Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. System Preparation
- HP-γ-CD/PL (HP-γ-cyclodextrin/pomegranate flower lyophilized extract)
- α-CD/PL (α-cyclodextrin/lyophilized pomegranate flower extract)
- Me-β-CD/PL (Methyl-β-cyclodextrin/lyophilized pomegranate flower extract)
- Inu/PL (Inulin/lyophilized pomegranate flower extract)
- AGu/PL (Arabic gum/lyophilized pomegranate flower extract)
2.2. HPLC Analysis
2.3. FT-IR Analysis of Prebiotic Systems
2.4. Dissolution Study of Pelargonidin-3,5-O-glucosides
2.5. Kinetics of Pelargonidin-3,5-O-glucosides Degradation
2.6. Antioxidant and Antidiabetic Activity of Lyophilizate and Systems
2.6.1. DPPH Assay
2.6.2. CUPRAC Assay
2.6.3. α-Glucosidase Inhibitory Assay
2.6.4. α-Amylase Inhibitory Assay
2.6.5. Molecular Docking
2.7. Microbiology Study of Prebiotic Systems
3. Results and Discussion
3.1. Microscopic and HPLC Analysis of Obtained System
3.2. FT-IR Analysis
3.2.1. HP-γ-cyclodextrin System (HP-γ-CD/PL)
3.2.2. α-Cyclodextrin System (α-CD/PL)
3.2.3. Methyl-β-cyclodextrin System (Me-β-CD/PL)
3.2.4. Inulin System (Inu/PL)
3.2.5. Arabic Gum System (AGu/PL)
3.3. Dissolution Study
3.4. Thermal Degradation Kinetic Studies
3.5. Anti-Diabetic and Antioxidant Activity of Lyophilizate and Systems
3.5.1. Results of In Vitro Studies
3.5.2. Results of In Silico Studies
3.6. Microbiology Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tena, N.; Martín, J.; Asuero, A.G. State of the Art of Anthocyanins: Antioxidant Activity, Sources, Bioavailability, and Therapeutic Effect in Human Health. Antioxidants 2020, 9, 451. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Geng, Y.-N.; Jiang, J.-D.; Kong, W.-J. Antioxidant and Anti-Inflammatory Activities of Berberine in the Treatment of Diabetes Mellitus. Evid. Based Complement. Altern. Med. 2014, 2014, 289264. [Google Scholar] [CrossRef]
- Danielewski, M.; Gomułkiewicz, A.; Kucharska, A.Z.; Matuszewska, A.; Nowak, B.; Piórecki, N.; Trocha, M.; Szandruk-Bender, M.; Jawień, P.; Szeląg, A.; et al. Cornelian Cherry (Cornus mas L.) Iridoid and Anthocyanin-Rich Extract Reduces Various Oxidation, Inflammation, and Adhesion Markers in a Cholesterol-Rich Diet Rabbit Model. Int. J. Mol. Sci. 2023, 24, 3890. [Google Scholar] [CrossRef] [PubMed]
- Promyos, N.; Temviriyanukul, P.; Suttisansanee, U. Investigation of Anthocyanidins and Anthocyanins for Targeting α-Glucosidase in Diabetes Mellitus. Prev. Nutr. Food Sci. 2020, 25, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Barik, S.K.; Russell, W.R.; Moar, K.M.; Cruickshank, M.; Scobbie, L.; Duncan, G.; Hoggard, N. The Anthocyanins in Black Currants Regulate Postprandial Hyperglycaemia Primarily by Inhibiting α-Glucosidase While Other Phenolics Modulate Salivary α-Amylase, Glucose Uptake and Sugar Transporters. J. Nutr. Biochem. 2020, 78, 108325. [Google Scholar] [CrossRef] [PubMed]
- Enaru, B.; Drețcanu, G.; Pop, T.D.; Stǎnilǎ, A.; Diaconeasa, Z. Anthocyanins: Factors Affecting Their Stability and Degradation. Antioxidants 2021, 10, 1967. [Google Scholar] [CrossRef]
- Ursu, M.S.; Aprodu, I.; Milea, Ș.A.; Enachi, E.; Râpeanu, G.; Bahrim, G.E.; Stănciuc, N. Thermal Degradation Kinetics of Anthocyanins Extracted from Purple Maize Flour Extract and the Effect of Heating on Selected Biological Functionality. Foods 2020, 9, 1593. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sun, Y.; Zhang, H.; Mai, Q.; Zhang, B.; Li, H.; Deng, Z. The Degradation Rules of Anthocyanins from Eggplant Peel and Antioxidant Capacity in Fortified Model Food System during the Thermal Treatments. Food Biosci. 2020, 38, 100701. [Google Scholar] [CrossRef]
