Prediction of Carboxylesterase 1-Mediated In Vivo Drug Interaction between Methylphenidate and Cannabinoids Using Static and Physiologically Based Pharmacokinetic Models. Drug Metab. Dispos. 2022, 50, 968–979. [Google Scholar] [CrossRef] [PubMed]
- Brzozowska, N.I.; de Tonnerre, E.J.; Li, K.M.; Wang, X.S.; Boucher, A.A.; Callaghan, P.D.; Kuligowski, M.; Wong, A.; Arnold, J.C. The Differential Binding of Antipsychotic Drugs to the ABC Transporter P-Glycoprotein Predicts Cannabinoid-Antipsychotic Drug Interactions. Neuropsychopharmacology 2017, 42, 2222–2231. [Google Scholar] [CrossRef] [PubMed]
- Giraud, C.; Tran, A.; Rey, E.; Vincent, J.; Tréluyer, J.-M.; Pons, G. In Vitro Characterization of Clobazam Metabolism by Recombinant Cytochrome P450 Enzymes: Importance of CYP2C19. Drug Metab. Dispos. 2004, 32, 1279–1286. [Google Scholar] [CrossRef]
- Thomas, T.F.; Metaxas, E.S.; Nguyen, T.; Bennett, W.; Skiendzielewski, K.V.; Quinn, D.H.; Scaletta, A.L. Case Report: Medical Cannabis-Warfarin Drug-Drug Interaction. J. Cannabis Res. 2022, 4, 6. [Google Scholar] [CrossRef] [PubMed]
- Brown, G.W.; Bellnier, T.J.; Janda, M.; Miskowitz, K. Δ-9-Tetrahydrocannabinol Dose Increase Leads to Warfarin Drug Interaction and Elevated INR. J. Am. Pharm. Assoc. 2021, 61, e57–e60. [Google Scholar] [CrossRef] [PubMed]
- Zamarripa, C.A.; Spindle, T.R.; Surujunarain, R.; Weerts, E.M.; Bansal, S.; Unadkat, J.D.; Paine, M.F.; Vandrey, R. Assessment of Orally Administered Δ9-Tetrahydrocannabinol When Coadministered with Cannabidiol on Δ9-Tetrahydrocannabinol Pharmacokinetics and Pharmacodynamics in Healthy Adults: A Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2254752. [Google Scholar] [CrossRef] [PubMed]
- FDA Center for Drug Evaluation and Research. Clinical Interaction Studies—Cytochrome P450 Enzyme- and Transporter-Mediated Drug Interactions: Guidance for Industry; Food and Drug Administration: Rockville, MD, USA, 2020.
- Engels, F.K.; de Jong, F.A.; Sparreboom, A.; Mathot, R.A.A.; Loos, W.J.; Kitzen, J.J.E.M.; de Bruijn, P.; Verweij, J.; Mathijssen, R.H.J. Medicinal Cannabis Does Not Influence the Clinical Pharmacokinetics of Irinotecan and Docetaxel. Oncologist 2007, 12, 291–300. [Google Scholar] [CrossRef]
- Riggs, C.E.; Egorin, M.J.; Fuks, J.Z.; Schnaper, N.; Duffey, P.; Colvin, O.M.; Aisner, J.; Wiernik, P.H.; Bachur, N.R. Initial Observations on the Effects of Δ9-Tetrahydrocannabinol on the Plasma Pharmacokinetics of Cyclophosphamide and Doxorubicin. J. Clin. Pharmacol. 1981, 21, 90S–98S. [Google Scholar] [CrossRef] [PubMed]
- Markowitz, J.S.; De Faria, L.; Zhang, Q.; Melchert, P.W.; Frye, R.F.; Klee, B.O.; Qian, Y. The Influence of Cannabidiol on the Pharmacokinetics of Methylphenidate in Healthy Subjects. Med. Cannabis Cannabinoids 2022, 5, 199–206. [Google Scholar] [CrossRef] [PubMed]
- Corso, B.; Bacle, A.; Demay, E.; Mercerolle, M.; Pelletier, R.; Gicquel, T.; Le Daré, B. Place of Therapeutic Cannabis in France and Safety Data: A Literature Review. Ann. Pharm. Fr. 2023, 81, 583–595. [Google Scholar] [CrossRef] [PubMed]
- Garrett, E.R.; Hunt, C.A. Physiochemical Properties, Solubility, and Protein Binding of Δ9-Tetrahydrocannabinol. J. Pharm. Sci. 1974, 63, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Golombek, P.; Müller, M.; Barthlott, I.; Sproll, C.; Lachenmeier, D.W. Conversion of Cannabidiol (CBD) into Psychotropic Cannabinoids Including Tetrahydrocannabinol (THC): A Controversy in the Scientific Literature. Toxics 2020, 8, 41. [Google Scholar] [CrossRef]
- Merrick, J.; Lane, B.; Sebree, T.; Yaksh, T.; O’Neill, C.; Banks, S.L. Identification of Psychoactive Degradants of Cannabidiol in Simulated Gastric and Physiological Fluid. Cannabis Cannabinoid Res. 2016, 1, 102–112. [Google Scholar] [CrossRef]
- Hložek, T.; Uttl, L.; Kadeřábek, L.; Balíková, M.; Lhotková, E.; Horsley, R.R.; Nováková, P.; Šíchová, K.; Štefková, K.; Tylš, F.; et al. Pharmacokinetic and Behavioural Profile of THC, CBD, and THC+CBD Combination after Pulmonary, Oral, and Subcutaneous Administration in Rats and Confirmation of Conversion in Vivo of CBD to THC. Eur. Neuropsychopharmacol. 2017, 27, 1223–1237. [Google Scholar] [CrossRef] [PubMed]
- Crippa, J.A.S.; Zuardi, A.W.; Hallak, J.E.C.; Miyazawa, B.; Bernardo, S.A.; Donaduzzi, C.M.; Guzzi, S.; Favreto, W.A.J.; Campos, A.; Queiroz, M.E.C.; et al. Oral Cannabidiol Does Not Convert to Δ8-THC or Δ9-THC in Humans: A Pharmacokinetic Study in Healthy Subjects. Cannabis Cannabinoid Res. 2020, 5, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Bruckmueller, H.; Cascorbi, I. Drug-Drug-Gene Interactions: A Call for Clinical Consideration. Clin. Pharma Ther. 2021, 110, 549–551. [Google Scholar] [CrossRef]
- Bahar, M.A.; Setiawan, D.; Hak, E.; Wilffert, B. Pharmacogenetics of Drug–Drug Interaction and Drug–Drug–Gene Interaction: A Systematic Review on CYP2C9, CYP2C19 and CYP2D6. Pharmacogenomics 2017, 18, 701–739. [Google Scholar] [CrossRef]
- Zanger, U.M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138, 103–141. [Google Scholar] [CrossRef]
