Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Reagents
2.1.1. Preparation of Trifolium pratense L. (Red Clover) Extract
2.1.2. Preparation of Sinapis alba (White Mustard) Extract
2.2. Emulsion Preparation
2.2.1. Alginate Solution Preparation
2.2.2. Chitosan Solution Preparation
2.2.3. Chitosan and Alginate Emulsions Preparation
2.3. Physical Parameters of Emulsions
2.3.1. Emulsions Stability Determination
2.3.2. Particle Size and Distribution Measurements and Pictures
2.3.3. Dynamic Viscosity
2.4. Microcapsules’ Formulation and Preparation
2.5. Physical Parameters of Microcapsules
2.5.1. Size and Shape of the Microcapsules
2.5.2. Firmness of the Microcapsules
2.5.3. Swelling Characteristic of Microcapsules
2.6. Total Content of Active Compounds and In Vitro Release and Analysis of Microcapsules
2.6.1. In Vitro Release of Active Compounds
2.6.2. Total Phenolic and Flavanoid Content
2.6.3. Isoflavones Determination Using High-Performance Liquid Chromatography
2.7. Statistical Analysis
3. Results and Discussion
3.1. Determination of Chitosan and Alginate Emulsions Parameters
3.1.1. Emulsions Formation, Stability and Active Compounds Concentration
3.1.2. Physical Emulsions Parameters
3.2. Microcapsules Formation
3.2.1. Physical Parameters of Microcapsules
3.2.2. In Vitro Release of Bioactive Compounds from Microcapsules
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wickham, K.A.; Nørregaard, L.B.; Oxfeldt, M.; Cheung, S.S.; Gliemann, L.; Hansen, M.; Hellsten, Y. Short-Term Supplementation with Fermented Red Clover Extract Reduces Vascular Inflammation in Early Post-Menopausal Women. Front. Cardiovasc. Med. 2022, 9, 826959. [Google Scholar] [CrossRef]
- Ehsanpour, S.; Salehi, K.; Zolfaghari, B.; Bakhtiari, S. The Effects of Red Clover on Quality of Life in Post-Menopausal Women. Iran. J. Nurs. Midwifery Res. 2012, 17, 34–40. [Google Scholar] [PubMed]
- Occhiuto, F.; De Pasquale, R.; Guglielmo, G.; Palumbo, D.R.; Zangla, G.; Samperi, S.; Renzo, A.; Circosta, C. Effects of Phytoestrogenic Isoflavones from Red Clover (Trifolium pratense L.) on Experimental Osteoporosis. Phyther. Res. 2007, 21, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; et al. An Overview of Plant Phenolic Compounds and Their Importance in Human Nutrition and Management of Type 2 Diabetes. Molecules 2016, 21, 1374. [Google Scholar] [CrossRef] [PubMed]
- Eseberri, I.; Trepiana, J.; Léniz, A.; Gómez-García, I.; Carr-Ugarte, H.; González, M.; Portillo, M.P. Variability in the Beneficial Effects of Phenolic Compounds: A Review. Nutrients 2022, 14, 1925. [Google Scholar] [CrossRef]
- Parisi, O.I.; Puoci, F.; Restuccia, D.; Farina, G.; Iemma, F.; Picci, N. Polyphenols and Their Formulations: Different Strategies to Overcome the Drawbacks Associated with Their Poor Stability and Bioavailability. In Polyphenols in Human Health and Disease; Elsevier Inc.: Amsterdam, The Netherlands, 2013; Volume 1, pp. 29–45. [Google Scholar] [CrossRef]