- Chen, J.; Du, J.; Li, M.; Li, C. Degradation Kinetics and Pathways of Red Raspberry Anthocyanins in Model and Juice Systems and Their Correlation with Color and Antioxidant Changes during Storage. LWT 2020, 128, 109448. [Google Scholar] [CrossRef]
- Ota, A.; Višnjevec, A.M.; Vidrih, R.; Prgomet, Ž.; Nečemer, M.; Hribar, J.; Cimerman, N.G.; Možina, S.S.; Bučar-Miklavčič, M.; Ulrih, N.P. Nutritional, Antioxidative, and Antimicrobial Analysis of the Mediterranean Hackberry (Celtis australis L.). Food Sci. Nutr. 2017, 5, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Raju, D.V.S.; Prasad, K.V.; Saha, S.; Panwar, S.; Paul, S.; Banyal, N.; Bains, A.; Chawla, P.; Fogarasi, M.; et al. Characterization of Anthocyanins and Their Antioxidant Activities in Indian Rose Varieties (Rosa × Hybrida) Using HPLC. Antioxidants 2022, 11, 2032. [Google Scholar] [CrossRef] [PubMed]
- Xing, R.-R.; Li, S.-Y.; He, F.; Yang, Z.; Duan, C.-Q.; Li, Z.; Wang, J.; Pan, Q.-H. Mass Spectrometric and Enzymatic Evidence Confirm the Existence of Anthocyanidin 3,5-O-Diglucosides in Cabernet Sauvignon (Vitis vinifera L.) Grape Berries. J. Agric. Food Chem. 2015, 63, 3251–3260. [Google Scholar] [CrossRef] [PubMed]
- Yuzuak, S.; Ballington, J.; Li, G.; Xie, D.-Y. High-Performance Liquid Chromatography–Quadrupole Time-of-Flight Tandem Mass Spectrometry-Based Profiling Reveals Anthocyanin Profile Alterations in Berries of Hybrid Muscadine Variety FLH 13-11 in Two Continuous Cropping Seasons. Agronomy 2024, 14, 442. [Google Scholar] [CrossRef]
- Megur, A.; Daliri, E.B.-M.; Baltriukienė, D.; Burokas, A. Prebiotics as a Tool for the Prevention and Treatment of Obesity and Diabetes: Classification and Ability to Modulate the Gut Microbiota. Int. J. Mol. Sci. 2022, 23, 6097. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Stratigou, T.; Tsagarakis, S. Microbiome and Diabetes: Where Are We Now? Diabetes Res. Clin. Pract. 2018, 146, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Kellow, N.J.; Coughlan, M.T.; Savige, G.S.; Reid, C.M. Effect of Dietary Prebiotic Supplementation on Advanced Glycation, Insulin Resistance and Inflammatory Biomarkers in Adults with Pre-Diabetes: A Study Protocol for a Double-Blind Placebo-Controlled Randomised Crossover Clinical Trial. BMC Endocr. Disord. 2014, 14, 55. [Google Scholar] [CrossRef] [PubMed]
- Sip, S.; Sip, A.; Miklaszewski, A.; Żarowski, M.; Cielecka-Piontek, J. Zein as an Effective Carrier for Hesperidin Delivery Systems with Improved Prebiotic Potential. Molecules 2023, 28, 5209. [Google Scholar] [CrossRef] [PubMed]
- Sip, S.; Szymanowska, D.; Chanaj-Kaczmarek, J.; Skalicka-Woźniak, K.; Budzyńska, B.; Wronikowska-Denysiuk, O.; Słowik, T.; Szulc, P.; Cielecka-Piontek, J. Potential for Prebiotic Stabilized Cornus mas L. Lyophilized Extract in the Prophylaxis of Diabetes Mellitus in Streptozotocin Diabetic Rats. Antioxidants 2022, 11, 380. [Google Scholar] [CrossRef] [PubMed]
- Stasiłowicz-Krzemień, A.; Gołębiewski, M.; Płazińska, A.; Płaziński, W.; Miklaszewski, A.; Żarowski, M.; Adamska-Jernaś, Z.; Cielecka-Piontek, J. The Systems of Naringenin with Solubilizers Expand Its Capability to Prevent Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 755. [Google Scholar] [CrossRef]
- Fenyvesi, É.; Vikmon, M.; Szente, L. Cyclodextrins in Food Technology and Human Nutrition: Benefits and Limitations. Crit. Rev. Food Sci. Nutr. 2016, 56, 1981–2004. [Google Scholar] [CrossRef]
- Meng, X.; Zheng, J.; Wang, F.; Zheng, J.; Yang, D. Dietary Fiber Chemical Structure Determined Gut Microbiota Dynamics. iMeta 2022, 1, e64. [Google Scholar] [CrossRef]
- Dilokpimol, A.; Geshi, N. Gum Arabic That Is Enzymatically Modified with Arabidopsis Beta-Glucuronosyltransferase Can Make Smaller and More Stable Oil-in-Water Emulsions. J. Mater. Sci. Eng. A 2015, 5, 69–77. [Google Scholar] [CrossRef]
