The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regulatory and Setting
2.2. Eligibility Criteria
2.3. Study Design and Objectives
2.4. Intervention
2.5. Study Assessments
2.5.1. Safety
2.5.2. Pain Evaluation
2.5.3. Biomarker Panel
2.6. Statistics
3. Results
3.1. Study Participants
3.2. Safety and Laboratory Testing
3.3. Pain Surveys
3.4. Blood Biomarker Assay
4. Discussion
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitcomb, D.C.; Frulloni, L.; Garg, P.; Greer, J.B.; Schneider, A.; Yadav, D.; Shimosegawa, T. Chronic pancreatitis: An international draft consensus proposal for a new mechanistic definition. Pancreatology 2016, 16, 218–224. [Google Scholar] [CrossRef]
- Forsmark, C.E. Management of chronic pancreatitis. Gastroenterology 2013, 144, 1282–1291. [Google Scholar] [CrossRef] [PubMed]
- Conwell, D.L.; Wu, B.U. Chronic pancreatitis: Making the diagnosis. Clin. Gastroenterol. Hepatol. 2012, 10, 1088–1095. [Google Scholar] [CrossRef] [PubMed]
- Yadav, D.; Lowenfels, A.B. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef]
- Whitcomb, D.C. Genetic risk factors for pancreatic disorders. Gastroenterology 2013, 144, 1292–1302. [Google Scholar] [CrossRef]
- Strum, W.B.; Boland, C.R. Advances in acute and chronic pancreatitis. World J. Gastroenterol. 2023, 29, 1194–1201. [Google Scholar] [CrossRef] [PubMed]
- Hart, P.A.; Conwell, D.L. Chronic Pancreatitis: Managing a Difficult Disease. Am. J. Gastroenterol. 2020, 115, 49–55. [Google Scholar] [CrossRef]
- Dhar, P.; Kalghatgi, S.; Saraf, V. Pancreatic cancer in chronic pancreatitis. Indian J. Surg. Oncol. 2015, 6, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kirkegard, J.; Mortensen, F.V.; Cronin-Fenton, D. Chronic Pancreatitis and Pancreatic Cancer Risk: A Systematic Review and Meta-analysis. Am. J. Gastroenterol. 2017, 112, 1366–1372. [Google Scholar] [CrossRef]
- Beyer, G.; Habtezion, A.; Werner, J.; Lerch, M.M.; Mayerle, J. Chronic pancreatitis. Lancet 2020, 396, 499–512. [Google Scholar] [CrossRef]
- Lieb, J.G.; Forsmark, C.E. Review article: Pain and chronic pancreatitis. Aliment. Pharmacol. Ther. 2009, 29, 706–719. [Google Scholar] [CrossRef]
- Berna, M.J.; Jensen, R.T. Role of CCK/gastrin receptors in gastrointestinal/metabolic diseases and results of human studies using gastrin/CCK receptor agonists/antagonists in these diseases. Curr. Top. Med. Chem. 2007, 7, 1211–1231. [Google Scholar] [CrossRef]
- Miederer, S.E.; Lindstaedt, H.; Kutz, K.; Mayershofer, R. Efficient treatment of gastric ulcer with proglumide (Milid) in outpatients (double blind trial). Acta Hepatogastroenterol. 1979, 26, 314–318. [Google Scholar]
- Rabiee, A.; Gay, M.D.; Shivapurkar, N.; Cao, H.; Nadella, S.; Smith, C.I.; Lewis, J.H.; Bansal, S.; Cheema, A.; Kwagyan, J.; et al. Safety and Dosing Study of a Cholecystokinin Receptor Antagonist in Non-alcoholic Steatohepatitis. Clin. Pharmacol. Ther. 2022, 112, 1271–1279. [Google Scholar] [CrossRef]