- Singh, I.R.; Pulikkal, A.K. Nano Emulsions Stabilized by Natural Emulsifiers: A Comprehensive Review on Feasibility, Stability and Bio-Applicability. J. Drug Deliv. Sci. Technol. 2023, 92, 105303. [Google Scholar] [CrossRef]
- Wade, A.H.; Morra, M.J.; Smith, B.; Popova, I. Yellow and Oriental Mustard Seed Lecithin Content and Composition. J. Food Compos. Anal. 2021, 98, 103819. [Google Scholar] [CrossRef]
- Nushtaeva, A.V. Natural Food-Grade Solid Particles for Emulsion Stabilization. Colloids Surfaces A Physicochem. Eng. Asp. 2016, 504, 449–457. [Google Scholar] [CrossRef]
- Kumar, D.; Tanwar, V.K. Effects of Incorporation of Ground Mustard on Quality Attributes of Chicken Nuggets. J. Food Sci. Technol. 2011, 48, 759–762. [Google Scholar] [CrossRef]
- Xi, Y.; Zou, Y.; Luo, Z.; Qi, L.; Lu, X. PH-Responsive Emulsions with β-Cyclodextrin/Vitamin e Assembled Shells for Controlled Delivery of Polyunsaturated Fatty Acids. J. Agric. Food Chem. 2019, 67, 11931–11941. [Google Scholar] [CrossRef]
- Liu, Z.; Geng, S.; Jiang, Z.; Liu, B. Fabrication and Characterization of Food-Grade Pickering High Internal Emulsions Stabilized with β-Cyclodextrin. LWT 2020, 134, 110134. [Google Scholar] [CrossRef]
- Liu, C.; Tian, Y.; Ma, Z.; Zhou, L. Pickering Emulsion Stabilized by β-Cyclodextrin and Cinnamaldehyde/β-Cyclodextrin Composite. Foods 2023, 12, 2366. [Google Scholar] [CrossRef]
- de Carvalho-Guimarães, F.B.; Correa, K.L.; de Souza, T.P.; Rodríguez Amado, J.R.; Ribeiro-Costa, R.M.; Silva-Júnior, J.O.C. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals 2022, 15, 1413. [Google Scholar] [CrossRef] [PubMed]
- Schwartzberg Rudolph M Navari, L.S. Safety of Polysorbate 80 in the Oncology Setting. Adv. Ther. 2018, 35, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Wilson, B.; Samanta, M.K.; Santhi, K.; Kumar, K.P.S.; Ramasamy, M.; Suresh, B. Chitosan Nanoparticles as a New Delivery System for the Anti-Alzheimer Drug Tacrine. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 144–152. [Google Scholar] [CrossRef]
- Kerwin, B.A. Polysorbates 20 and 80 Used in the Formulation of Protein Biotherapeutics: Structure and Degradation Pathways. J. Pharm. Sci. 2008, 97, 2924–2935. [Google Scholar] [CrossRef]
- Perez-Palacios, T.; Ruiz-Carrascal, J.; Solomando, J.C.; de-la-Haba, F.; Pajuelo, A.; Antequera, T. Recent Developments in the Microencapsulation of Fish Oil and Natural Extracts: Procedure, Quality Evaluation and Food Enrichment. Foods 2022, 11, 3291. [Google Scholar] [CrossRef]
- Vivek, K.; Mishra, S.; Pradhan, R.C.; Nagarajan, M.; Kumar, P.K.; Singh, S.S.; Manvi, D.; Gowda, N.N. A Comprehensive Review on Microencapsulation of Probiotics: Technology, Carriers and Current Trends. Appl. Food Res. 2023, 3, 100248. [Google Scholar] [CrossRef]