- Elnour, A.A.M.; Abdurahman, N.H.; Musa, K.H.; Rasheed, Z. Prebiotic Potential of Gum Arabic for Gut Health. Int. J. Health Sci. 2023, 17, 4–5. [Google Scholar]
- Calame, W.; Weseler, A.R.; Viebke, C.; Flynn, C.; Siemensma, A.D. Gum Arabic Establishes Prebiotic Functionality in Healthy Human Volunteers in a Dose-Dependent Manner. Br. J. Nutr. 2008, 100, 1269–1275. [Google Scholar] [CrossRef] [PubMed]
- Al-Baadani, H.H.; Al-Mufarrej, S.I.; Al-Garadi, M.A.; Alhidary, I.A.; Al-Sagan, A.A.; Azzam, M.M. The Use of Gum Arabic as a Natural Prebiotic in Animals: A Review. Anim. Feed. Sci. Technol. 2021, 274, 114894. [Google Scholar] [CrossRef]
- Gościniak, A.; Bazan-Woźniak, A.; Pietrzak, R.; Cielecka-Piontek, J. Pomegranate Flower Extract—The Health-Promoting Properties Optimized by Application of the Box–Behnken Design. Molecules 2022, 27, 6616. [Google Scholar] [CrossRef] [PubMed]
- Misiuk, W.; Jasiuk, E. Study of the Inclusion Interaction of HP-γ-Cyclodextrin with Bupropion and Its Analytical Application. J. Mol. Struct. 2014, 1060, 272–279. [Google Scholar] [CrossRef]
- Wei, M.; Davis, W.; Urban, B.; Song, Y.; Porbeni, F.E.; Wang, X.; White, J.L.; Balik, C.M.; Rusa, C.C.; Fox, J. Manipulation of Nylon-6 Crystal Structures with Its α-Cyclodextrin Inclusion Complex. Macromolecules 2002, 35, 8039–8044. [Google Scholar] [CrossRef]
- Saha, B.C.; Saha, S.; Das, K.; Basak, S.; Roy, M.N. Investigation of Inclusion Complexes of Sodium Valproate Inside into α and β-Cyclodextrins. Asian J. Sci. Tech. 2018, 9, 7555–7560. [Google Scholar]
- Stasiłowicz-Krzemień, A.; Rosiak, N.; Płazińska, A.; Płaziński, W.; Miklaszewski, A.; Tykarska, E.; Cielecka-Piontek, J. Cyclodextrin Derivatives as Promising Solubilizers to Enhance the Biological Activity of Rosmarinic Acid. Pharmaceutics 2022, 14, 2098. [Google Scholar] [CrossRef]
- Ho, B.T.; Joyce, D.C.; Bhandari, B.R. Encapsulation of Ethylene Gas into α-Cyclodextrin and Characterisation of the Inclusion Complexes. Food Chem. 2011, 127, 572–580. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.-G.; Huang, K.-L.; Liu, S.-Q.; Tang, J.-C. Preparation and Characterization of Soluble Methyl-β-Cyclodextrin Functionalized Single-Walled Carbon Nanotubes. Phys. E Low-Dimens. Syst. Nanostructures 2008, 40, 689–692. [Google Scholar] [CrossRef]
- Chao, J.; Liu, Y.; Zhang, Y.; Zhang, J.; Zhang, Y.; Guo, Z.; Wang, Y.; Qin, L.; Zhang, B. Investigation of the Inclusion Behavior of Ofloxacin with Methyl-β-Cyclodextrin. J. Mol. Liq. 2014, 200, 404–409. [Google Scholar] [CrossRef]
- Siva, S.; Li, C.; Cui, H.; Meenatchi, V.; Lin, L. Encapsulation of Essential Oil Components with Methyl-β-Cyclodextrin Using Ultrasonication: Solubility, Characterization, DPPH and Antibacterial Assay. Ultrason. Sonochem. 2020, 64, 104997. [Google Scholar] [CrossRef] [PubMed]
- Saud, K.T.; Xu, J.; Wilkanowicz, S.; He, Y.; Moon, J.J.; Solomon, M.J. Electrosprayed Microparticles from Inulin and Poly (Vinyl) Alcohol for Colon Targeted Delivery of Prebiotics. Food Hydrocoll. 2023, 140, 108625. [Google Scholar] [CrossRef]
- Romano, N.; Araujo-Andrade, C.; Lecot, J.; Mobili, P.; Gómez-Zavaglia, A. Infrared Spectroscopy as an Alternative Methodology to Evaluate the Effect of Structural Features on the Physical-Chemical Properties of Inulins. Food Res. Int. 2018, 109, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Petkova, N.T.; Sherova, G.; Denev, P.P. Characterization of Inulin from Dahlia Tubers Isolated by Microwave and Ultrasound-Assisted Extractions. Int. Food Res. J. 2018, 25, 1876–1884. [Google Scholar]
- Akram, W.; Garud, N. Optimization of Inulin Production Process Parameters Using Response Surface Methodology. Future J. Pharm. Sci. 2020, 6, 1–9. [Google Scholar] [CrossRef]