- Hsu, C.C.; Bansal, S.; Cao, H.; Smith, C.I.; He, A.R.; Gay, M.D.; Li, Y.; Cheema, A.; Smith, J.P. Safety and Pharmacokinetic Assessment of Oral Proglumide in Those with Hepatic Impairment. Pharmaceutics 2022, 14, 627. [Google Scholar] [CrossRef]
- Nadella, S.; Ciofoaia, V.; Cao, H.; Kallakury, B.; Tucker, R.D.; Smith, J.P. Cholecystokinin Receptor Antagonist Therapy Decreases Inflammation and Fibrosis in Chronic Pancreatitis. Dig. Dis. Sci. 2020, 65, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.P.; Cooper, T.K.; McGovern, C.O.; Gilius, E.L.; Zhong, Q.; Liao, J.; Molinolo, A.A.; Gutkind, J.S.; Matters, G.L. Cholecystokinin receptor antagonist halts progression of pancreatic cancer precursor lesions and fibrosis in mice. Pancreas 2014, 43, 1050–1059. [Google Scholar] [CrossRef]
- Watkins, L.R.; Kinscheck, I.B.; Mayer, D.J. Potentiation of morphine analgesia by the cholecystokinin antagonist proglumide. Brain Res. 1985, 327, 169–180. [Google Scholar] [CrossRef]
- Benedetti, F.; Amanzio, M.; Vighetti, S.; Asteggiano, G. The biochemical and neuroendocrine bases of the hyperalgesic nocebo effect. J. Neurosci. 2006, 26, 12014–12022. [Google Scholar] [CrossRef] [PubMed]
- Chiodo, L.A.; Bunney, B.S. Proglumide: Selective antagonism of excitatory effects of cholecystokinin in central nervous system. Science 1983, 219, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Zarrindast, M.R.; Samiee, F.; Rezayat, M. Antinociceptive effect of intracerebroventricular administration of cholecystokinin antagonist in nerve-ligated mice. Pharmacol. Toxicol. 2000, 87, 169–173. [Google Scholar] [CrossRef] [PubMed]
- Sarner, M.; Cotton, P.B. Classification of pancreatitis. Gut 1984, 25, 756–759. [Google Scholar] [CrossRef] [PubMed]
- Catalano, M.F.; Sahai, A.; Levy, M.; Romagnuolo, J.; Wiersema, M.; Brugge, W.; Freeman, M.; Yamao, K.; Canto, M.; Hernandez, L.V. EUS-based criteria for the diagnosis of chronic pancreatitis: The Rosemont classification. Gastrointest. Endosc. 2009, 69, 1251–1261. [Google Scholar] [CrossRef]
- Pauletzki, J.G.; Xu, Q.W.; Shaffer, E.A. Inhibition of gallbladder emptying decreases cholesterol saturation in bile in the Richardson ground squirrel. Hepatology 1995, 22, 325–331. [Google Scholar] [PubMed]
- Common Terminology Criteria for Adverse Events v5.0 (CTCAE). 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 1 March 2024).
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar]
- Rodriguez, C.S. Pain measurement in the elderly: A review. Pain. Manag. Nurs. 2001, 2, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Johnson, C. Measuring Pain. Visual Analog Scale Versus Numeric Pain Scale: What is the Difference? J. Chiropr. Med. 2005, 4, 43–44. [Google Scholar] [CrossRef] [PubMed]
- Cella, D.; Riley, W.; Stone, A.; Rothrock, N.; Reeve, B.; Yount, S.; Amtmann, D.; Bode, R.; Buysse, D.; Choi, S.; et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave of adult self-reported health outcome item banks: 2005-2008. J. Clin. Epidemiol. 2010, 63, 1179–1194. [Google Scholar] [CrossRef] [PubMed]