- Vallejo-Castillo, V.; Rodríguez-Stouvenel, A.; Martínez, R.; Bernal, C. Development of Alginate-Pectin Microcapsules by the Extrusion for Encapsulation and Controlled Release of Polyphenols from Papaya (Carica papaya L.). J. Food Biochem. 2020, 44, e13331. [Google Scholar] [CrossRef]
- Chen, L.; Gnanaraj, C.; Arulselvan, P.; El-Seedi, H.; Teng, H. A Review on Advanced Microencapsulation Technology to Enhance Bioavailability of Phenolic Compounds: Based on Its Activity in the Treatment of Type 2 Diabetes. Trends Food Sci. Technol. 2019, 85, 149–162. [Google Scholar] [CrossRef]
- Xu, Y.; Zhan, C.; Fan, L.; Wang, L.; Zheng, H. Preparation of Dual Crosslinked Alginate-Chitosan Blend Gel Beads and in Vitro Controlled Release in Oral Site-Specific Drug Delivery System. Int. J. Pharm. 2007, 336, 329–337. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.Y.; Mooney, D.J. Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhang, D.; Xie, F. The Role of Alginate in Starch Nanocrystals-Stabilized Pickering Emulsions: From Physical Stability and Microstructure to Rheology Behavior. Food Chem. 2024, 431, 137017. [Google Scholar] [CrossRef]
- Cengiz, A.; Schroën, K.; Berton-Carabin, C. Lipid Oxidation in Emulsions Fortified with Iron-Loaded Alginate Beads. Foods 2019, 8, 361. [Google Scholar] [CrossRef] [PubMed]
- Konovalova, V.; Kolesnyk, I.; Savchenko, M.; Marynin, A.; Bubela, H.; Kujawa, J.; Knozowska, K.; Kujawski, W. Preparation of Chitosan Water-in-Oil Emulsions by Stirred Cell Membrane Emulsification. Colloids Surf. A Physicochem. Eng. Asp. 2023, 661, 130929. [Google Scholar] [CrossRef]
- Kulig, D.; Zimoch-Korzycka, A.; Jarmoluk, A.; Marycz, K. Study on Alginate-Chitosan Complex Formed with Different Polymers Ratio. Polymers 2016, 8, 167. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, H.; Chen, K.; Jin, M.; Vu, S.H.; Jung, S.; He, N.; Zheng, Z.; Lee, M.S. Application of Chitosan/Alginate Nanoparticle in Oral Drug Delivery Systems: Prospects and Challenges. Drug Deliv. 2022, 29, 1142–1149. [Google Scholar] [CrossRef] [PubMed]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Cyclodextrin-Assisted Extraction Method as a Green Alternative to Increase the Isoflavone Yield from Trifolium pratensis L. Extract. Pharmaceutics 2021, 13, 620. [Google Scholar] [CrossRef] [PubMed]
- Matulyte, I.; Kasparaviciene, G.; Bernatoniene, J. Development of New Formula Microcapsules from Nutmeg Essential Oil Using Sucrose Esters and Magnesium Aluminometasilicate. Pharmaceutics 2020, 12, 628. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Marksa, M.; Bernatoniene, J. The Effect of Traditional and Cyclodextrin-Assisted Extraction Methods on Trifolium pratense L. (Red Clover) Extracts Antioxidant Potential. Antioxidants 2022, 11, 435. [Google Scholar] [CrossRef]
- Kazlauskaite, J.A.; Ivanauskas, L.; Bernatoniene, J. Novel Extraction Method Using Excipients to Enhance Yield of Genistein and Daidzein in Trifolium pratensis L. Pharmaceutics 2021, 13, 777. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Eskin, N.A.M.; Cui, W.; Pokharel, B. Emulsifying Properties of Water Soluble Yellow Mustard Mucilage: A Comparative Study with Gum Arabic and Citrus Pectin. Food Hydrocoll. 2015, 47, 191–196. [Google Scholar] [CrossRef]