- Pontes, A.G.O.; Silva, K.L.; da Cruz Fonseca, S.G.; Soares, A.A.; de Andrade Feitosa, J.P.; Braz-Filho, R.; Romero, N.R.; Bandeira, M.A.M. Identification and Determination of the Inulin Content in the Roots of the Northeast Brazilian Species Pombalia calceolaria L. Carbohydr. Polym. 2016, 149, 391–398. [Google Scholar] [CrossRef]
- El-Kholy, W.M.; Aamer, R.A.; Ali, A.N.A. Utilization of Inulin Extracted from Chicory (Cichorium intybus L.) Roots to Improve the Properties of Low-Fat Synbiotic Yoghurt. Ann. Agric. Sci. 2020, 65, 59–67. [Google Scholar] [CrossRef]
- Sheikhzadeh, S.; Alizadeh, M.; Rezazad, M.; Hamishehkar, H. Application of Response Surface Methodology and Spectroscopic Approach for Investigating of Curcumin Nanoencapsulation Using Natural Biopolymers and Nonionic Surfactant. J. Food Sci. Technol. 2016, 53, 3904–3915. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, C.A.; Oyatogun, G.M.; Esan, T.A.; Oluwasegun, K.M. Synthesis and Characterization of Chitosan/Gum Arabic Nanoparticles for Bone Regeneration. Am. J. Mater. Sci. Eng. 2017, 5, 28–36. [Google Scholar]
- Studzińska-Sroka, E.; Galanty, A.; Gościniak, A.; Wieczorek, M.; Kłaput, M.; Dudek-Makuch, M.; Cielecka-Piontek, J. Herbal Infusions as a Valuable Functional Food. Nutrients 2021, 13, 4051. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Eberhardt, J.; Santos-Martins, D.; Tillack, A.F.; Forli, S. AutoDock Vina 1.2.0: New Docking Methods, Expanded Force Field, and Python Bindings. J. Chem. Inf. Model. 2021, 61, 3891–3898. [Google Scholar] [CrossRef] [PubMed]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization and Multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [PubMed]
- O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An Open Chemical Toolbox. J. Cheminform. 2011, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expanding the Scope of the Protein-Ligand Interaction Profiler to DNA and RNA. Nucleic Acids Res. 2021, 49, W530–W534. [Google Scholar] [CrossRef] [PubMed]
- PyMOL|Pymol.Org. Available online: https://pymol.org/2/ (accessed on 1 March 2024).
- Singh, P.; Sharma, M. Therapeutic Use of Dropped Pomegranate Flowers on Metabolic Disorders: A Review. Int. J. Bot. Stud. 2021, 6, 470–472. [Google Scholar]
- Zhao, X.; Zhang, X.; Tie, S.; Hou, S.; Wang, H.; Song, Y.; Rai, R.; Tan, M. Facile Synthesis of Nano-Nanocarriers from Chitosan and Pectin with Improved Stability and Biocompatibility for Anthocyanins Delivery: An in Vitro and in Vivo Study. Food Hydrocoll. 2020, 109, 106114. [Google Scholar] [CrossRef]
- Garbiec, E.; Rosiak, N.; Tykarska, E.; Zalewski, P.; Cielecka-Piontek, J. Sinapic Acid Co-Amorphous Systems with Amino Acids for Improved Solubility and Antioxidant Activity. Int. J. Mol. Sci. 2023, 24, 5533. [Google Scholar] [CrossRef] [PubMed]
- Szafraniec, J.; Antosik, A.; Knapik-Kowalczuk, J.; Gawlak, K.; Kurek, M.; Szlęk, J.; Jamróz, W.; Paluch, M.; Jachowicz, R. Molecular Disorder of Bicalutamide—Amorphous Solid Dispersions Obtained by Solvent Methods. Pharmaceutics 2018, 10, 194. [Google Scholar] [CrossRef] [PubMed]
- Tatasciore, S.; Santarelli, V.; Neri, L.; González Ortega, R.; Faieta, M.; Di Mattia, C.D.; Di Michele, A.; Pittia, P. Freeze-Drying Microencapsulation of Hop Extract: Effect of Carrier Composition on Physical, Techno-Functional, and Stability Properties. Antioxidants 2023, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Mourtzinos, I.; Papadakis, S.E.; Igoumenidis, P.; Karathanos, V.T. Encapsulation of Melissa Officinalis Leaf’s Active Compounds in β-Cyclodextrin and Modified Starch. Procedia Food Sci. 2011, 1, 1679–1685. [Google Scholar] [CrossRef]