- Kuhlmann, L.; Teo, K.; Olesen, S.S.; Phillips, A.E.; Faghih, M.; Tuck, N.; Afghani, E.; Singh, V.K.; Yadav, D.; Windsor, J.A.; et al. Development of the Comprehensive Pain Assessment Tool Short Form for Chronic Pancreatitis: Validity and Reliability Testing. Clin. Gastroenterol. Hepatol. 2022, 20, e770–e783. [Google Scholar] [CrossRef]
- Hyun, J.; Wang, S.; Kim, J.; Rao, K.M.; Park, S.Y.; Chung, I.; Ha, C.S.; Kim, S.W.; Yun, Y.H.; Jung, Y. MicroRNA-378 limits activation of hepatic stellate cells and liver fibrosis by suppressing Gli3 expression. Nat. Commun. 2016, 7, 10993. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Ji, P.; Jin, X. Application of the microRNA-302/367 cluster in cancer therapy. Cancer Sci. 2020, 111, 1065–1075. [Google Scholar] [CrossRef]
- Yang, J.; Tao, Q.; Zhou, Y.; Chen, Q.; Li, L.; Hu, S.; Liu, Y.; Zhang, Y.; Shu, J.; Zhang, X.; et al. MicroRNA-708 represses hepatic stellate cells activation and proliferation by targeting ZEB1 through Wnt/beta-catenin pathway. Eur. J. Pharmacol. 2020, 871, 172927. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, S.; Han, M.; Ma, Y.; Feng, S.; Zhao, J.; Lu, H.; Yuan, X.; Cheng, J. miR-185 Inhibits Fibrogenic Activation of Hepatic Stellate Cells and Prevents Liver Fibrosis. Mol. Ther. Nucleic Acids. 2018, 10, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Peng, X.; Du, G.; Zhang, Z.; Zhai, Y.; Xiong, X.; Luo, X. MicroRNA-122-5p Inhibition Improves Inflammation and Oxidative Stress Damage in Dietary-Induced Non-alcoholic Fatty Liver Disease Through Targeting FOXO3. Front. Physiol. 2022, 13, 803445. [Google Scholar] [CrossRef]
- Faramin, L.M.; Hashemipour, N.; Niaraki, N.; Soghala, S.; Moradi, A.; Sarhangi, S.; Hatami, M.; Aghaei-Zarch, F.; Khosravifar, M.; Mohammadzadeh, A.; et al. MicroRNA-122 in human cancers: From mechanistic to clinical perspectives. Cancer Cell Int. 2023, 23, 29. [Google Scholar] [CrossRef]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiao, H.Q.; Wang, Y.; Yang, Z.S.; Dai, L.J.; Xu, Y.C. Differential expression and therapeutic efficacy of microRNA-346 in diabetic nephropathy mice. Exp. Ther. Med. 2015, 10, 106–112. [Google Scholar] [CrossRef]
- Wank, S.A.; Pisegna, J.R.; de Weerth, A. Brain and gastrointestinal cholecystokinin receptor family: Structure and functional expression. Proc. Natl. Acad. Sci. USA 1992, 89, 8691–8695. [Google Scholar] [CrossRef] [PubMed]
- Wank, S.A.; Pisegna, J.R.; de Weerth, A. Cholecystokinin receptor family. Molecular cloning, structure, and functional expression in rat, guinea pig, and human. Ann. N. Y. Acad. Sci. 1994, 713, 49–66. [Google Scholar] [CrossRef]
- Wank, S.A.; Harkins, R.; Jensen, R.T.; Shapira, H.; de Weerth, A.; Slattery, T. Purification, molecular cloning, and functional expression of the cholecystokinin receptor from rat pancreas. Proc. Natl. Acad. Sci. USA 1992, 89, 3125–3129. [Google Scholar] [CrossRef]