- Ashok, N.A.; Sontakke, M. Plant-Based Emulsifiers: Sources, Extraction, Properties and Applications. Pharma Innov. J. 2023, 12, 8–16. [Google Scholar]
- Yuan, C.; Cheng, C.; Cui, B. Pickering Emulsions Stabilized by Cyclodextrin Nanoparticles: A Review. Starch/Staerke 2021, 73, 2100077. [Google Scholar] [CrossRef]
- Durante, M.; Milano, F.; de Caroli, M.; Giotta, L.; Piro, G.; Mita, G.; Frigione, M.; Lenucci, M.S. Tomato Oil Encapsulation by α-, β-, and γ-Cyclodextrins: A Comparative Study on the Formation of Supramolecular Structures, Antioxidant Activity, and Carotenoid Stability. Foods 2020, 9, 1553. [Google Scholar] [CrossRef] [PubMed]
- Krstonošić, V.; Dokić, L.; Nikolić, I.; Milanović, M. Influence of Xanthan Gum on Oil-in-Water Emulsion Characteristics Stabilized by OSA Starch. Food Hydrocoll. 2015, 45, 9–17. [Google Scholar] [CrossRef]
- Klinkesorn, U. The Role of Chitosan in Emulsion Formation and Stabilization. Food Rev. Int. 2013, 29, 371–393. [Google Scholar] [CrossRef]
- Kaur, G.; Mehta, S.K. Developments of Polysorbate (Tween) Based Microemulsions: Preclinical Drug Delivery, Toxicity and Antimicrobial Applications. Int. J. Pharm. 2017, 529, 134–160. [Google Scholar] [CrossRef] [PubMed]
- Roldan-Cruz, C.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Assessing the Stability of Tween 80-Based O/W Emulsions with Cyclic Voltammetry and Electrical Impedance Spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2016, 511, 145–152. [Google Scholar] [CrossRef]
- Campos, E.V.R.; Proença, P.L.F.; Oliveira, J.L.; Melville, C.C.; Vechia, J.F.D.; De Andrade, D.J.; Fraceto, L.F. Chitosan Nanoparticles Functionalized with β-Cyclodextrin: A Promising Carrier for Botanical Pesticides. Sci. Rep. 2018, 8, 2067. [Google Scholar] [CrossRef]
- Sajomsang, W.; Nuchuchua, O.; Saesoo, S.; Gonil, P.; Chaleawlert-Umpon, S.; Pimpha, N.; Sramala, I.; Soottitantawat, A.; Puttipipatkhachorn, S.; Ruktanonchai, U.R. A Comparison of Spacer on Water-Soluble Cyclodextrin Grafted Chitosan Inclusion Complex as Carrier of Eugenol to Mucosae. Carbohydr. Polym. 2013, 92, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Mariyate, J.; Bera, A. A Critical Review on Selection of Microemulsions or Nanoemulsions for Enhanced Oil Recovery. J. Mol. Liq. 2022, 353, 118791. [Google Scholar] [CrossRef]
- Souto, E.B.; Cano, A.; Martins-Gomes, C.; Coutinho, T.E.; Zielińska, A.; Silva, A.M. Microemulsions and Nanoemulsions in Skin Drug Delivery. Bioengineering 2022, 9, 158. [Google Scholar] [CrossRef] [PubMed]
- Ait-Touchente, Z.; Zine, N.; Jaffrezic-Renault, N.; Errachid, A.; Lebaz, N.; Fessi, H.; Elaissari, A. Exploring the Versatility of Microemulsions in Cutaneous Drug Delivery: Opportunities and Challenges. Nanomaterials 2023, 13, 1688. [Google Scholar] [CrossRef] [PubMed]