- Zhou, S.-F.; Liu, J.-P.; Chowbay, B. Polymorphism of Human Cytochrome P450 Enzymes and Its Clinical Impact. Drug Metab. Rev. 2009, 41, 89–295. [Google Scholar] [CrossRef]
- Wolowich, W.R.; Greif, R.; Kleine-Brueggeney, M.; Bernhard, W.; Theiler, L. Minimal Physiologically Based Pharmacokinetic Model of Intravenously and Orally Administered Delta-9-Tetrahydrocannabinol in Healthy Volunteers. Eur. J. Drug Metab. Pharmacokinet. 2019, 44, 691–711. [Google Scholar] [CrossRef]
- Cáceres Guido, P.; Riva, N.; Caraballo, R.; Reyes, G.; Huaman, M.; Gutierrez, R.; Agostini, S.; Fabiana Delaven, S.; Pérez Montilla, C.A.; García Bournissen, F.; et al. Pharmacokinetics of Cannabidiol in Children with Refractory Epileptic Encephalopathy. Epilepsia 2021, 62, e7–e12. [Google Scholar] [CrossRef]
- Wang, G.S.; Bourne, D.W.A.; Klawitter, J.; Sempio, C.; Chapman, K.; Knupp, K.; Wempe, M.F.; Borgelt, L.; Christians, U.; Leonard, J.; et al. Disposition of Oral Cannabidiol-Rich Cannabis Extracts in Children with Epilepsy. Clin. Pharmacokinet. 2020, 59, 1005–1012. [Google Scholar] [CrossRef]
- Taylor, L.; Crockett, J.; Tayo, B.; Morrison, G. A Phase 1, Open-Label, Parallel-Group, Single-Dose Trial of the Pharmacokinetics and Safety of Cannabidiol (CBD) in Subjects with Mild to Severe Hepatic Impairment. J. Clin. Pharmacol. 2019, 59, 1110–1119. [Google Scholar] [CrossRef]
- Tayo, B.; Taylor, L.; Sahebkar, F.; Morrison, G. A Phase I, Open-Label, Parallel-Group, Single-Dose Trial of the Pharmacokinetics, Safety, and Tolerability of Cannabidiol in Subjects with Mild to Severe Renal Impairment. Clin. Pharmacokinet. 2020, 59, 747–755. [Google Scholar] [CrossRef]
- Clarke, S.; Butcher, B.E.; McLachlan, A.J.; Henson, J.D.; Rutolo, D.; Hall, S.; Vitetta, L. Pilot Clinical and Pharmacokinetic Study of Δ9-Tetrahydrocannabinol (THC)/Cannabidiol (CBD) Nanoparticle Oro-Buccal Spray in Patients with Advanced Cancer Experiencing Uncontrolled Pain. PLoS ONE 2022, 17, e0270543. [Google Scholar] [CrossRef]
- Birnbaum, A.K.; Karanam, A.; Marino, S.E.; Barkley, C.M.; Remmel, R.P.; Roslawski, M.; Gramling-Aden, M.; Leppik, I.E. Food Effect on Pharmacokinetics of Cannabidiol Oral Capsules in Adult Patients with Refractory Epilepsy. Epilepsia 2019, 60, 1586–1592. [Google Scholar] [CrossRef]
- Hansen, J.S.; Boix, F.; Hasselstrøm, J.B.; Sørensen, L.K.; Kjolby, M.; Gustavsen, S.; Hansen, R.M.; Petersen, T.; Sellebjerg, F.; Kasch, H.; et al. Pharmacokinetics and Pharmacodynamics of Cannabis-based Medicine in a Patient Population Included in a Randomized, Placebo-controlled, Clinical Trial. Clin. Transl. Sci. 2024, 17, e13685. [Google Scholar] [CrossRef]
- Naftali, T.; Bar-Lev Schleider, L.; Almog, S.; Meiri, D.; Konikoff, F.M. Cannabis Is Associated with Clinical but Not Endoscopic Remission in Ulcerative Colitis: A Randomized Controlled Trial. J. Crohns Colitis 2021, 15, 1799–1806. [Google Scholar] [CrossRef]
- Ahmed, A.I.A.; van den Elsen, G.A.H.; Colbers, A.; van der Marck, M.A.; Burger, D.M.; Feuth, T.B.; Rikkert, M.G.M.O.; Kramers, C. Safety and Pharmacokinetics of Oral Delta-9-Tetrahydrocannabinol in Healthy Older Subjects: A Randomized Controlled Trial. Eur. Neuropsychopharmacol. 2014, 24, 1475–1482. [Google Scholar] [CrossRef]
- Ahmed, A.I.A.; van den Elsen, G.A.H.; Colbers, A.; Kramers, C.; Burger, D.M.; van der Marck, M.A.; Olde Rikkert, M.G.M. Safety, Pharmacodynamics, and Pharmacokinetics of Multiple Oral Doses of Delta-9-Tetrahydrocannabinol in Older Persons with Dementia. Psychopharmacology 2015, 232, 2587–2595. [Google Scholar] [CrossRef]
- Almog, S.; Aharon-Peretz, J.; Vulfsons, S.; Ogintz, M.; Abalia, H.; Lupo, T.; Hayon, Y.; Eisenberg, E. The Pharmacokinetics, Efficacy, and Safety of a Novel Selective-Dose Cannabis Inhaler in Patients with Chronic Pain: A Randomized, Double-Blinded, Placebo-Controlled Trial. Eur. J. Pain 2020, 24, 1505–1516. [Google Scholar] [CrossRef]
- Eisenberg, E.; Ogintz, M.; Almog, S. The Pharmacokinetics, Efficacy, Safety, and Ease of Use of a Novel Portable Metered-Dose Cannabis Inhaler in Patients with Chronic Neuropathic Pain: A Phase 1a Study. J. Pain. Palliat. Care Pharmacother. 2014, 28, 216–225. [Google Scholar] [CrossRef]
- Volkow, N.D.; Han, B.; Compton, W.M.; McCance-Katz, E.F. Self-Reported Medical and Nonmedical Cannabis Use among Pregnant Women in the United States. JAMA 2019, 322, 167–169. [Google Scholar] [CrossRef]
- Young-Wolff, K.C.; Tucker, L.-Y.; Alexeeff, S.; Armstrong, M.A.; Conway, A.; Weisner, C.; Goler, N. Trends in Self-Reported and Biochemically Tested Marijuana Use among Pregnant Females in California from 2009–2016. JAMA 2017, 318, 2490–2491. [Google Scholar] [CrossRef]
- Monfort, A.; Ferreira, E.; Leclair, G.; Lodygensky, G.A. Pharmacokinetics of Cannabis and Its Derivatives in Animals and Humans During Pregnancy and Breastfeeding. Front. Pharmacol. 2022, 13, 919630. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Safety of CBD in Humans—A Literature Review (As of 12 December 2019). Available online: https://www.fda.gov/media/152317/download (accessed on 24 January 2024).