- Li, J.; Xu, F.; Dai, Y.; Zhang, J.; Shi, Y.; Lai, D.; Sriboonvorakul, N.; Hu, J. A Review of Cyclodextrin Encapsulation and Intelligent Response for the Release of Curcumin. Polymers 2022, 14, 5421. [Google Scholar] [CrossRef]
- Sharif, M.; Ansari, F.; Malik, A.; Ali, Q.; Hasan, Z.; Khan, N.U.H. Fourier-Transform Infrared Spectroscopy, Antioxidant, Phytochemical and Antibacterial Screening of N-Hexane Extracts of Punica Granatum, A Medicinal Plant. Genet. Mol. Res. 2018, 19, gmr16039989. [Google Scholar]
- Suja Pandian, R.; Yuvaranjani, V. Fourier Transform-Infrared Spectroscopic Studies On Edible Punica Granatum Flowers. Indo Am. J. Pharm. Res. 2018, 8, 557–560. [Google Scholar] [CrossRef]
- Almuslet, N.A.; Hassan, E.A.; Al-Sherbini, A.; Muhgoub, M.G.A. Diode Laser (532 Nm) Induced Grafting of Polyacrylamide onto Gum Arabic. J. Phys. Sci. 2012, 23, 43–53. [Google Scholar]
- Nguyen, T.T.; Thi Dao, U.T.; Thi Bui, Q.P.; Bach, G.L.; Ha Thuc, C.N.; Ha Thuc, H. Enhanced Antimicrobial Activities and Physiochemical Properties of Edible Film Based on Chitosan Incorporated with Sonneratia caseolaris (L.) Engl. Leaf Extract. Prog. Org. Coat. 2020, 140, 105487. [Google Scholar] [CrossRef]
- Paczkowska, M.; Mizera, M.; Piotrowska, H.; Szymanowska-Powałowska, D.; Lewandowska, K.; Goscianska, J.; Pietrzak, R.; Bednarski, W.; Majka, Z.; Cielecka-Piontek, J. Complex of Rutin with β-Cyclodextrin as Potential Delivery System. PLoS ONE 2015, 10, e0120858. [Google Scholar] [CrossRef] [PubMed]
- Atgié, M.; Chennevière, A.; Masbernat, O.; Roger, K. Emulsions Stabilized by Gum Arabic: How Diversity and Interfacial Networking Lead to Metastability. Langmuir 2019, 35, 14553–14565. [Google Scholar] [CrossRef]
- Das, A.B.; Goud, V.V.; Das, C. Degradation Kinetics of Anthocyanins from Purple Rice Bran and Effect of Hydrocolloids on Its Stability. J. Food Process Eng. 2020, 43, e13360. [Google Scholar] [CrossRef]
- Ferrari, C.C.; Marconi Germer, S.P.; Alvim, I.D.; de Aguirre, J.M. Storage Stability of Spray-Dried Blackberry Powder Produced with Maltodextrin or Gum Arabic. Dry. Technol. 2013, 31, 470–478. [Google Scholar] [CrossRef]
- El Tahan, M.N.; Hammady, T.M.; Elgawish, M.S.; Gad, S. Strategies to Improve Solubility of Oral Drugs. Rec. Pharm. Biomed. Sci. 2023, 7, 1–14. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, Y. Biopolymer-Based Encapsulation of Anthocyanins as Reinforced Natural Colorants for Food Applications. J. Agric. Food Res. 2023, 11, 100488. [Google Scholar] [CrossRef]
- Yuan, Y.; Fan, Q.; Xu, X.; Wang, O.; Zhao, L.; Zhao, L. Nanocarriers Based on Polysaccharides for Improving the Stability and Bioavailability of Anthocyanins: A Review. Carbohydr. Polym. Technol. Appl. 2023, 6, 100346. [Google Scholar] [CrossRef]
- da Silva Crozatti, T.T.; Mangolim, C.S.; Larentis, P.V.; de Mello, J.C.P.; Matioli, G. Extraction, Microencapsulation, and Application of Anthocyanins from Juçara Palm Fruit (Euterpe edulis Mart.): Enhancement of Natural Pigment. J. Food Sci. Technol. 2023, 60, 361–371. [Google Scholar] [CrossRef]
- Salama, S.M.; Fadlalmola, H.A.; Hafeez, M.M.A.; Ahmed, S.A.M.; Mohamed, R.A.; Elatta, N.M.A.; Mariod, A.A. Effectiveness of Gum Arabic in Diabetes and Its Complications: A Narrative Review. Sudan J. Med. Sci. 2021, 16, 436–453. [Google Scholar]
- Nasir, O.; Babiker, S.; Salim, A.-M.M. Protective Effect of Gum Arabic Supplementation for Type 2 Diabetes Mellitus and Its Complications. Int. J. Multidiscip. Curr. Res. 2016, 4, 288–294. [Google Scholar]
- Babiker, R.; Elmusharaf, K.; Keogh, M.B.; Banaga, A.S.I.; Saeed, A.M. Metabolic Effect of Gum Arabic (Acacia Senegal) in Patients with Type 2 Diabetes Mellitus (T2DM): Randomized, Placebo Controlled Double Blind Trial. Funct. Foods Health Dis. 2017, 7, 222. [Google Scholar] [CrossRef]