- Wank, S.A. G protein-coupled receptors in gastrointestinal physiology. I. CCK receptors: An exemplary family. Am. J. Physiol. 1998, 274, G607–G613. [Google Scholar] [PubMed]
- Werry, T.D.; Wilkinson, G.F.; Willars, G.B. Mechanisms of cross-talk between G-protein-coupled receptors resulting in enhanced release of intracellular Ca2+. Biochem. J. 2003, 374, 281–296. [Google Scholar] [CrossRef] [PubMed]
- Calo’, G.; Guerrini, R.; Rizzi, A.; Salvadori, S.; Regoli, D. Pharmacology of nociceptin and its receptor: A novel therapeutic target. Br. J. Pharmacol. 2000, 129, 1261–1283. [Google Scholar] [CrossRef] [PubMed]
- Mollereau, C.; Parmentier, M.; Mailleux, P.; Butour, J.L.; Moisand, C.; Chalon, P.; Caput, D.; Vassart, G.; Meunier, J.C. ORL1, a novel member of the opioid receptor family. Cloning, functional expression and localization. FEBS Lett. 1994, 341, 33–38. [Google Scholar] [CrossRef]
- Kiguchi, N.; Ding, H.; Kishioka, S.; Ko, M.C. Nociceptin/Orphanin FQ Peptide Receptor-Related Ligands as Novel Analgesics. Curr. Top. Med. Chem. 2020, 20, 2878–2888. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Kiguchi, N.; Dobbins, M.; Romero-Sandoval, E.A.; Kishioka, S.; Ko, M.C. Nociceptin Receptor-Related Agonists as Safe and Non-addictive Analgesics. Drugs 2023, 83, 771–793. [Google Scholar] [CrossRef] [PubMed]
- Ziemichod, W.; Kotlinska, J.; Gibula-Tarlowska, E.; Karkoszka, N.; Kedzierska, E. Cebranopadol as a Novel Promising Agent for the Treatment of Pain. Molecules 2022, 27, 3987. [Google Scholar] [CrossRef] [PubMed]
- Hahne, W.F.; Jensen, R.T.; Lemp, G.F.; Gardner, J.D. Proglumide and benzotript: Members of a different class of cholecystokinin receptor antagonists. Proc. Natl. Acad. Sci. USA 1981, 78, 6304–6308. [Google Scholar] [CrossRef]
- Jin, G.; Hong, W.; Guo, Y.; Bai, Y.; Chen, B. Molecular Mechanism of Pancreatic Stellate Cells Activation in Chronic Pancreatitis and Pancreatic Cancer. J. Cancer. 2020, 11, 1505–1515. [Google Scholar] [CrossRef]
- Omary, M.B.; Lugea, A.; Lowe, A.W.; Pandol, S.J. The pancreatic stellate cell: A star on the rise in pancreatic diseases. J. Clin. Investig. 2007, 117, 50–59. [Google Scholar] [CrossRef]
- Masamune, A.; Watanabe, T.; Kikuta, K.; Shimosegawa, T. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clin. Gastroenterol. Hepatol. 2009, 7, S48–S54. [Google Scholar] [CrossRef] [PubMed]
- Trautwein, C.; Friedman, S.L.; Schuppan, D.; Pinzani, M. Hepatic fibrosis: Concept to treatment. J. Hepatol. 2015, 62, S15–S24. [Google Scholar] [CrossRef] [PubMed]
- Berna, M.J.; Seiz, O.; Nast, J.F.; Benten, D.; Blaker, M.; Koch, J.; Lohse, A.W.; Pace, A. CCK1 and CCK2 receptors are expressed on pancreatic stellate cells and induce collagen production. J. Biol. Chem. 2010, 285, 38905–38914. [Google Scholar] [CrossRef] [PubMed]
- Apte, M.V.; Park, S.; Phillips, P.A.; Santucci, N.; Goldstein, D.; Kumar, R.K.; Ramm, G.A.; Buchler, M.; Friess, H.; McCarroll, J.A.; et al. Desmoplastic reaction in pancreatic cancer: Role of pancreatic stellate cells. Pancreas 2004, 29, 179–187. [Google Scholar] [CrossRef]