- Kupikowska-Stobba, B.; Domagała, J.; Kasprzak, M.M. Critical Review of Techniques for Food Emulsion Characterization. Appl. Sci. 2024, 14, 1069. [Google Scholar] [CrossRef]
- Azofeifa, D.E.; Arguedas, H.J.; Vargas, W.E. Optical Properties of Chitin and Chitosan Biopolymers with Application to Structural Color Analysis. Opt. Mater. 2012, 35, 175–183. [Google Scholar] [CrossRef]
- Esteban, Ó.; Marvá, F.; Martínez-Antón, J.C. Optical Constants of a Sodium Alginate Polymer in the UV-Vis Range. Opt. Mater. 2009, 31, 696–699. [Google Scholar] [CrossRef]
- Choi, M.; Humar, M.; Kim, S.; Yun, S. Step-Index Optical Fiber Made of Biocompatible Hydrogels. Adv. Mater. 2015, 27, 4081–4086. [Google Scholar] [CrossRef]
- Tao, L.; Shi, C.; Zi, Y.; Zhang, H.; Wang, X.; Zhong, J. A Review on the Chemical Modification of Alginates for Food Research: Chemical Nature, Modification Methods, Product Types, and Application. Food Hydrocoll. 2024, 147, 109338. [Google Scholar] [CrossRef]
- Arora, D.; Saneja, A.; Jaglan, S. Cyclodextrin-Based Delivery Systems for Dietary Pharmaceuticals. Environ. Chem. Lett. 2019, 17, 1263–1270. [Google Scholar] [CrossRef]
- Eslami, P.; Davarpanah, L.; Vahabzadeh, F. Encapsulating Role of β-Cyclodextrin in Formation of Pickering Water-in-Oil-in-Water (W 1/O/W 2 ) Double Emulsions Containing Lactobacillus Dellbrueckii. Food Hydrocoll. 2017, 64, 133–148. [Google Scholar] [CrossRef]
- Jayanudin; Fahrurrozi, M.; Wirawan, S.K.; Rochmadi. Mathematical Modeling of the Red Ginger Oleoresin Release from Chitosan-Based Microcapsules Using Emulsion Crosslinking Method. Eng. Sci. Technol. Int. J. 2019, 22, 458–467. [Google Scholar] [CrossRef]
- Steensma, A.; Faassen-Peters, M.A.W.; Noteborn, H.P.J.M.; Rietjens, I.M.C.M. Bioavailability of Genistein and Its Glycoside Genistin As Measured in the Portal Vein of Freely Moving Unanesthetized Rats. J. Agric. Food Chem. 2006, 54, 8006–8012. [Google Scholar] [CrossRef] [PubMed]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Kulkarni, K.; Zhu, W.; Hu, M. Bioavailability and Pharmacokinetics of Genistein: Mechanistic Studies on Its ADME. Anticancer. Agents Med. Chem. 2012, 12, 1264–1280. [Google Scholar] [CrossRef]
- Sarfraz, I.; Rasul, A.; Riaz, A.; Ucak, I.; Zahoor, M.K.; Hussain, G.; Nawaz, J.; Sadiqa, A.; Adem, Ş. Biochanin A and Biochanin B. In A Centum of Valuable Plant Bioactives; Elsevier: Amsterdam, The Netherlands, 2021; pp. 563–588. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, W.; Wang, J.; Liu, H.; Chen, Y. Preparation and Pharmacokinetic Study of Daidzein Long-Circulating Liposomes. Nanoscale Res. Lett. 2019, 14, 321–331. [Google Scholar] [CrossRef]
Number of Emulsions | Alginate, % | Extract, % | Mustard Extract, % | β-CD Extract, % | Oil, % | Xanthan, % | Water, % |
---|---|---|---|---|---|---|---|
1 * | 1 | 35 | 5 | - | 5 | 5 | 49 |