- Wang, M.; Jin, Z.; Liu, L.; Wang, Z.; Li, F.; Sun, W.; Cai, H.; Chen, X.; Shen, W.; Zhu, Z.; et al. Inhibition of Cyclodextrins on the Activity of α-Amylase. J. Incl. Phenom. Macrocycl. Chem. 2018, 90, 351–356. [Google Scholar] [CrossRef]
- Dehghan, P.; Pourghassem Gargari, B.; Asgharijafarabadi, M. Effects of High Performance Inulin Supplementation on Glycemic Status and Lipid Profile in Women with Type 2 Diabetes: A Randomized, Placebo-Controlled Clinical Trial. Health Promot. Perspect. 2013, 3, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, N.; Tykarska, E.; Cielecka-Piontek, J. Enhanced Antioxidant and Neuroprotective Properties of Pterostilbene (Resveratrol Derivative) in Amorphous Solid Dispersions. Int. J. Mol. Sci. 2024, 25, 2774. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Bulicz, M.; Henkel, M.; Rosiak, N.; Paczkowska-Walendowska, M.; Szwajgier, D.; Baranowska-Wójcik, E.; Korybalska, K.; Cielecka-Piontek, J. Pleiotropic Potential of Evernia Prunastri Extracts and Their Main Compounds Evernic Acid and Atranorin: In Vitro and In Silico Studies. Molecules 2024, 29, 233. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zhang, Y.; Zhou, W. In Vitro and in Silico Studies of the Inhibition Activity of Anthocyanins against Porcine Pancreatic α-Amylase. J. Funct. Foods 2016, 21, 50–57. [Google Scholar] [CrossRef]
- Sravani, M.; Kumaran, A.; Dhamdhere, A.; Senthil Kumar, N. Computational Molecular Docking Analysis and Visualisation of Anthocyanins for Anticancer Activity. Int. J. Res. Appl. Sci. Biotechnol. 2021, 8, 154–161. [Google Scholar] [CrossRef]
- Oliveira, H.; Fernandes, A.; F Brás, N.; Mateus, N.; de Freitas, V.; Fernandes, I. Anthocyanins as Antidiabetic Agents-In Vitro and In Silico Approaches of Preventive and Therapeutic Effects. Molecules 2020, 25, 3813. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, S.; Zhang, Q.-F.; Yin, Z.; Zhang, L. α-Glucosidase Inhibitory Effect of Anthocyanins from Cinnamomum Camphora Fruit: Inhibition Kinetics and Mechanistic Insights through in Vitro and in Silico Studies. Int. J. Biol. Macromol. 2020, 143, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Studzińska-Sroka, E.; Majchrzak-Celińska, A.; Bańdurska, M.; Rosiak, N.; Szwajgier, D.; Baranowska-Wójcik, E.; Szymański, M.; Gruszka, W.; Cielecka-Piontek, J. Is Caperatic Acid the Only Compound Responsible for Activity of Lichen Platismatia Glauca within the Nervous System? Antioxidants 2022, 11, 2069. [Google Scholar] [CrossRef] [PubMed]
- Bock, P.M.; Telo, G.H.; Ramalho, R.; Sbaraini, M.; Leivas, G.; Martins, A.F.; Schaan, B.D. The Effect of Probiotics, Prebiotics or Synbiotics on Metabolic Outcomes in Individuals with Diabetes: A Systematic Review and Meta-Analysis. Diabetologia 2021, 64, 26–41. [Google Scholar] [CrossRef]
- Cai, M.; Feng, J.; Wang, J.; Chen, P.; Ge, Z.; Liu, W.; Sun, P.; Wu, L.; Wu, J. Characterization of Various Noncovalent Polyphenol–Starch Complexes and Their Prebiotic Activities during In Vitro Digestion and Fermentation. J. Agric. Food Chem. 2024, 72, 2250–2262. [Google Scholar] [CrossRef] [PubMed]
- Yisimayili, Z.; Abdulla, R.; Tian, Q.; Wang, Y.; Chen, M.; Sun, Z.; Li, Z.; Liu, F.; Aisa, H.A.; Huang, C. A Comprehensive Study of Pomegranate Flowers Polyphenols and Metabolites in Rat Biological Samples by High-Performance Liquid Chromatography Quadrupole Time-of-Flight Mass Spectrometry. J. Chromatogr. A 2019, 1604, 460472. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ouyang, X.; Laaksonen, O.; Liu, X.; Shao, Y.; Zhao, H.; Zhang, B.; Zhu, B. Effect of Lactobacillus Acidophilus, Oenococcus Oeni, and Lactobacillus Brevis on Composition of Bog Bilberry Juice. Foods 2019, 8, 430. [Google Scholar] [CrossRef] [PubMed]
