A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Fosfomycin Concentrations in Human Prostatic Tissue
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Tissue Samples
2.3. Sample Treatment
2.4. Stock Solutions, Standards, and Quality Controls
2.5. Instrumentation
2.6. Method Validation
2.6.1. Sensitivity
2.6.2. Selectivity and Carry-Over
2.6.3. Linearity and Limit of Quantification (LOQ)
2.6.4. Dilution Integrity
2.6.5. Precision and Accuracy
2.6.6. Matrix Effect and Extraction Recovery
- ME (%) = C/A × 100;
- ER (%) = B/C × 100.
- ISn-ME (%) = C1/A1 × 100;
- ISn-ER (%) = B1/C1 × 100.
2.6.7. Stability
- extracts kept on board at 10 °C for 24 h;
- extracts kept in a freezer at −20 °C for 24 h;
- samples (homogenized) undergoing three complete freeze and thaw cycles from −80 °C to 25 °C.
3. Results
3.1. Optimization of LC-MS/MS Conditions
3.2. Method Validation
3.2.1. Sensitivity and LOQ
3.2.2. Selectivity and Carry-Over
3.2.3. Linearity and Dilution Integrity
3.2.4. Accuracy and Precision
3.2.5. Matrix Effect and Extraction Recovery
3.2.6. Stability
3.2.7. Concentration of Fosfomycin in Prostatic Tissue
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wagenlehner, F.M.; Lichtenstern, C.; Rolfes, C.; Mayer, K.; Uhle, F.; Weidner, W.; Weigand, M.A. Diagnosis and Management for Urosepsis. Int. J. Urol. 2013, 20, 963–970. [Google Scholar] [CrossRef]
- Prakash, V.; Lewis, J.S.; Herrera, M.L.; Wickes, B.L.; Jorgensen, J.H. Oral and Parenteral Therapeutic Options for Outpatient Urinary Infections Caused by Enterobacteriaceae Producing CTX-M Extended-Spectrum β-Lactamases. Antimicrob. Agents Chemother. 2009, 53, 1278–1280. [Google Scholar] [CrossRef]
- Magiorakos, A.-P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Davidson, A.-J.; Webb, D.R.; Lawrentschuk, N.; Jennens, I.D.; Sutherland, M. Multi-Resistant Escherichia coli Sepsis Following Transrectal Ultrasound-Guided Prostate Biopsy. Br. J. Hosp. Med. 2006, 67, 98–99. [Google Scholar] [CrossRef]
- Tulara, N. Nitrofurantoin and Fosfomycin for Extended Spectrum Beta-Lactamases Producing Escherichia coli and Klebsiella pneumoniae. J. Glob. Infect. Dis. 2018, 10, 19. [Google Scholar] [CrossRef]
- Marino, A.; Stracquadanio, S.; Bellanca, C.M.; Augello, E.; Ceccarelli, M.; Cantarella, G.; Bernardini, R.; Nunnari, G.; Cacopardo, B. Oral Fosfomycin Formulation in Bacterial Prostatitis: New Role for an Old Molecule-Brief Literature Review and Clinical Considerations. Infect. Dis. Rep. 2022, 14, 621–634. [Google Scholar] [CrossRef]
- Zykov, I.N.; Samuelsen, Ø.; Jakobsen, L.; Småbrekke, L.; Andersson, D.I.; Sundsfjord, A.; Frimodt-Møller, N. Pharmacokinetics and Pharmacodynamics of Fosfomycin and Its Activity against Extended-Spectrum-β-Lactamase-, Plasmid-Mediated AmpC-, and Carbapenemase-Producing Escherichia coli in a Murine Urinary Tract Infection Model. Antimicrob. Agents Chemother. 2018, 62, e02560-17. [Google Scholar] [CrossRef]
- Cai, T.; Gallelli, L.; Cocci, A.; Tiscione, D.; Verze, P.; Lanciotti, M.; Vanacore, D.; Rizzo, M.; Gacci, M.; Saleh, O.; et al. Antimicrobial Prophylaxis for Transrectal Ultrasound-Guided Prostate Biopsy: Fosfomycin Trometamol, an Attractive Alternative. World J. Urol. 2017, 35, 221–228. [Google Scholar] [CrossRef]
- Sen, V.; Aydogdu, O.; Bozkurt, I.H.; Yonguc, T.; Sen, P.; Polat, S.; Degirmenci, T.; Bolat, D. The Use of Prophylactic Single-Dose Fosfomycin in Patients Who Undergo Transrectal Ultrasound-Guided Prostate Biopsy: A Prospective, Randomized, and Controlled Clinical Study. Can. Urol. Assoc. J. 2015, 9, 863. [Google Scholar] [CrossRef]