- Jolly, G.; Duka, T.; Shivapurkar, N.; Chen, W.; Bansal, S.; Cheema, A.; Smith, J.P. Cholecystokinin Receptor Antagonist Induces Pancreatic Stellate Cell Plasticity Rendering the Tumor Microenvironment Less Oncogenic. Cancers 2023, 15, 2811. [Google Scholar] [CrossRef]
Inclusion Criteria | Exclusion Criteria |
---|---|
|
|
Subject Number | Age (years) | Sex | Race | Etiology |
---|---|---|---|---|
PROG1001 | 61 | M | W | CFTR |
PROG1002 | 38 | F | W | SPINK1 |
PROG1003 * | 29 | F | B | SPINK1 |
PROG1004 | 21 | M | W | CFTR |
PROG1005 | 52 | M | W | SPINK1 |
PROG1006 | 45 | M | B | Autoimmune |
PROG1007 | 56 | M | W | Hyperlipidemia |
PROG1008 | 68 | M | W | Alcohol |
PROG1009 | 40 | M | W | CFTR, CLDN2 |
Test/(Units) | Normal Range | Baseline | Week 12 | p Value |
---|---|---|---|---|
WBC (k/µL) | 4.0–10.8 | 6.8 ± 0.78 | 7.1 ± 1.3 | 0.828 |
Hgb (g/dL) | 12.5–16.5 | 14.0 ± 0.62 | 13.8 ± 0.76 | 0.215 |
Platelet (k/µL) | 145–400 | 256 ± 16 | 246 ± 23 | 0.727 |
Lipase (units/L) | 2–53 | 36.8 ± 3.5 | 34.3 ± 3.2 | 0.607 |
Sodium (mmol/L) | 136–145 | 139.6 ± 0.95 | 141.3 ± 1.6 | 0.168 |
Potassium (mmol/L) | 3.4–4.5 | 4.26 ± 0.12 | 4.18 ± 0.20 | 0.745 |
Chloride (mmol/L) | 98–107 | 103 ± 2.8 | 108 ± 3.0 | 0.013 * |
CO2 (mmol/L) | 20–31 | 26.6 ± 0.6 | 25.8 ± 1.8 | 0.719 |
BUN (mg/dL) | 9–23 | 13 ± 0.72 | 14 ± 0.86 | 0.391 |
Creatinine (mg/dL) | 0.6–1.1 | 0.95 ± 0.04 | 0.96 ± 0.05 | 0.858 |
Calcium (mg/dL) | 8.7–10.4 | 9.5 ± 0.1 | 9.5 ± 0.2 | 0.885 |
Total Bilirubin (mg/dL) | 0.3–1.2 | 0.51 ± 0.08 | 0.58 ± 0.13 | 0.646 |
AST (U/L) | 0–33 | 38.3 ± 14.6 # | 23 ± 2.7 | 0.334 |
ALT (U/L) | 0–49 | 38 ± 18.8 | 20.8 ± 4.8 | 0.403 |
Alkaline Phosphatase (U/L) | 46–116 | 79.8 ± 11.7 | 75.8 ± 12.7 | 0.822 |
Albumin (g/dL) | 3.2–4.8 | 4.57 ± 0.06 | 4.63 ± 0.11 | 0.653 |
Total Protein (g/dL) | 5.7–8.2 | 7.4 ± 0.10 | 7.4 ± 0.14 | 0.972 |
HgbA1C (%) | 3.8–5.6 | 5.33 ± 0.16 | 5.45 ± 0.16 | 0.581 |
CRP (mg/L) | 0–10 | 5.6 ± 1.4 | 4.16 ± 1.17 | 0.457 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciofoaia, V.; Chen, W.; Tarek, B.W.; Gay, M.; Shivapurkar, N.; Smith, J.P. The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial. Pharmaceutics 2024, 16, 611. https://doi.org/10.3390/pharmaceutics16050611
Ciofoaia V, Chen W, Tarek BW, Gay M, Shivapurkar N, Smith JP. The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial. Pharmaceutics. 2024; 16(5):611. https://doi.org/10.3390/pharmaceutics16050611
Chicago/Turabian StyleCiofoaia, Victor, Wenqiang Chen, Bakain W. Tarek, Martha Gay, Narayan Shivapurkar, and Jill P. Smith. 2024. "The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial" Pharmaceutics 16, no. 5: 611. https://doi.org/10.3390/pharmaceutics16050611
APA StyleCiofoaia, V., Chen, W., Tarek, B. W., Gay, M., Shivapurkar, N., & Smith, J. P. (2024). The Role of a Cholecystokinin Receptor Antagonist in the Management of Chronic Pancreatitis: A Phase 1 Trial. Pharmaceutics, 16(5), 611. https://doi.org/10.3390/pharmaceutics16050611