- Metz, T.D.; McMillin, G.A.; Silver, R.M.; Allshouse, A.A.; Heard, K.; Jensen, T.L.; Wymore, E.M.; Stickrath, E.; Conageski, C.; Kinney, G.L.; et al. Quantification of Prenatal Marijuana Use: Evaluation of the Correlation between Self-Report, Serum, Urine and Umbilical Cord Assays among Women Delivering at Two Urban Colorado Hospitals. Addiction 2022, 117, 172–181. [Google Scholar] [CrossRef]
- Westin, A.A.; Huestis, M.A.; Aarstad, K.; Spigset, O. Short Communication: Urinary Excretion of 11-nor-9-Carboxy-Δ9-Tetrahydrocannabinol in a Pregnant Woman Following Heavy, Chronic Cannabis Use. J. Anal. Toxicol. 2009, 33, 610–614. [Google Scholar] [CrossRef]
- Baker, T.; Datta, P.; Rewers-Felkins, K.; Thompson, H.; Kallem, R.R.; Hale, T.W. Transfer of Inhaled Cannabis Into Human Breast Milk. Obs. Gynecol. 2018, 131, 783–788. [Google Scholar] [CrossRef]
- Bertrand, K.A.; Hanan, N.J.; Honerkamp-Smith, G.; Best, B.M.; Chambers, C.D. Marijuana Use by Breastfeeding Mothers and Cannabinoid Concentrations in Breast Milk. Pediatrics 2018, 142, e20181076. [Google Scholar] [CrossRef]
- Sujan, A.C.; Pal, A.; Avalos, L.A.; Young-Wolff, K.C. A Systematic Review of in Utero Cannabis Exposure and Risk for Structural Birth Defects. Front. Pediatr. 2023, 11, 1149401. [Google Scholar] [CrossRef]
- Dochez-Arnault, J.; Desdoits-Lethimonier, C.; Matias, I.; Evrard, B.; Lagarrigue, M.; Toupin, M.; Lardenois, A.; Chalmel, F.; Mazaud-Guittot, S.; Dejucq-Rainsford, N.; et al. Expression of the Endocannabinoid System and Response to Cannabinoid Components by the Human Fetal Testis. BMC Med. 2023, 21, 219. [Google Scholar] [CrossRef]
- Patilea-Vrana, G.I.; Unadkat, J.D. Development and Verification of a Linked Δ9-THC/11-OH-THC Physiologically Based Pharmacokinetic Model in Healthy, Nonpregnant Population and Extrapolation to Pregnant Women. Drug Metab. Dispos. 2021, 49, 509–520. [Google Scholar] [CrossRef]
- Shenkoya, B.; Yellepeddi, V.; Mark, K.; Gopalakrishnan, M. Predicting Maternal and Infant Tetrahydrocannabinol Exposure in Lactating Cannabis Users: A Physiologically Based Pharmacokinetic Modeling Approach. Pharmaceutics 2023, 15, 2467. [Google Scholar] [CrossRef]
- Trivett, C.; Lees, Z.J.; Freeman, D.J. Adipose Tissue Function in Healthy Pregnancy, Gestational Diabetes Mellitus and Pre-Eclampsia. Eur. J. Clin. Nutr. 2021, 75, 1745–1756. [Google Scholar] [CrossRef]
- Pipe, N.G.; Smith, T.; Halliday, D.; Edmonds, C.J.; Williams, C.; Coltart, T.M. Changes in Fat, Fat-Free Mass and Body Water in Human Normal Pregnancy. Br. J. Obs. Gynaecol. 1979, 86, 929–940. [Google Scholar] [CrossRef]
- Grant, K.S.; Petroff, R.; Isoherranen, N.; Stella, N.; Burbacher, T.M. Cannabis Use during Pregnancy: Pharmacokinetics and Effects on Child Development. Pharmacol. Ther. 2018, 182, 133–151. [Google Scholar] [CrossRef]
- Carlier, J.; Huestis, M.A.; Zaami, S.; Pichini, S.; Busardò, F.P. Monitoring Perinatal Exposure to Cannabis and Synthetic Cannabinoids. Ther. Drug Monit. 2020, 42, 194–204. [Google Scholar] [CrossRef]
- Sorkhou, M.; Singla, D.R.; Castle, D.J.; George, T.P. Birth, Cognitive and Behavioral Effects of Intrauterine Cannabis Exposure in Infants and Children: A Systematic Review and Meta-Analysis. Addiction 2023, 119, 411–437. [Google Scholar] [CrossRef]
- Aran, A.; Cayam-Rand, D. Medical Cannabis in Children. Rambam Maimonides Med. J. 2020, 11, e0003. [Google Scholar] [CrossRef]
- Malach, M.; Kovalchuk, I.; Kovalchuk, O. Medical Cannabis in Pediatric Oncology: Friend or Foe? Pharmaceuticals 2022, 15, 359. [Google Scholar] [CrossRef]
- Hacohen, M.; Stolar, O.E.; Berkovitch, M.; Elkana, O.; Kohn, E.; Hazan, A.; Heyman, E.; Sobol, Y.; Waissengreen, D.; Gal, E.; et al. Children and Adolescents with ASD Treated with CBD-Rich Cannabis Exhibit Significant Improvements Particularly in Social Symptoms: An Open Label Study. Transl. Psychiatry 2022, 12, 375. [Google Scholar] [CrossRef]
- Efron, D.; Taylor, K.; Payne, J.M.; Freeman, J.L.; Cranswick, N.; Mulraney, M.; Prakash, C.; Lee, K.J.; Williams, K. Does Cannabidiol Reduce Severe Behavioural Problems in Children with Intellectual Disability? Study Protocol for a Pilot Single-Site Phase I/II Randomised Placebo Controlled Trial. BMJ Open 2020, 10, e034362. [Google Scholar] [CrossRef]
- Heussler, H.; Cohen, J.; Silove, N.; Tich, N.; Bonn-Miller, M.O.; Du, W.; O’Neill, C.; Sebree, T. A Phase 1/2, Open-Label Assessment of the Safety, Tolerability, and Efficacy of Transdermal Cannabidiol (ZYN002) for the Treatment of Pediatric Fragile X Syndrome. J. Neurodev. Disord. 2019, 11, 16. [Google Scholar] [CrossRef]
- Libzon, S.; Schleider, L.B.-L.; Saban, N.; Levit, L.; Tamari, Y.; Linder, I.; Lerman-Sagie, T.; Blumkin, L. Medical Cannabis for Pediatric Moderate to Severe Complex Motor Disorders. J. Child. Neurol. 2018, 33, 565–571. [Google Scholar] [CrossRef]
- Ekert, H.; Waters, K.D.; Jurk, I.H.; Mobilia, J.; Loughnan, P. Amelioration of Cancer Chemotherapy-Induced Nausea and Vomiting by Delta-9-Tetrahydrocannabinol. Med. J. Aust. 1979, 2, 657–659. [Google Scholar] [CrossRef]
- Fairhurst, C.; Kumar, R.; Checketts, D.; Tayo, B.; Turner, S. Efficacy and Safety of Nabiximols Cannabinoid Medicine for Paediatric Spasticity in Cerebral Palsy or Traumatic Brain Injury: A Randomized Controlled Trial. Dev. Med. Child. Neurol. 2020, 62, 1031–1039. [Google Scholar] [CrossRef]
- Treves, N.; Mor, N.; Allegaert, K.; Bassalov, H.; Berkovitch, M.; Stolar, O.E.; Matok, I. Efficacy and Safety of Medical Cannabinoids in Children: A Systematic Review and Meta-Analysis. Sci. Rep. 2021, 11, 23462. [Google Scholar] [CrossRef]
- Scheffer, I.E.; Halford, J.J.; Miller, I.; Nabbout, R.; Sanchez-Carpintero, R.; Shiloh-Malawsky, Y.; Wong, M.; Zolnowska, M.; Checketts, D.; Dunayevich, E.; et al. Add-on Cannabidiol in Patients with Dravet Syndrome: Results of a Long-term Open-label Extension Trial. Epilepsia 2021, 62, 2505–2517. [Google Scholar] [CrossRef]
- Smid, M.C.; Metz, T.D.; McMillin, G.A.; Mele, L.; Casey, B.M.; Reddy, U.M.; Wapner, R.J.; Thorp, J.M.; Saade, G.R.; Tita, A.T.N.; et al. Prenatal Nicotine or Cannabis Exposure and Offspring Neurobehavioral Outcomes. Obs. Gynecol. 2022, 139, 21–30. [Google Scholar] [CrossRef]