2 * | 0.25 | 35 | 5 | - | 5 | 5 | 49.75 |
3 * | 1 | 35 | - | 5 | 5 | 5 | 49 |
4 * | 0.25 | 35 | - | 5 | 5 | 5 | 49.75 |
5 | 1 | 30 | 5 | - | 10 | 5 | 49 |
6 | 0.25 | 30 | 5 | - | 10 | 5 | 49.75 |
7 | 1 | 30 | - | 5 | 10 | 5 | 49 |
8 | 0.25 | 30 | - | 5 | 10 | 5 | 49.75 |
9 | 1 | 30 | 5 | - | 5 | 10 | 49 |
10 | 0.25 | 30 | 5 | - | 5 | 10 | 49.75 |
11 | 1 | 30 | - | 5 | 5 | 10 | 49 |
12 | 0.25 | 30 | - | 5 | 5 | 10 | 49.75 |
13 | 1 | 35 | 5 | - | 2.5 | 7.5 | 49 |
14 | 0.25 | 35 | 5 | - | 2.5 | 7.5 | 49.75 |
15 | 1 | 35 | - | 5 | 2.5 | 7.5 | 49 |
16 | 0.25 | 35 | - | 5 | 2.5 | 7.5 | 49.75 |
Number of Emulsions | Chitosan, % | Extract, % | Polysorbate 80, % | β-CD, % | Oil, % | Acidified Water, % |
---|---|---|---|---|---|---|
1 | 0.7 | 40 | 1 | - | 3 | 34.3 |
2 | 0.7 | 40 | - | 1 | 3 | 34.3 |
3 | 0.92 | 50 | 1 | - | 3 | 45.08 |
4 | 0.92 | 50 | - | 1 | 3 | 45.08 |
5 | 0.9 | 51 | 1 | - | 3 | 44.1 |
6 | 0.9 | 51 | - | 1 | 3 | 44.1 |
7 * | 2.00 | 10 | 1 | - | 3 | 84.00 |
8 * | 2.00 | 10 | - | 1 | 3 | 84.00 |
9 * | 2.00 | 20 | 1 | - | 3 | 74.48 |
10 * | 2.00 | 20 | - | 1 | 3 | 74.48 |
11 | 2.00 | 30 | 1 | - | 3 | 64.68 |
12 | 2.00 | 30 | - | 1 | 3 | 64.68 |
Sample Code | Alginate, % | Chitosan, % | Extract, % | Mustard Extract, % | β-CD, % | Polysorbate 80, % | Oil, % | Xanthan Gum, % | Water, % | Acidified Water, % |
---|---|---|---|---|---|---|---|---|---|---|
A1M | 1 | - | 35 | 5 | - | - | 5 | 5 | 49 | - |
A2M | 0.25 | - | 35 | 5 | - | - | 5 | 5 | 49.75 | - |
A1B | 1 | - | 35 | - | 5 | - | 5 | 5 | 49 | - |
A2B | 0.25 | - | 35 | - | 5 | - | 5 | 5 | 49.75 | - |
C1P | - | 2.00 | 10 | - | - | 1 | 3 | - | - | 84.00 |
C2P | - | 2.00 | 20 | - | - | 1 | 3 | - | - | 74.00 |
C1B | - | 2.00 | 10 | - | 1 | - | 3 | - | - | 84.00 |
C2B | - | 2.00 | 20 | - | 1 | - | 3 | - | - | 74.00 |
Total Phenolic Content, mg GA/g | Total Flavonoid Content, mg RU/g | Daidzein, µg/g | Genistein, µg/g | Biochanin A, µg/g | |
---|---|---|---|---|---|
Red clover extract (concentrated) | 102.56 ± 2.15 | 29.43 ± 0.36 | 1066.97 ± 20.45 | 205.77 ± 12.89 | 139.73 ± 7.62 |
Mustard extract | 22.43 ± 1.21 | 13.97 ± 0.39 | - | - | - |
A1M | 66.62 ± 1.56 | 20.62 ± 0.52 | 642.54 ± 21.34 | 119.22 ± 3.46 | 82.69 ± 3.66 |
A2M | 67.62 ± 1.68 | 20.95 ± 0.25 | 638.36 ± 32.41 | 126.32 ± 5.33 | 81.20 ± 6.87 |
A1B | 60.62 ± 1.32 | 18.65 ± 0.81 | 664.45 ± 18.22 | 124.47 ± 6.97 | 84.92 ± 5.12 |
A2B | 61.45 ± 1.45 | 18.82 ± 0.95 | 648.92 ± 24.81 | 126.12 ± 4.23 | 79.16 ± 5.73 |
C1P | 10.11 ± 0.19 | 2.47 ± 0.06 | 99.68 ± 6.68 | 18.64 ± 1.92 | 11.91 ± 0.75 |
C2P | 17.98 ± 0.54 | 5.62 ± 0.28 | 206.96 ± 12.87 | 34.99 ± 6.98 | 23.78 ± 2.64 |
C1B | 9.98 ± 0.12 | 2.89 ± 0.19 | 94.79 ± 8.82 | 18.33 ± 3.14 | 12.15 ± 0.58 |
C2B | 18.61 ± 0.68 | 5.78 ± 0.22 | 210.46 ± 11.56 | 36.21 ± 5.74 | 24.54 ± 1.01 |
Sample | Dynamic Viscosity, mPa·s | Dx(10) | Dx(50) | Dx(90) | Uniformity |
---|---|---|---|---|---|
A1M | 3460.6 ± 51.2 | 0.449 | 0.561 | 0.931 | 0.365 |