- Gwiazdowska, D.; Juś, K.; Jasnowska-Małecka, J.; Kluczyńska, K. The Impact of Polyphenols on Bifidobacterium Growth. Acta Biochim. Pol. 2015, 62, 895–901. [Google Scholar] [CrossRef]
- Nihei, N.; Okamoto, H.; Furune, T.; Ikuta, N.; Sasaki, K.; Rimbach, G.; Yoshikawa, Y.; Terao, K. Dietary α-Cyclodextrin Modifies Gut Microbiota and Reduces Fat Accumulation in High-Fat-Diet-Fed Obese Mice. BioFactors 2018, 44, 336–347. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Zhang, B.; Feng, Y.; Li, Z.; Tang, X.; Ban, X.; Kong, H.; Li, C. Beneficial Effects of Three Dietary Cyclodextrins on Preventing Fat Accumulation and Remodeling Gut Microbiota in Mice Fed a High-Fat Diet. Foods 2022, 11, 1118. [Google Scholar] [CrossRef] [PubMed]
PDB Code | Coordinates of Grid Box | Size of Grid Box (Å) | Maximum Radius Limit (Å) | |
---|---|---|---|---|
α-glucosidase | 4J5T | x = −10.314 y = −24.456 z = 0.685 | x = 126 y = 100 z = 126 | 0.375 |
α-amylase | 1OSE | x = 35.355 y = 37.073 z = 1.411 | x = 114 y = 78 z = 70 | 0.375 |
Content | |
---|---|
PL | 9.94 ± 0.28 µg/mg |
HP-γ-CD/PL | 5.05 ± 0.25 µg/mg |
α-CD/PL | 4.85 ± 0.25 µg/mg |
Me-β-CD/PL | 4.89 ± 0.29 µg/mg |
Inu/PL | 5.04 ± 0.20 µg/mg |
AGu/PL | 5.00 ± 0.43 µg/mg |
f1 | f2 | |
---|---|---|
HP-γ-CD/PL | 15.51 * | 40.45 * |
α-CD/PL | 30.89 * | 23.16 * |
Me-β-CD/PL | 20.34 * | 34.87 * |
Inu/PL | 10.60 | 54.17 |
AGu/PL | 6.37 | 62.69 |
f1 | f2 | |
---|---|---|
HP-γ-CD/PL | 10.02 | 19.80 * |
α-CD/PL | 15.43 * | 43.13 * |
Me-β-CD/PL | 28.24 * | 31.43 * |
Inu/PL | 3.64 | 70.37 |
AGu/PL | 32.71 * | 31.09 * |
k × 103 (min−1) | t1/2 (h) | R2 | |
---|---|---|---|
PL | 1.38 ± 0.10 | 8.85 ± 0.70 | 0.991 |
HP-γ-CD/PL | 0.80 ± 0.08 | 14.47 ± 1.43 | 0.961 |
α-CD/PL | 1.11 ± 0.02 | 10.42 ± 0.23 | 0.977 |
Me-β-CD/PL) | 0.63 ± 0.19 | 18.88 ± 1.15 | 0.971 |
Inu/PL | 1.36 ± 0.07 | 8.50 ± 0.42 | 0.993 |
AGu/PL | 0.53 ± 0.01 | 19.83 ± 0.39 | 0.984 |
DPPH (IC50 mg/mL) | CUPRAC (IC50 mg/mL) | α-Glucosidase (IC50 µg/mL) | α-Amylase (IC50 mg/mL) | |
---|---|---|---|---|
PL | 0.028 ± 0.004 | 0.039 ± 0.004 | 1.77 ± 0.11 | 0.18 ± 0.01 |
HP-γ-CD/PL | 0.055 ± 0.003 | 0.087 ± 0.007 | 3.37 ± 0.07 | 0.34 ± 0.02 |
α-CD/PL | 0.059 ± 0.002 | 0.087 ± 0.002 | 3.47 ± 0.28 | 0.38 ± 0.02 |
Me-β-CD/PL) | 0.057 ± 0.001 | 0.079 ± 0.010 | 3.48 ± 0.29 | 0.38 ± 0.01 |
Inu/PL | 0.050 ± 0.004 | 0.090 ± 0.009 | 3.70 ± 0.46 | 0.35 ± 0.02 |
AGu/PL | 0.049 ± 0.001 | 0.076 ± 0.002 | 3.34 ± 0.25 | 0.38 ± 0.03 |
Trolox | 0.113 ± 0.002 | 0.0636 ± 0.001 | n.a.* | n.a.* |
Acarbose | n.a.* | n.a.* | 3246.39 ± 33.1 | 0.17 ± 0.02 |
Lactobacillus acidophilus | Lactobacillus casei | Lactobacillus plantarum | Lactobacillus brevis | Lactobacillus rhamnosus GG | Lactobacillus reuteri | Pediococcus pentosaceus | Lactococcus lactis | Lactobacillus fermentum | Streptococcus thermophilus | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Bacterial Count (cfu/mL) | |||||||||||
α-CD | Time zero | 2.70 × 102 | 2.00 × 102 | 2.70 × 102 | 5.70 × 102 | 4.60 × 102 | 1.90 × 102 | 2.00 × 102 | 3.80 × 102 | 1.40 × 102 | 3.40 × 102 |
18 h | 7.00 × 107 | 2.80 × 107 | 5.60 × 108 | 2.90 × 107 | 9.50 × 107 | 3.50 × 108 | 5.83 × 102 | 4.80 × 107 | 3.20 × 107 | 8.20 × 107 | |
Inu | Time zero | 4.80 × 102 | 2.00 × 102 | 2.00 × 102 | 6.90 × 102 | 2.70 × 102 | 5.30 × 102 | 3.60 × 102 | 8.30 × 102 | 1.90 × 102 | 2.70 × 102 |
18 h | 3.80 × 107 | 3.50 × 107 | 5.40 × 107 | 3.30 × 107 | 5.20 × 108 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | |
HP-γ-CD | Time zero | 2.70 × 102 | 4.40 × 102 | 2.00 × 102 | 2.10 × 102 | 2.70 × 102 | 2.70 × 102 | 4.40 × 102 | 2.00 × 102 | 2.10 × 102 | 4.40 × 102 |