- Devinsky, O.; Patel, A.D.; Thiele, E.A.; Wong, M.H.; Appleton, R.; Harden, C.L.; Greenwood, S.; Morrison, G.; Sommerville, K. Randomized, Dose-Ranging Safety Trial of Cannabidiol in Dravet Syndrome. Neurology 2018, 90, e1204–e1211. [Google Scholar] [CrossRef] [PubMed]
- Devinsky, O.; Kraft, K.; Rusch, L.; Fein, M.; Leone-Bay, A. Improved Bioavailability with Dry Powder Cannabidiol Inhalation: A Phase 1 Clinical Study. J. Pharm. Sci. 2021, 110, 3946–3952. [Google Scholar] [CrossRef]
- Crockett, J.; Critchley, D.; Tayo, B.; Berwaerts, J.; Morrison, G. A Phase 1, Randomized, Pharmacokinetic Trial of the Effect of Different Meal Compositions, Whole Milk, and Alcohol on Cannabidiol Exposure and Safety in Healthy Subjects. Epilepsia 2020, 61, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Bansal, S.; Ladumor, M.K.; Paine, M.F.; Unadkat, J.D. A Physiologically-Based Pharmacokinetic Model for Cannabidiol in Healthy Adults, Hepatically-Impaired Adults, and Children. Drug Metab. Dispos. 2023, 51, 743–752. [Google Scholar] [CrossRef]
- Brussee, J.M.; Yu, H.; Krekels, E.H.J.; De Roos, B.; Brill, M.J.E.; Van Den Anker, J.N.; Rostami-Hodjegan, A.; De Wildt, S.N.; Knibbe, C.A.J. First-Pass CYP3A-Mediated Metabolism of Midazolam in the Gut Wall and Liver in Preterm Neonates. CPT Pharmacomet. Syst. Pharmacol. 2018, 7, 374–383. [Google Scholar] [CrossRef]
- Morselli, P.L.; Franco-Morselli, R.; Bossi, L. Clinical Pharmacokinetics in Newborns and Infants Age-Related Differences and Therapeutic Implications. Clin. Pharmacokinet. 1980, 5, 485–527. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, E.; Perez, R.; Hernandez, A.; Tejada, P.; Arteta, M.; Ramos, J.T. Factors and Mechanisms for Pharmacokinetic Differences between Pediatric Population and Adults. Pharmaceutics 2011, 3, 53–72. [Google Scholar] [CrossRef]
- Strolin Benedetti, M.; Whomsley, R.; Baltes, E.L. Differences in Absorption, Distribution, Metabolism and Excretion of Xenobiotics between the Paediatric and Adult Populations. Expert. Opin. Drug Metab. Toxicol. 2005, 1, 447–471. [Google Scholar] [CrossRef]
- Nicolas, J.-M.; de Lange, E.C.M. Mind the Gaps: Ontogeny of Human Brain P-Gp and Its Impact on Drug Toxicity. AAPS J. 2019, 21, 67. [Google Scholar] [CrossRef] [PubMed]
- Kuzawa, C.W. Adipose Tissue in Human Infancy and Childhood: An Evolutionary Perspective. Am. J. Phys. Anthropol. 1998, 107, 177–209. [Google Scholar] [CrossRef]
- Butte, N.F.; Hopkinson, J.M.; Wong, W.W.; Smith, E.O.; Ellis, K.J. Body Composition during the First 2 Years of Life: An Updated Reference. Pediatr. Res. 2000, 47, 578–585. [Google Scholar] [CrossRef]
- Maharaj, A.R.; Gonzalez, D.; Cohen-Wolkowiez, M.; Hornik, C.P.; Edginton, A.N. Improving Pediatric Protein Binding Estimates: An Evaluation of A1-Acid Glycoprotein Maturation in Healthy and Infected Subjects. Clin. Pharmacokinet. 2018, 57, 577–589. [Google Scholar] [CrossRef] [PubMed]
- Goasdoué, K.; Miller, S.M.; Colditz, P.B.; Björkman, S.T. Review: The Blood-Brain Barrier; Protecting the Developing Fetal Brain. Placenta 2017, 54, 111–116. [Google Scholar] [CrossRef] [PubMed]
- de Wildt, S.N.; Kearns, G.L.; Leeder, J.S.; van den Anker, J.N. Cytochrome P450 3A: Ontogeny and Drug Disposition. Clin. Pharmacokinet. 1999, 37, 485–505. [Google Scholar] [CrossRef] [PubMed]
- Koukouritaki, S.B.; Manro, J.R.; Marsh, S.A.; Stevens, J.C.; Rettie, A.E.; McCarver, D.G.; Hines, R.N. Developmental Expression of Human Hepatic CYP2C9 and CYP2C19. J. Pharmacol. Exp. Ther. 2004, 308, 965–974. [Google Scholar] [CrossRef]
- Hines, R.N. Ontogeny of Human Hepatic Cytochromes P450. J. Biochem. Mol. Toxicol. 2007, 21, 169–175. [Google Scholar] [CrossRef]
- Miura, H. Zonisamide Monotherapy with Once-Daily Dosing in Children with Cryptogenic Localization-Related Epilepsies: Clinical Effects and Pharmacokinetic Studies. Seizure 2004, 13 (Suppl. S1), S17–S23; discussion S24–S25. [Google Scholar] [CrossRef]
- Vaughn, S.E.; Strawn, J.R.; Poweleit, E.A.; Sarangdhar, M.; Ramsey, L.B. The Impact of Marijuana on Antidepressant Treatment in Adolescents: Clinical and Pharmacologic Considerations. J. Pers. Med. 2021, 11, 615. [Google Scholar] [CrossRef]
- Aftab, A.; Lam, J.A.; Liu, F.; Ghosh, A.; Sajatovic, M. Recent Developments in Geriatric Psychopharmacology. Expert. Rev. Clin. Pharmacol. 2021, 14, 341–355. [Google Scholar] [CrossRef]
- Fonseca, C.; Ettcheto, M.; Bicker, J.; Fernandes, M.J.; Falcão, A.; Camins, A.; Fortuna, A. Under the Umbrella of Depression and Alzheimer’s Disease Physiopathology: Can Cannabinoids Be a Dual-Pleiotropic Therapy? Ageing Res. Rev. 2023, 90, 101998. [Google Scholar] [CrossRef] [PubMed]
- Kanchi, P.K.; Dasmahapatra, A.K. Destabilization of the Alzheimer’s Amyloid-β Protofibrils by THC: A Molecular Dynamics Simulation Study. J. Mol. Graph. Model. 2021, 105, 107889. [Google Scholar] [CrossRef] [PubMed]
- Watson, K.K.; Bryan, A.D.; Thayer, R.E.; Ellingson, J.M.; Skrzynski, C.J.; Hutchison, K.E. Cannabis Use and Resting State Functional Connectivity in the Aging Brain. Front. Aging Neurosci. 2022, 14, 804890. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-B.; Li, J.; Gu, J.; Zeng, Y.-Q. Roles of Cannabidiol in the Treatment and Prevention of Alzheimer’sDisease by Multi-Target Actions. Mini Rev. Med. Chem. 2022, 22, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, F.; Pautex, S.; Wampfler, J.; Curtin, F.; Daali, Y.; Desmeules, J.A.; Broers, B. Medical Cannabinoids for Painful Symptoms in Patients with Severe Dementia: A Randomized, Double-Blind Cross-over Placebo-Controlled Trial Protocol. Front. Pain Res. 2023, 4, 1108832. [Google Scholar] [CrossRef] [PubMed]
- Pautex, S.; Bianchi, F.; Daali, Y.; Augsburger, M.; de Saussure, C.; Wampfler, J.; Curtin, F.; Desmeules, J.; Broers, B. Cannabinoids for Behavioral Symptoms in Severe Dementia: Safety and Feasibility in a Long-Term Pilot Observational Study in Nineteen Patients. Front. Aging Neurosci. 2022, 14, 957665. [Google Scholar] [CrossRef] [PubMed]