A2M | 2882.0 ± 87.8 | 0.469 | 0.589 | 0.944 | 0.370 |
A1B | 4425.8 ± 78.4 | 0.387 | 0.525 | 0.934 | 0.399 |
A2B | 3072.3 ± 47.1 | 0.402 | 0.550 | 0.981 | 0.396 |
C1P | 5456.4 ± 63.6 | 1.39 | 2.19 | 3.81 | 0.346 |
C2P | 4654.5 ± 81.9 | 1.31 | 2.00 | 3.82 | 0.346 |
C1B | 5156.6 ± 58.4 | 1.58 | 2.64 | 3.91 | 0.319 |
C2B | 4284.8 ± 65.3 | 1.52 | 2.50 | 3.94 | 0.357 |
Firmness, g | Microcapsules Diameter (mm) | Swelling, % | ||
---|---|---|---|---|
Wet | Dry | |||
A1M | 4400.01 ± 159.66 | 2.58 ± 0.06 | 1.49 ± 0.10 | 135.37 ± 2.45 |
A2M | 3138.10 ± 104.12 | 3.06 ± 0.03 | 1.74 ± 0.06 | 124.86 ± 1.56 |
A1B | 3512.23 ± 51.97 | 2.18 ± 0.04 | 1.35 ± 0.07 | 146.11 ± 1.67 |
A2B | 2609.90 ± 214.37 | 2.46 ± 0.08 | 1.46 ± 0.12 | 132.82 ± 1.11 |
C1P | 1144.91 ± 110.29 | 1.79 ± 0.09 | 1.22 ± 0.08 | 268.19 ± 1.65 |
C2P | 538.31 ± 20.32 | 1.97 ± 0.05 | 1.27 ± 0.06 | 310.85 ± 3.56 |
C1B | 1266.78 ± 97.97 | 2.37 ± 0.05 | 1.32 ± 0.08 | 271.52 ± 2.64 |
C2B | 960.40 ± 60.59 | 2.15 ± 0.02 | 1.26 ± 0.11 | 248.39 ± 1.84 |
30 min, mg GAE/g | 60 min, mg GAE/g | 90 min, mg GAE/g | 120 min, mg GAE/g | 150 min, mg GAE/g | 180 min, mg GAE/g | 210 min, mg GAE/g | 270 min, mg GAE/g | |
---|---|---|---|---|---|---|---|---|
A1M | 1.99 ± 0.13 | 2.39 ± 0.13 | 2.82 ± 0.14 | 16.84 ± 0.16 | 18.32 ± 0.1 | 19.66 ± 0.12 | 20.32 ± 0.16 | 20.84 ± 0.29 |
A2M | 2.31 ± 0.1 | 2.8 ± 0.2 | 3.23 ± 0.07 | 17.34 ± 0.05 | 18.26 ± 0.12 | 18.76 ± 0.1 | 22.71 ± 0.08 | 28.97 ± 0.14 |
A1B | 1.79 ± 0.02 | 2.03 ± 0.08 | 3.04 ± 0.08 | 14.23 ± 0.1 | 14.88 ± 0.16 | 15.94 ± 0.18 | 17.4 ± 0.08 | 17.92 ± 0.06 |
A2B | 1.6 ± 0.08 | 2.45 ± 0.02 | 3.05 ± 0.06 | 15.35 ± 0.12 | 16.98 ± 0.09 | 17.42 ± 0.12 | 18.33 ± 0.02 | 23.65 ± 0.09 |
C1P | 9.2 ± 0.41 | 13.56 ± 0.46 | 14.83 ± 0.64 | - | - | - | - | - |
C2P | 11.42 ± 0.56 | 16.5 ± 0.25 | 18.14 ± 0.19 | - | - | - | - | - |
C1B | 7.98 ± 0.26 | 11.65 ± 0.2 | 14.52 ± 0.56 | - | - | - | - | - |
C2B | 10.11 ± 0.18 | 14.65 ± 0.16 | 16.59 ± 0.6 | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kazlauskaite, J.A.; Matulyte, I.; Marksa, M.; Bernatoniene, J. Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines. Pharmaceutics 2024, 16, 530. https://doi.org/10.3390/pharmaceutics16040530
Kazlauskaite JA, Matulyte I, Marksa M, Bernatoniene J. Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines. Pharmaceutics. 2024; 16(4):530. https://doi.org/10.3390/pharmaceutics16040530
Chicago/Turabian StyleKazlauskaite, Jurga Andreja, Inga Matulyte, Mindaugas Marksa, and Jurga Bernatoniene. 2024. "Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines" Pharmaceutics 16, no. 4: 530. https://doi.org/10.3390/pharmaceutics16040530
APA StyleKazlauskaite, J. A., Matulyte, I., Marksa, M., & Bernatoniene, J. (2024). Technological Functionalisation of Microencapsulated Genistein and Daidzein Delivery Systems Soluble in the Stomach and Intestines. Pharmaceutics, 16(4), 530. https://doi.org/10.3390/pharmaceutics16040530