- Bouiller, K.; Zayet, S.; Lalloz, P.-E.; Potron, A.; Gendrin, V.; Chirouze, C.; Klopfenstein, T. Efficacy and Safety of Oral Fosfomycin-Trometamol in Male Urinary Tract Infections with Multidrug-Resistant Enterobacterales. Antibiotics 2022, 11, 198. [Google Scholar] [CrossRef]
- Fan, L.; Shang, X.; Zhu, J.; Ma, B.; Zhang, Q. Pharmacodynamic and Pharmacokinetic Studies and Prostatic Tissue Distribution of Fosfomycin Tromethamine in Bacterial Prostatitis or Normal Rats. Andrologia 2018, 50, e13021. [Google Scholar] [CrossRef]
- Grayson, M.L.; Macesic, N.; Trevillyan, J.; Ellis, A.G.; Zeglinski, P.T.; Hewitt, N.H.; Gardiner, B.J.; Frauman, A.G. Fosfomycin for Treatment of Prostatitis: New Tricks for Old Dogs: Figure 1. Clin. Infect. Dis. 2015, 61, 1141–1143. [Google Scholar] [CrossRef]
- Khalil, A.; Al-Janabi, K.W.S.; Dheyab Sallal, T. Subject Review on Some Analytical Methods for Determination of Fosfomycin Drugs. Ibn AL-Haitham J. Pure Appl. Sci. 2022, 35, 91–97. [Google Scholar] [CrossRef]
- Sobels, A.; Lentjes, K.J.; Froeling, F.M.J.A.; Van Nieuwkoop, C.; Wilms, E.B. Serum and Prostatic Tissue Concentrations of Cefazolin, Ciprofloxacin and Fosfomycin after Prophylactic Use for Transurethral Resection of the Prostate. Antibiotics 2022, 12, 22. [Google Scholar] [CrossRef]
- Rhodes, N.J.; Gardiner, B.J.; Neely, M.N.; Grayson, M.L.; Ellis, A.G.; Lawrentschuk, N.; Frauman, A.G.; Maxwell, K.M.; Zembower, T.R.; Scheetz, M.H. Optimal Timing of Oral Fosfomycin Administration for Pre-Prostate Biopsy Prophylaxis. J. Antimicrob. Chemother. 2015, 70, 2068–2073. [Google Scholar] [CrossRef]
- Barone, R.; Conti, M.; Giorgi, B.; Gatti, M.; Cojutti, P.G.; Viale, P.; Pea, F. Fast and Sensitive Analysis of Fosfomycin in Human Plasma Microsamples Using Liquid Chromatography–Tandem Mass Spectrometry for Therapeutic Drug Monitoring. Ther. Drug Monit. 2023, 46, 384–390. [Google Scholar] [CrossRef]
- Zhanel, G.G.; Zhanel, M.A.; Karlowsky, J.A. Oral Fosfomycin for the Treatment of Acute and Chronic Bacterial Prostatitis Caused by Multidrug-Resistant Escherichia coli. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 1404813. [Google Scholar] [CrossRef]
- Gardiner, B.J.; Mahony, A.A.; Ellis, A.G.; Lawrentschuk, N.; Bolton, D.M.; Zeglinski, P.T.; Frauman, A.G.; Grayson, M.L. Is Fosfomycin a Potential Treatment Alternative for Multidrug-Resistant Gram-Negative Prostatitis? Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2014, 58, e101–e105. [Google Scholar] [CrossRef]
- Wijma, R.A.; Bahmany, S.; Wilms, E.B.; Van Gelder, T.; Mouton, J.W.; Koch, B.C.P. A Fast and Sensitive LC–MS/MS Method for the Quantification of Fosfomycin in Human Urine and Plasma Using One Sample Preparation Method and HILIC Chromatography. J. Chromatogr. B 2017, 1061–1062, 263–269. [Google Scholar] [CrossRef]
- Parker, S.L.; Pandey, S.; Sime, F.B.; Stuart, J.; Lipman, J.; Roberts, J.A.; Wallis, S.C. A Validated LC-MS/MS Method for the Simultaneous Quantification of the Novel Combination Antibiotic, Ceftolozane–Tazobactam, in Plasma (Total and Unbound), CSF, Urine and Renal Replacement Therapy Effluent: Application to Pilot Pharmacokinetic Studies. Clin. Chem. Lab. Med. CCLM 2021, 59, 921–933. [Google Scholar] [CrossRef]
- Goh, K.K.-K.; Toh, W.G.-H.; Hee, D.K.-H.; Ting, E.Z.-W.; Chua, N.G.S.; Zulkifli, F.I.B.; Sin, L.-J.; Tan, T.-T.; Kwa, A.L.-H.; Lim, T.-P. Quantification of Fosfomycin in Combination with Nine Antibiotics in Human Plasma and Cation-Adjusted Mueller-Hinton II Broth via LCMS. Antibiotics 2022, 11, 54. [Google Scholar] [CrossRef] [PubMed]
- Magréault, S.; Jaureguy, F.; Zahar, J.-R.; Méchaï, F.; Toinon, D.; Cohen, Y.; Carbonnelle, E.; Jullien, V. Automated HPLC-MS/MS Assay for the Simultaneous Determination of Ten Plasma Antibiotic Concentrations. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1211, 123496. [Google Scholar] [CrossRef] [PubMed]