- Costa, A.C.; Joaquim, H.P.G.; Pedrazzi, J.F.C.; Pain, A.D.O.; Duque, G.; Aprahamian, I. Cannabinoids in Late Life Parkinson’s Disease and Dementia: Biological Pathways and Clinical Challenges. Brain Sci. 2022, 12, 1596. [Google Scholar] [CrossRef] [PubMed]
- da Cruz Guedes, E.; Erustes, A.G.; Leão, A.H.F.F.; Carneiro, C.A.; Abílio, V.C.; Zuardi, A.W.; Hallak, J.E.C.; Crippa, J.A.; Bincoletto, C.; Smaili, S.S.; et al. Cannabidiol Recovers Dopaminergic Neuronal Damage Induced by Reserpine or α-Synuclein in Caenorhabditis Elegans. Neurochem. Res. 2023, 48, 2390–2405. [Google Scholar] [CrossRef]
- Hasumi, A.; Maeda, H. Cannabidiol Improves Haloperidol-Induced Motor Dysfunction in Zebrafish: A Comparative Study with a Dopamine Activating Drug. J. Cannabis Res. 2023, 5, 6. [Google Scholar] [CrossRef]
- Kluger, B.M.; Huang, A.P.; Miyasaki, J.M. Cannabinoids in Movement Disorders. Park. Relat. Disord. 2022, 102, 124–130. [Google Scholar] [CrossRef]
- Muhammad, F.; Liu, Y.; Wang, N.; Zhao, L.; Zhou, Y.; Yang, H.; Li, H. Neuroprotective Effects of Cannabidiol on Dopaminergic Neurodegeneration and α-Synuclein Accumulation in C. Elegans Models of Parkinson’s Disease. NeuroToxicology 2022, 93, 128–139. [Google Scholar] [CrossRef] [PubMed]
- Sadaka, A.H.; Canuel, J.; Febo, M.; Johnson, C.T.; Bradshaw, H.B.; Ortiz, R.; Ciumo, F.; Kulkarni, P.; Gitcho, M.A.; Ferris, C.F. Effects of Inhaled Cannabis High in Δ9-THC or CBD on the Aging Brain: A Translational MRI and Behavioral Study. Front. Aging Neurosci. 2023, 15, 1055433. [Google Scholar] [CrossRef] [PubMed]
- Twelves, C.; Sabel, M.; Checketts, D.; Miller, S.; Tayo, B.; Jove, M.; Brazil, L.; Short, S.C.; on behalf of the GWCA1208 Study Group. A Phase 1b Randomised, Placebo-Controlled Trial of Nabiximols Cannabinoid Oromucosal Spray with Temozolomide in Patients with Recurrent Glioblastoma. Br. J. Cancer 2021, 124, 1379–1387. [Google Scholar] [CrossRef] [PubMed]
- Frytak, S. Delta-9-Tetrahydrocannabinol as an Antiemetic for Patients Receiving Cancer Chemotherapy: A Comparison with Prochlorperazine and a Placebo. Ann. Intern. Med. 1979, 91, 825. [Google Scholar] [CrossRef] [PubMed]
- Dumic, I.; Nordin, T.; Jecmenica, M.; Stojkovic Lalosevic, M.; Milosavljevic, T.; Milovanovic, T. Gastrointestinal Tract Disorders in Older Age. Can. J. Gastroenterol. Hepatol. 2019, 2019, 6757524. [Google Scholar] [CrossRef] [PubMed]
- Stillhart, C.; Asteriadis, A.; Bocharova, E.; Eksteen, G.; Harder, F.; Kusch, J.; Tzakri, T.; Augustijns, P.; Matthys, C.; Vertzoni, M.; et al. The Impact of Advanced Age on Gastrointestinal Characteristics That Are Relevant to Oral Drug Absorption: An AGePOP Review. Eur. J. Pharm. Sci. 2023, 187, 106452. [Google Scholar] [CrossRef]
- Giezenaar, C.; Trahair, L.G.; Rigda, R.; Hutchison, A.T.; Feinle-Bisset, C.; Luscombe-Marsh, N.D.; Hausken, T.; Jones, K.L.; Horowitz, M.; Chapman, I.; et al. Lesser Suppression of Energy Intake by Orally Ingested Whey Protein in Healthy Older Men Compared with Young Controls. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2015, 309, R845–R854. [Google Scholar] [CrossRef] [PubMed]
- Pentafragka, C.; Vertzoni, M.; Symillides, M.; Goumas, K.; Reppas, C. Disposition of Two Highly Permeable Drugs in the Upper Gastrointestinal Lumen of Healthy Adults after a Standard High-Calorie, High-Fat Meal. Eur. J. Pharm. Sci. 2020, 149, 105351. [Google Scholar] [CrossRef]
- Evans, M.A.; Triggs, E.J.; Cheung, M.; Broe, G.A.; Creasey, H. Gastric Emptying Rate in the Elderly: Implications for Drug Therapy. J. Am. Geriatr. Soc. 1981, 29, 201–205. [Google Scholar] [CrossRef]
- Soenen, S.; Rayner, C.K.; Horowitz, M.; Jones, K.L. Gastric Emptying in the Elderly. Clin. Geriatr. Med. 2015, 31, 339–353. [Google Scholar] [CrossRef]
- Kataoka, M.; Fukahori, M.; Ikemura, A.; Kubota, A.; Higashino, H.; Sakuma, S.; Yamashita, S. Effects of Gastric pH on Oral Drug Absorption: In Vitro Assessment Using a Dissolution/Permeation System Reflecting the Gastric Dissolution Process. Eur. J. Pharm. Biopharm. 2016, 101, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L.; Colliver, J.A.; Marrero, T.C.; Roush, J.R. Assessment of Age-Related Acid Aspiration Risk Factors in Pediatric, Adult, and Geriatric Patients. Anesth. Analg. 1985, 64, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Vertzoni, M.; Sulaiman, S.; Goumas, K.; Kersten, E.; Anlahr, J.; Muenster, U.; Reppas, C. Characteristics of Contents of Lower Intestine in the 65–74 Years of Age Range Could Impact the Performance of Safe and Efficacious Modified Release Products. J. Pharm. Sci. 2021, 110, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Bernkop-Schnürch, A. SEDDS: A Game Changing Approach for the Oral Administration of Hydrophilic Macromolecular Drugs. Adv. Drug Deliv. Rev. 2019, 142, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Laugier, R.; Bernard, J.P.; Berthezene, P.; Dupuy, P. Changes in Pancreatic Exocrine Secretion with Age: Pancreatic Exocrine Secretion Does Decrease in the Elderly. Digestion 1991, 50, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.J.; Stout-Delgado, H.W. Aging and Lung Disease. Annu. Rev. Physiol. 2020, 82, 433–459. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.L.; Rowe, J.H.; Garcia-de-Alba, C.; Kim, C.F.; Sharpe, A.H.; Haigis, M.C. The Aging Lung: Physiology, Disease, and Immunity. Cell 2021, 184, 1990–2019. [Google Scholar] [CrossRef]
- Wallin, M.; Tagami, T.; Chen, L.; Yang, M.; Chan, H.-K. Pulmonary Drug Delivery to Older People. Adv. Drug Deliv. Rev. 2018, 135, 50–61. [Google Scholar] [CrossRef]
- Nagler, R.M.; Hershkovich, O. Age-Related Changes in Unstimulated Salivary Function and Composition and Its Relations to Medications and Oral Sensorial Complaints. Aging Clin. Exp. Res. 2005, 17, 358–366. [Google Scholar] [CrossRef]
- Nagler, R.M.; Hershkovich, O. Relationships between Age, Drugs, Oral Sensorial Complaints and Salivary Profile. Arch. Oral. Biol. 2005, 50, 7–16. [Google Scholar] [CrossRef]
- Ponti, F.; Santoro, A.; Mercatelli, D.; Gasperini, C.; Conte, M.; Martucci, M.; Sangiorgi, L.; Franceschi, C.; Bazzocchi, A. Aging and Imaging Assessment of Body Composition: From Fat to Facts. Front. Endocrinol. 2019, 10, 861. [Google Scholar] [CrossRef] [PubMed]