18 h | 3.20 × 106 | 3.70 × 102 | 5.80 × 106 | 5.90 × 107 | 3.00 × 103 | 3.00 × 103 | 3.70 × 106 | 5.80 × 106 | 5.90 × 107 | 3.70 × 106 | |
Me-β-CD/ | Time zero | 9.30 × 102 | 7.40 × 102 | 2.70 × 102 | 2.70 × 102 | 3.40 × 102 | 2.70 × 102 | 2.00 × 102 | 5.40 × 102 | 2.30 × 102 | 2.00 × 102 |
18 h | 3.40 × 107 | 2.40 × 107 | 3.60 × 107 | 4.92 × 102 | 5.10 × 107 | 3.30 × 107 | 3.10 × 106 | 3.00 × 103 | 3.00 × 103 | 3.00× 103 | |
AGu | Time zero | 2.00 × 102 | 5.30 × 102 | 1.70 × 102 | 8.30 × 102 | 5.60 × 102 | 6.40 × 102 | 4.40 × 102 | 7.70 × 102 | 2.00 × 102 | 8.30 × 102 |
18 h | 0.00 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.30 × 106 | 3.20 × 106 | 3.70 × 106 | 3.00 × 103 | 3.00 × 103 | 3.00× 103 |
Lactobacillus acidophilus | Lactobacillus casei | Lactobacillus plantarum | Lactobacillus brevis | Lactobacillus rhamnosus GG | Lactobacillus reuteri | Pediococcus pentosaceus | Lactococcus lactis | Lactobacillus fermentum | Streptococcus thermophilus | ||
---|---|---|---|---|---|---|---|---|---|---|---|
Bacterial Count (cfu/mL) | |||||||||||
PL | Time zero | 7.70 × 102 | 3.40 × 102 | 2.00 × 102 | 5.70 × 102 | 9.10 × 102 | 4.30 × 102 | 8.10 × 102 | 3.20 × 102 | 2.20 × 102 | 3.40 × 102 |
18 h | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | <10 | |
α-CD/PL | Time zero | 2.70 × 102 | 2.00 × 102 | 2.70 × 102 | 5.70 × 102 | 4.60 × 102 | 1.90 × 102 | 2.00 × 102 | 3.80 × 102 | 1.40 × 102 | 3.40 × 102 |
18 h | 7.00 × 107 | 2.80 × 107 | 5.60 × 108 | 2.90 × 107 | 9.50 × 107 | 3.50 × 108 | 5.83 × 102 | 4.80 × 107 | 3.20 × 107 | 8.20 × 107 | |
Inu/PL | Time zero | 4.80 × 102 | 2.00 × 102 | 2.00 × 102 | 6.90 × 102 | 2.70 × 102 | 5.30 × 102 | 3.60 × 102 | 8.30 × 102 | 1.90 × 102 | 2.70 × 102 |
18 h | 3.80 × 107 | 3.50 × 107 | 5.40× 107 | 3.30 × 107 | 5.20 × 108 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | |
HP-γ-CD/PL | Time zero | 2.70 × 102 | 4.40 × 102 | 2.00 × 102 | 2.10 × 102 | 2.70 × 102 | 2.70 × 102 | 4.40 × 102 | 2.00 × 102 | 2.10 × 102 | 4.40 × 102 |
18 h | 3.20 × 106 | 3.70 × 106 | 5.80 × 106 | 5.90 × 107 | 3.00 × 103 | 3.00 × 103 | 3.70 × 106 | 5.80 × 106 | 5.90 × 107 | 3.70 × 106 | |
Me-β-CD/PL | Time zero | 9.30 × 102 | 7.40 × 102 | 2.70 × 102 | 2.70 × 102 | 3.40 × 102 | 2.70 × 102 | 2.00 × 102 | 5.40 × 102 | 2.30 × 102 | 2.00 × 102 |
18 h | 3.40× 107 | 2.40 × 107 | 3.60× 107 | 4.92 × 102 | 5.10 × 107 | 3.30 × 107 | 3.10 × 106 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | |
AGu/PL | Time zero | 2.00 × 102 | 5.30 × 102 | 1.70 × 102 | 8.30 × 102 | 5.60 × 102 | 6.40 × 102 | 4.40 × 102 | 7.70 × 102 | 2.00 × 102 | 8.30 × 102 |
18 h | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 | 3.30 × 106 | 3.20 × 106 | 3.70 × 106 | 3.00 × 103 | 3.00 × 103 | 3.00 × 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gościniak, A.; Rosiak, N.; Szymanowska, D.; Miklaszewski, A.; Cielecka-Piontek, J. Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects. Pharmaceutics 2024, 16, 526. https://doi.org/10.3390/pharmaceutics16040526
Gościniak A, Rosiak N, Szymanowska D, Miklaszewski A, Cielecka-Piontek J. Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects. Pharmaceutics. 2024; 16(4):526. https://doi.org/10.3390/pharmaceutics16040526
Chicago/Turabian StyleGościniak, Anna, Natalia Rosiak, Daria Szymanowska, Andrzej Miklaszewski, and Judyta Cielecka-Piontek. 2024. "Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects" Pharmaceutics 16, no. 4: 526. https://doi.org/10.3390/pharmaceutics16040526
APA StyleGościniak, A., Rosiak, N., Szymanowska, D., Miklaszewski, A., & Cielecka-Piontek, J. (2024). Prebiotic Systems Containing Anthocyanin-Rich Pomegranate Flower Extracts with Antioxidant and Antidiabetic Effects. Pharmaceutics, 16(4), 526. https://doi.org/10.3390/pharmaceutics16040526