- Mula, J.; Chiara, F.; Manca, A.; Palermiti, A.; Maiese, D.; Cusato, J.; Simiele, M.; De Rosa, F.G.; Di Perri, G.; De Nicolò, A.; et al. Analytical Validation of a Novel UHPLC-MS/MS Method for 19 Antibiotics Quantification in Plasma: Implementation in a LC-MS/MS Kit. Biomed. Pharmacother. 2023, 163, 114790. [Google Scholar] [CrossRef] [PubMed]
- Gandhi, A.; Matta, M.; Garimella, N.; Zere, T.; Weaver, J. Development and Validation of a LC-MS/MS Method for Quantitation of Fosfomycin—Application to in Vitro Antimicrobial Resistance Study Using Hollow-Fiber Infection Model. Biomed. Chromatogr. 2018, 32, e4214. [Google Scholar] [CrossRef]
- Baldelli, S.; Cerea, M.; Mangioni, D.; Alagna, L.; Muscatello, A.; Bandera, A.; Cattaneo, D. Fosfomycin Therapeutic Drug Monitoring in Real-Life: Development and Validation of a LC-MS/MS Method on Plasma Samples. J. Chemother. 2022, 34, 25–34. [Google Scholar] [CrossRef]
Analyte | Retention Time (min) | Precursor Ion (m/z) | Product Ion (m/z) | Dwell Time (ms) | Fragmentator (eV) | Collision Energy (eV) |
---|---|---|---|---|---|---|
F | 1.21 | 137.0 | 79.0 | 100 | 166 | 33 |
IS | 1.20 | 140.0 | 79.1 | 100 | 166 | 33 |
Time (min) | A (%) | B (%) | Flow (mL/min) |
---|---|---|---|
0.00 | 95.00 | 5.00 | 0.500 |
1.00 | 80.00 | 20.00 | 0.500 |
1.50 | 5.00 | 95.00 | 0.500 |
2.00 | 5.00 | 95.00 | 0.500 |
2.01 | 95.00 | 5.00 | 0.500 |
2.50 | 95.00 | 5.00 | 0.500 |
Intraday (n = 5) | Inter-Day (n = 3) | ||||||
---|---|---|---|---|---|---|---|
QC Levels | Nominal Conc. (µg/g) | Avg Conc. (µg/g) | Avg Precision (CV%) | Avg Accuracy (Bias%) | Avg Conc. (µg/g) | Avg Precision (CV%) | Avg Accuracy (Bias%) |
LQC | 0.25 | 0.24 | 8.6 | 9.1 | 0.24 | 9.9 | 8.8 |
MQC | 2.5 | 2.6 | 2.8 | 9.9 | 2.5 | 6.8 | 1.7 |
HQC | 12.5 | 12.4 | 8.2 | 8.2 | 12.4 | 4.1 | 4.1 |
Quality-Control Level | N° | ME (%) | ISn-ME (%) | ER (%) | ISn-ER (%) |
---|---|---|---|---|---|
LQC | 30 | 65.7 | 93.4 | 97.4 | 100.2 |
MQC | 30 | 68.5 | 94.5 | 96.8 | 99.5 |
HQC | 30 | 69.2 | 95.6 | 97.8 | 100.4 |
Quality-Control | LQC | MQC | HQC | |
---|---|---|---|---|
Types of sample | Tested conditions | Avg Accuracy (Bias%) | Avg Accuracy (Bias%) | Avg Accuracy (Bias%) |
extracts | Autosampler after 12 h | −5.1 | −5.5 | −5.2 |
Freezer (−20 °C) after 24 h | −4.5 | −2.7 | −3.8 | |
Tissue samples | Freeze-thaw stability (from −80 °C to room temp.) | |||
1 cycle | −8.2 | −8.6 | −8.8 | |
2 cycle | −12.6 | −12.2 | −12.5 | |
3 cycle | −27.1 | −25.2 | −26.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Conti, M.; Giorgi, B.; Barone, R.; Gatti, M.; Cojutti, P.G.; Pea, F. A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Fosfomycin Concentrations in Human Prostatic Tissue. Pharmaceutics 2024, 16, 681. https://doi.org/10.3390/pharmaceutics16050681
Conti M, Giorgi B, Barone R, Gatti M, Cojutti PG, Pea F. A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Fosfomycin Concentrations in Human Prostatic Tissue. Pharmaceutics. 2024; 16(5):681. https://doi.org/10.3390/pharmaceutics16050681
Chicago/Turabian StyleConti, Matteo, Beatrice Giorgi, Rossella Barone, Milo Gatti, Pier Giorgio Cojutti, and Federico Pea. 2024. "A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Fosfomycin Concentrations in Human Prostatic Tissue" Pharmaceutics 16, no. 5: 681. https://doi.org/10.3390/pharmaceutics16050681
APA StyleConti, M., Giorgi, B., Barone, R., Gatti, M., Cojutti, P. G., & Pea, F. (2024). A Sensitive Liquid Chromatography–Tandem Mass Spectrometry Method for Measuring Fosfomycin Concentrations in Human Prostatic Tissue. Pharmaceutics, 16(5), 681. https://doi.org/10.3390/pharmaceutics16050681