- Singam, N.S.V.; Fine, C.; Fleg, J.L. Cardiac Changes Associated with Vascular Aging. Clin. Cardiol. 2020, 43, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Mangoni, A.A.; Jarmuzewska, E.A. The Influence of Heart Failure on the Pharmacokinetics of Cardiovascular and Non-cardiovascular Drugs: A Critical Appraisal of the Evidence. Br. J. Clin. Pharmacol. 2019, 85, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Farrall, A.J.; Wardlaw, J.M. Blood–Brain Barrier: Ageing and Microvascular Disease—Systematic Review and Meta-Analysis. Neurobiol. Aging 2009, 30, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Brock, F.; Bettinelli, L.A.; Dobner, T.; Stobbe, J.C.; Pomatti, G.; Telles, C.T. Prevalence of Hypoalbuminemia and Nutritional Issues in Hospitalized Elders. Rev. Lat.-Am. Enferm. 2016, 24, e2736. [Google Scholar] [CrossRef] [PubMed]
- Veering, B.T.; Burm, A.G.; Souverijn, J.H.; Serree, J.M.; Spierdijk, J. The Effect of Age on Serum Concentrations of Albumin and Alpha 1-Acid Glycoprotein. Br. J. Clin. Pharmacol. 1990, 29, 201–206. [Google Scholar] [CrossRef]
- Schmucker, D.L. Age-Related Changes in Liver Structure and Function: Implications for Disease ? Exp. Gerontol. 2005, 40, 650–659. [Google Scholar] [CrossRef]
- Wynne, H.A.; Cope, L.H.; Mutch, E.; Rawlins, M.D.; Woodhouse, K.W.; James, O.F. The Effect of Age upon Liver Volume and Apparent Liver Blood Flow in Healthy Man. Hepatology 1989, 9, 297–301. [Google Scholar] [CrossRef] [PubMed]
- Sotaniemi, E.A.; Arranto, A.J.; Pelkonen, O.; Pasanen, M. Age and Cytochrome P450-Linked Drug Metabolism in Humans: An Analysis of 226 Subjects with Equal Histopathologic Conditions. Clin. Pharmacol. Ther. 1997, 61, 331–339. [Google Scholar] [CrossRef]
- Kawase, A.; Ito, A.; Yamada, A.; Iwaki, M. Age-Related Changes in mRNA Levels of Hepatic Transporters, Cytochrome P450 and UDP-Glucuronosyltransferase in Female Rats. Eur. J. Drug Metab. Pharmacokinet. 2015, 40, 239–244. [Google Scholar] [CrossRef]
- Lerma, E.V. Anatomic and Physiologic Changes of the Aging Kidney. Clin. Geriatr. Med. 2009, 25, 325–329. [Google Scholar] [CrossRef] [PubMed]
- Han, B.H.; Sherman, S.; Mauro, P.M.; Martins, S.S.; Rotenberg, J.; Palamar, J.J. Demographic Trends among Older Cannabis Users in the United States, 2006–2013. Addiction 2017, 112, 516–525. [Google Scholar] [CrossRef] [PubMed]
- Han, B.H.; Palamar, J.J. Trends in Cannabis Use Among Older Adults in the United States, 2015–2018. JAMA Intern. Med. 2020, 180, 609–611. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Fleig, A.; Penner, R. CBGA Ameliorates Inflammation and Fibrosis in Nephropathy. Sci. Rep. 2023, 13, 6341. [Google Scholar] [CrossRef] [PubMed]
- Baban, B.; Hoda, N.; Malik, A.; Khodadadi, H.; Simmerman, E.; Vaibhav, K.; Mozaffari, M.S. Impact of Cannabidiol Treatment on Regulatory T-17 Cells and Neutrophil Polarization in Acute Kidney Injury. Am. J. Physiol. Ren. Physiol. 2018, 315, F1149–F1158. [Google Scholar] [CrossRef] [PubMed]
- Worth, H.; O’Hara, D.V.; Agarwal, N.; Collister, D.; Brennan, F.; Smyth, B. Cannabinoids for Symptom Management in Patients with Kidney Failure: A Narrative Review. Clin. J. Am. Soc. Nephrol. 2022, 17, 911–921. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.; Martinusen, D.; Lo, C. A Review of Cannabis in Chronic Kidney Disease Symptom Management. Can. J. Kidney Health Dis. 2019, 6, 2054358119828391. [Google Scholar] [CrossRef] [PubMed]
- Teixeira-Clerc, F.; Belot, M.-P.; Manin, S.; Deveaux, V.; Cadoudal, T.; Chobert, M.-N.; Louvet, A.; Zimmer, A.; Tordjmann, T.; Mallat, A.; et al. Beneficial Paracrine Effects of Cannabinoid Receptor 2 on Liver Injury and Regeneration. Hepatology 2010, 52, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Woerdenbag, H.J.; Olinga, P.; Kok, E.A.; Brugman, D.A.P.; van Ark, U.F.; Ramcharan, A.S.; Lebbink, P.W.; Hoogwater, F.J.H.; Knapen, D.G.; de Groot, D.J.A.; et al. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers 2023, 15, 2119. [Google Scholar] [CrossRef]
- Blake, A.; Wan, B.A.; Malek, L.; DeAngelis, C.; Diaz, P.; Lao, N.; Chow, E.; O’Hearn, S. A Selective Review of Medical Cannabis in Cancer Pain Management. Ann. Palliat. Med. 2017, 6, S215–S222. [Google Scholar] [CrossRef]
- Bar-Sela, G.; Zalman, D.; Semenysty, V.; Ballan, E. The Effects of Dosage-Controlled Cannabis Capsules on Cancer-Related Cachexia and Anorexia Syndrome in Advanced Cancer Patients: Pilot Study. Integr. Cancer Ther. 2019, 18, 153473541988149. [Google Scholar] [CrossRef] [PubMed]
- Häuser, W.; Fitzcharles, M.-A.; Radbruch, L.; Petzke, F. Cannabinoids in Pain Management and Palliative Medicine. Dtsch. Ärzteblatt Int. 2017, 114, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Hardy, J.; Greer, R.; Huggett, G.; Kearney, A.; Gurgenci, T.; Good, P. Phase IIb Randomized, Placebo-Controlled, Dose-Escalating, Double-Blind Study of Cannabidiol Oil for the Relief of Symptoms in Advanced Cancer (MedCan1-CBD). J. Clin. Oncol. 2023, 41, 1444–1452. [Google Scholar] [CrossRef] [PubMed]
- Nathan, R.; Mupamombe, C.T.; Elibol, J.; Case, A.A.; Smith, D.; Hyland, A.; Attwood, K.; Hansen, E.D. Assessing Efficacy and Use Patterns of Medical Cannabis for Symptom Management in Elderly Cancer Patients. Am. J. Hosp. Palliat. Care 2023, 40, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Steele, G.; Arneson, T.; Zylla, D. A Comprehensive Review of Cannabis in Patients with Cancer: Availability in the USA, General Efficacy, and Safety. Curr. Oncol. Rep. 2019, 21, 10. [Google Scholar] [CrossRef]
- Dixon, T.; Cadenhead, K.S. Cannabidiol versus Placebo as Adjunctive Treatment in Early Psychosis: Study Protocol for Randomized Controlled Trial. Trials 2023, 24, 775. [Google Scholar] [CrossRef]
- Leweke, F.M.; Rohleder, C.; Gerth, C.W.; Hellmich, M.; Pukrop, R.; Koethe, D. Cannabidiol and Amisulpride Improve Cognition in Acute Schizophrenia in an Explorative, Double-Blind, Active-Controlled, Randomized Clinical Trial. Front. Pharmacol. 2021, 12, 614811. [Google Scholar] [CrossRef] [PubMed]
- Rizkallah, E.; Mongeau-Pérusse, V.; Lamanuzzi, L.; Castenada-Ouellet, S.; Stip, E.; Juteau, L.-C.; Brissette, S.; Bruneau, J.; Dubreucq, S.; Jutras-Aswad, D. Cannabidiol Effects on Cognition in Individuals with Cocaine Use Disorder: Exploratory Results from a Randomized Controlled Trial. Pharmacol. Biochem. Behav. 2022, 216, 173376. [Google Scholar] [CrossRef]
- Ortiz, R.; Rueda, S.; Di Ciano, P. Use of Cannabidiol (CBD) for the Treatment of Cognitive Impairment in Psychiatric and Neurological Illness: A Narrative Review. Exp. Clin. Psychopharmacol. 2023, 31, 978–988. [Google Scholar] [CrossRef]
- Singh, K.; Bhushan, B.; Chanchal, D.K.; Sharma, S.K.; Rani, K.; Yadav, M.K.; Porwal, P.; Kumar, S.; Sharma, A.; Virmani, T.; et al. Emerging Therapeutic Potential of Cannabidiol (CBD) in Neurological Disorders: A Comprehensive Review. Behav. Neurol. 2023, 2023, 8825358. [Google Scholar] [CrossRef]
- Gherzi, M.; Milano, G.; Fucile, C.; Calevo, M.G.; Mancardi, M.M.; Nobili, L.; Astuni, P.; Marini, V.; Barco, S.; Cangemi, G.; et al. Safety and Pharmacokinetics of Medical Cannabis Preparation in a Monocentric Series of Young Patients with Drug Resistant Epilepsy. Complement. Ther. Med. 2020, 51, 102402. [Google Scholar] [CrossRef] [PubMed]
- Vermersch, P. Sativex(®) (Tetrahydrocannabinol + Cannabidiol), an Endocannabinoid System Modulator: Basic Features and Main Clinical Data. Expert. Rev. Neurother. 2011, 11, 15–19. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Johnston, B.; Englesakis, M.; Moulin, D.E.; Bhatia, A. Selective Cannabinoids for Chronic Neuropathic Pain: A Systematic Review and Meta-Analysis. Anesth. Analg. 2017, 125, 1638–1652. [Google Scholar] [CrossRef]
- Ren, Y.; Whittard, J.; Higuera-Matas, A.; Morris, C.V.; Hurd, Y.L. Cannabidiol, a Nonpsychotropic Component of Cannabis, Inhibits Cue-Induced Heroin Seeking and Normalizes Discrete Mesolimbic Neuronal Disturbances. J. Neurosci. 2009, 29, 14764–14769. [Google Scholar] [CrossRef]
- Hurd, Y.L.; Spriggs, S.; Alishayev, J.; Winkel, G.; Gurgov, K.; Kudrich, C.; Oprescu, A.M.; Salsitz, E. Cannabidiol for the Reduction of Cue-Induced Craving and Anxiety in Drug-Abstinent Individuals with Heroin Use Disorder: A Double-Blind Randomized Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 911–922. [Google Scholar] [CrossRef] [PubMed]
- Tartakover Matalon, S.; Azar, S.; Meiri, D.; Hadar, R.; Nemirovski, A.; Abu Jabal, N.; Konikoff, F.M.; Drucker, L.; Tam, J.; Naftali, T. Endocannabinoid Levels in Ulcerative Colitis Patients Correlate with Clinical Parameters and Are Affected by Cannabis Consumption. Front. Endocrinol. 2021, 12, 685289. [Google Scholar] [CrossRef]
- Couch, D.G.; Cook, H.; Ortori, C.; Barrett, D.; Lund, J.N.; O’Sullivan, S.E. Palmitoylethanolamide and Cannabidiol Prevent Inflammation-Induced Hyperpermeability of the Human Gut In Vitro and In Vivo—A Randomized, Placebo-Controlled, Double-Blind Controlled Trial. Inflamm. Bowel Dis. 2019, 25, 1006–1018. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, C.; Fisher, N.B.; Tugwell, B.; Szczesniak, A.; Kelly, M.; Zhou, J. Experimental Cannabidiol Treatment Reduces Early Pancreatic Inflammation in Type 1 Diabetes. Clin. Hemorheol. Microcirc. 2016, 64, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Yeshurun, M.; Shpilberg, O.; Herscovici, C.; Shargian, L.; Dreyer, J.; Peck, A.; Israeli, M.; Levy-Assaraf, M.; Gruenewald, T.; Mechoulam, R.; et al. Cannabidiol for the Prevention of Graft-versus-Host-Disease after Allogeneic Hematopoietic Cell Transplantation: Results of a Phase II Study. Biol. Blood Marrow Transpl. 2015, 21, 1770–1775. [Google Scholar] [CrossRef]
- Abrams, D.I.; Hilton, J.F.; Leiser, R.J.; Shade, S.B.; Elbeik, T.A.; Aweeka, F.T.; Benowitz, N.L.; Bredt, B.M.; Kosel, B.; Aberg, J.A.; et al. Short-Term Effects of Cannabinoids in Patients with HIV-1 Infection: A Randomized, Placebo-Controlled Clinical Trial. Ann. Intern. Med. 2003, 139, 258–266. [Google Scholar] [CrossRef]
- Slawek, D.E.; Arnsten, J.; Sohler, N.; Zhang, C.; Grossberg, R.; Stein, M.; Cunningham, C.O. Daily and Near-Daily Cannabis Use Is Associated with HIV Viral Load Suppression in People Living with HIV Who Use Cocaine. AIDS Care 2021, 33, 1350–1357. [Google Scholar] [CrossRef] [PubMed]
- Woolridge, E.; Barton, S.; Samuel, J.; Osorio, J.; Dougherty, A.; Holdcroft, A. Cannabis Use in HIV for Pain and Other Medical Symptoms. J. Pain. Symptom Manag. 2005, 29, 358–367. [Google Scholar] [CrossRef] [PubMed]
- Ellis, R.J.; Toperoff, W.; Vaida, F.; van den Brande, G.; Gonzales, J.; Gouaux, B.; Bentley, H.; Atkinson, J.H. Smoked Medicinal Cannabis for Neuropathic Pain in HIV: A Randomized, Crossover Clinical Trial. Neuropsychopharmacology 2009, 34, 672–680. [Google Scholar] [CrossRef] [PubMed]
- Abrams, D.I.; Jay, C.A.; Shade, S.B.; Vizoso, H.; Reda, H.; Press, S.; Kelly, M.E.; Rowbotham, M.C.; Petersen, K.L. Cannabis in Painful HIV-Associated Sensory Neuropathy: A Randomized Placebo-Controlled Trial. Neurology 2007, 68, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Riggs, P.K.; Vaida, F.; Rossi, S.S.; Sorkin, L.S.; Gouaux, B.; Grant, I.; Ellis, R.J. A Pilot Study of the Effects of Cannabis on Appetite Hormones in HIV-Infected Adult Men. Brain Res. 2012, 1431, 46–52. [Google Scholar] [CrossRef]
- Watson, C.W.-M.; Sundermann, E.; Helm, J.; Paolillo, E.W.; Hong, S.; Ellis, R.J.; Letendre, S.; Marcotte, T.D.; Heaton, R.K.; Morgan, E.E.; et al. A Longitudinal Study of Cannabis Use and Risk for Cognitive and Functional Decline among Older Adults with HIV. AIDS Behav. 2023. [Google Scholar] [CrossRef]
Component | Cannabinoids | Key Points |
---|---|---|
Enzymes | CBD | Phase I (main): CYP3A4, CYP2C9, and CYP2C19 [36]; Phase II (minor): UGT1A9, UGT2B7, and UGT2B17 [38,41]. |
THC | Phase I: CYP3A4, CYP2C9, and CYP2C19 [41]. | |
Metabolites | CBD | Primary: 7-OH-CBD by CYP2C9 and CYP2C19; active [37,78]; Secondary: 7-COOH-CBD, enzyme unidentified; inactive [79]. |
THC | Primary: 11-OH-THC by CYP2C9 and CYP2C19; active [41]; Secondary: 11-COOH-THC by CYP3A4, CYP2C9, CYP2C19, alcohol dehydrogenases, ALDHs, and aldehyde oxidase; inactive [41,79,83,84]. | |
Perpetrator of drug interaction | CBD | Competitively inhibits CYP2B6 (Ki,u: 3.4 μM), CYP2C9 (Ki,u: 0.093–1.3 μM), CYP2C19 (Ki,u: 0.050–1.1 μM), CYP2D6 (Ki,u: 0.074 μM), CYP2E1 (Ki,u: 0.021 μM), CYP3A4 (Ki,u: 0.093 μM), and CES1 (Ki,u: 0.091–0.97 μM) in vitro [41]; Time-dependently inhibits CYP1A1 (Ki,u: 5.9 μM), CYP1A2 (Ki,u: 0.11–0.59 μM), and CYP1B1 (Ki,u: 3.1 μM) in vitro [41]; Mixed-type inhibits CYP1A2 (Ki,u: 0.12 μM) in vitro [85]; Also inhibits UGT1A6 (IC50,u: 0.40 μM), UGT1A9 (IC50,u: 0.073–0.12 μM), UGT2B4 (IC50,u: 0.22 μM), and UGT2B7 (IC50,u: 0.82 μM) in vitro [41]; Induces CYP1A2, CYP2B6, and CYP3A4 in vitro, parameters not reported [86]. |
THC | Competitively inhibits CYP1A2 (Ki,u: 0.090 μM), CYP2B6 (Ki,u: 0.25 μM), CYP2C9 (Ki,u: 0.073 μM), CYP2D6 (Ki,u: 0.11 μM), and CES1 (Ki,u: 0.031–0.54 μM) in vitro [41]; Time-dependently inhibits CYP1A1 (Ki: 1.2 μM) and CYP2A6 (Ki: 0.86 μM) in vitro [41]; Mixed-type inhibits CYP2C19 (Ki,u: 0.056 μM) in vitro [85]; Also inhibits UGT1A9 (IC50,u: 0.33–0.49 μM), UGT2B4 (IC50,u: 0.47 μM), and UGT2B7 (IC50,u: 1.4 μM) in vitro [41]. | |
Additional Factors | Body weight; fat distribution/composition; protein binding |
Population | Dose | AUC0–t (ng·h/mL) | Cmax (ng/mL) | t1/2 (h) | V/F (L) | Study |
---|---|---|---|---|---|---|
Pediatric patients with epilepsy | 10 mg/kg/day, oral | 173.9 (CV%: 103.3) | 59.03 (CV%: 169.4) | 31.3 (CV%: 74.9) | - | Wheless 2019 [52] |
20 mg/kg/day, oral | 507.1 (CV%: 135.6) | 110.5 (CV%: 128.8) | 33.5 (CV%: 44.7) | - | Wheless 2019 [52] | |
40 mg/kg/day, oral | 914.5 (CV%: 126.3) | 256.9 (CV%: 136.9) | 21.6 (CV%: 48.7) | - | Wheless 2019 [52] | |
12.2 mg/kg/day, oral | 226.3 (70.5–861.3) 1,2 | 49.6 (14.4–302.0) 1,2 | - | - | Guido 2021 [115] | |
0.13–5.0 mg/kg, oral | - | 13.1 (2.0–112.7) 1 | 6.2 (2.8–9.1) | 2392 (188–9174) 1 | Wang 2020 [116] | |
Patients with mild hepatic impairment | 200 mg, oral | 648 (44.2) 3 | 233 (70.5) 3 | 15.7 (58.3) 3 | 5302 (60.1) 3 | Taylor 2019 [117] |
Patients with moderate hepatic impairment | 200 mg, oral | 1054 (38.9) 3 | 354 (42.3) 3 | 20.5 (39.2) 3 | 4668 (40.1) 3 | Taylor 2019 [117] |
Patients with severe hepatic impairment | 200 mg, oral | 1855 (52.0) 3 | 381 (52.2) 3 | 22.1 (44.9) 3 | 2437 (70.5) 3 | Taylor 2019 [117] |
Patients with mild renal impairment | 200 mg, oral | 671 (40.9) 3 | 200 (42.7) 3 | 15.5 (CV%: 64.5) | 6661 (CV%: 55.5) | Tayo 2020 [118] |
Patients with moderate renal impairment | 200 mg, oral | 530 (74.4) 3 | 172 (85.3) 3 | 14.6 (CV%: 46.6) | 7778 (CV%: 58.0) | Tayo 2020 [118] |
Patients with severe renal impairment | 200 mg, oral | 532 (32.7) 3 | 155 (40.6) 3 | 13.1 (CV%: 41.5) | 6016 (CV%: 39.9) | Tayo 2020 [118] |
Patients with advanced cancer | 2.5 mg, oromucosal spray | 0.65 (0.49–4.06) 1 | 0.58 (0.48–2.45) 1 | 0.72 (0.57–0.86) 1 | - | Clarke 2022 [119] |
7.5 mg, oromucosal spray | 5.96 (1.51–12.15) 1 | 1.55 (0.62–2.25) 1 | 1.53 (1.16–7.06) 1 | - | Clarke 2022 [119] | |
Adult patients with epilepsy | 200–300 mg, oral | 0.53 (0.26, (ng·h/mL)/mg) 4 | 0.03 (0.01, (ng/mL)/mg) 4 | 38.9 (19) 4 | 1515 (1024, L/kg) 4 | Birnbaum 2019 [120] |
Patients with multiple sclerosis | 5 mg, oral | 9.44 (CI: 8.5–10.4) 5 | 1.33 (CI: 1.20–1.46) | - | 3912 (CI: 3565–4260) | Hansen 2024 [121] |
10 mg, oral | 19.02 (CI: 17.0–21.0) 5 | 2.67 (CI: 2.39–2.95) | - | 3781 (CI: 3341–4222) | Hansen 2024 [121] | |
15 mg, oral | 32.35 (CI: 31.6–33.1) 5 | 4.54 (CI: 4.44–4.65) | - | 3435 (CI: 3345–3525) | Hansen 2024 [121] | |
Patients with Crohn’s disease | 7.5 mg, oral | 40.32 (SD: 25.65) 5 | 8.1 (SD: 5.4) | 0.65 (SD: 0.42) | - | Naftali 2021 [122] |
Population | Dose | AUC0–t (ng·h/mL) | Cmax (ng/mL) | t1/2 (h) | V/F (L) | Study |
---|---|---|---|---|---|---|
Healthy older adults | 3 mg | - | 1.42 (0.53–3.48) | - | - | Ahmed 2014 [123] |
5 mg | - | 3.15 (1.54–6.95) | - | - | Ahmed 2014 [123] | |
6.5 mg | - | 4.57 (2.11–8.65) | - | - | Ahmed 2014 [123] | |
Older adults with dementia | 0.75 mg | 0.88 (CV%: 124) | 0.41 (CV%: 138) | 5.08 (CV%: 39) | - | Ahmed 2015 [124] |
1.5 mg | 2.01 (CV%: 136) | 1.01 (CV%: 112) | 5.06 (CV%: 37) | - | Ahmed 2015 [124] | |
Patients with advanced cancer | 2.5 mg oromucosal spray | 1.71 (1.11–6.61) 1 | 1.31 (0.76–2.94) 1 | 0.94 (0.75–1.14) 1 | - | Clarke 2022 [119] |
7.5 mg oromucosal spray | 8.26 (2.67–11.72) 1 | 2.35 (1.09–3.19) 1 | 1.39 (1.30–2.88) 1 | - | Clarke 2022 [119] | |
Patients with multiple sclerosis | 2.5 mg oral | 3.23 (CI: 2.7–3.7) | 0.57 (CI: 0.50–0.63) | - | 3173 (CI: 2753–3594) | Hansen 2024 [121] |
5 mg oral | 7.03 (CI: 6.6–7.5) | 1.21 (CI: 1.15–1.26) | - | 2906 (CI: 2728–3084) | Hansen 2024 [121] | |
7.5 mg oral | 10.81 (CI: 10.5–11.1) | 1.85 (CI: 1.81–1.88) | - | 2831 (CI: 2754–2909) | Hansen 2024 [121] | |
Patients with neuropathic pain | 0.5 mg inhaled | 5 (SD: 2.4) 2 | 14.3 (SD: 7.7) | - | - | Almog 2020 [125] |
1.0 mg inhaled | 12.8 (SD: 5.5) 2 | 33.8 (SD: 25.7) | - | - | Almog 2020 [125] | |
3.08 mg inhaled | 10.1 (SD: 3.3) | 38 (SD: 10) | - | - | Eisenberg 2014 [126] | |
Patients with Crohn’s disease | 2 mg oral | 10.7 (SD: 2.2) | 3.0 (SD: 2.1) | 0.55 (SD: 0.27) | - | Naftali 2021 [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, L.; Beers, J.L.; Jackson, K.D.; Zhou, Z. CBD and THC in Special Populations: Pharmacokinetics and Drug–Drug Interactions. Pharmaceutics 2024, 16, 484. https://doi.org/10.3390/pharmaceutics16040484
Qian L, Beers JL, Jackson KD, Zhou Z. CBD and THC in Special Populations: Pharmacokinetics and Drug–Drug Interactions. Pharmaceutics. 2024; 16(4):484. https://doi.org/10.3390/pharmaceutics16040484
Chicago/Turabian StyleQian, Lixuan, Jessica L. Beers, Klarissa D. Jackson, and Zhu Zhou. 2024. "CBD and THC in Special Populations: Pharmacokinetics and Drug–Drug Interactions" Pharmaceutics 16, no. 4: 484. https://doi.org/10.3390/pharmaceutics16040484
APA StyleQian, L., Beers, J. L., Jackson, K. D., & Zhou, Z. (2024). CBD and THC in Special Populations: Pharmacokinetics and Drug–Drug Interactions. Pharmaceutics, 16(4), 484. https://doi.org/10.3390/pharmaceutics16040484