Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extraction
2.2. Quercitrin and Mupirocin Quantification
2.3. Development and Characterization of Hydrogel
2.3.1. Preparation of Nanoemulsion-Based Hydrogel
2.3.2. Hydrogel Characterization
2.4. Antibacterial Activity
2.5. Evaluation of the Synergistic Potential
2.6. Cytoplasmic Membrane Permeability
2.7. Anti-Biofilm Effect
2.8. HET-CAM Test
2.9. Statistical Analysis
3. Results and Discussion
3.1. Antibacterial Activity Synergic
3.2. Nanoemulsion-Based Hydrogel Development and Determination of Nanoparticle Size and Zeta Potential
3.3. Rheological Behavior of the Nanoemulsion-Based Hydrogel
3.4. Validation of the Method for Quercitrin and Mupirocin Quantification
3.5. Encapsulation Efficiency and Release
3.6. Fourier Transforms Infrared Spectrometry (FTIR)
3.7. Antibacterial Activity of the Nanoemulsion-Based Hydrogel
3.8. HET-CAM Assay
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walsh, T.L.; Chan, L.; Konopka, C.I.; Burkitt, M.J.; Moffa, M.A.; Bremmer, D.N.; Murillo, M.A.; Watson, C.; Chan-Tompkins, N.H. Appropriateness of antibiotic management of uncomplicated skin and soft tissue infections in hospitalized adult patients. BMC Infect. Dis. 2016, 16, 721. [Google Scholar] [CrossRef]
- Guo, Y.; Ramos, R.I.; Cho, J.S.; Donegan, N.P.; Cheung, A.L.; Miller, L.S. In vivo bioluminescence imaging to evaluate systemic and topical antibiotics against community-acquired methicillin-resistant Staphylococcus aureus-infected skin wounds in mice. AAC 2013, 57, 855–863. [Google Scholar] [CrossRef] [PubMed]
- Linz, M.S.; Mattappallil, A.; Finkel, D.; Parker, D. Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics 2023, 2, 557. [Google Scholar] [CrossRef] [PubMed]
- Esposito, S.; Noviello, S.; Sebastiano, L. Epidemiology and microbiology of skin and soft tissue infections. Curr. Opin. Infect. Dis. 2016, 29, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Penduka, D.; Mthembu, W.; Cele, K.H.; Mosa, R.A.; Zobolo, A.M.; Opoku, A.R. Extracts of Ansellia africana and Platycarpha glomerata exhibit antibacterial activities against some respiratory tract, skin and soft tissue infections implicated bacteria. S. Afr. J. Bot. 2018, 116, 116–122. [Google Scholar] [CrossRef]
- Martinez, L.R.; Han, G.; Chacko, M.; Mihu, M.R.; Jacobson, M.; Gialanella, P.; Friedman, A.J.; Nosanchuk, J.D.; Friedman, J.M. Antimicrobial and healing efficacy of sustained release nitric oxide nanoparticles against Staphylococcus aureus skin infection. JID J. Investig. Dermatol. 2009, 129, 2463–2469. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Díez, M.; Remuzgo-Martínez, S.; Rodríguez-Mirones, C.; Acosta, F.; Icardo, J.M.; Martínez-Martínez, L.; Ramos-Vivas, J. Effects of Subinhibitory Concentrations of Ceftaroline on Methicillin-Resistant Staphylococcus aureus (MRSA) Biofilms. PLoS ONE 2016, 11, e0147569. [Google Scholar] [CrossRef] [PubMed]
- Phillips, P.L.; Yang, Q.; Davis, S.; Sampson, E.M.; Azeke, J.I.; Hamad, A.; Schultz, G.S. Antimicrobial dressing efficacy against mature Pseudomonas aeruginosa biofilm on porcine skin explants. Int. Wound J. 2015, 12, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Dong, D.; Thomas, N.; Thierry, B.; Vreugde, S.; Prestidge, C.A.; Wormald, P.J. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm. PLoS ONE 2015, 10, e0131806. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, C.; Brooks, L.; Beckley, A.; Colquhoun, J.; Dewhurst, S.; Dunman, P.M. Neomycin Sulfate Improves the Antimicrobial Activity of Mupirocin-Based Antibacterial Ointments. Antimicrob. Agents Chemother. 2015, 60, 862–872. [Google Scholar] [CrossRef] [PubMed]
- Gisby, J.; Bryant, J. Efficacy of a new cream formulation of mupirocin: Comparison with oral and topical agents in experimental skin infections. Antimicrob. Agents Chemother. 2000, 44, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Hemaiswarya, S.; Kruthiventi, A.K.; Doble, M. Synergism between natural products and antibiotics against infectious diseases. Phytomedicine 2008, 15, 639–652. [Google Scholar] [CrossRef]
- Rodrigues, I.V.; Souza, J.N.P.; Silva, A.C.G.; Chibli, L.A.; Cabral, V.A.R.; Viera-filho, S.A.; Perazzo, F.F. Antiedematogenic and antinociceptive effects of leaves extracts from Protium spruceanum Benth. (Engler). Pharmacogn. Mag. 2013, 5, 6–12. [Google Scholar] [CrossRef]
- Amparo, T.R.; Rodrigues, I.V.; Seibert, J.B.; Souza, R.H.Z.; Oliveira, A.R.; Cabral, V.A.R.; de Abreu Vieira, P.M.; Brandão, G.C.; Okuma, A.A. Antibacterial activity of extract and fractions from branches of Protium spruceanum and cytotoxicity on fibroblasts. Nat. Prod. Res. 2018, 32, 1951–1954. [Google Scholar] [CrossRef] [PubMed]
- Amparo, T.R.; Seibert, J.B.; Mathias, F.A.S.; Vieira, J.F.P.; Soares, R.D.O.A.; Freitas, K.M.; Cabral, V.A.R.; Brandão, G.C.; Dos Santos, O.D.H.; de Souza, G.H.B.; et al. Anti-inflammatory activity of Protium spruceanum (Benth.) Engler is associated to immunomodulation and enzymes inhibition. J. Ethnopharmacol. 2019, 241, 112024. [Google Scholar] [CrossRef] [PubMed]
- Wedler, J.; Daubitz, T.; Schlotterbeck, G.; Butterweck, V. In vitro anti-inflammatory and wound-healing potential of a Phyllostachys edulis leaf extract--identification of isoorientin as an active compound. Planta Med. 2014, 80, 1678–1684. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Dorle, A.K. Evaluation of ghee based formulation for wound healing activity. J. Ethnopharmacol. 2006, 107, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Nemitz, M.C.; Von Poser, G.L.; Teixeira, H. In vitro skin permeation/retention of daidzein, genistein and glycitein from a soybean isoflavone rich fraction-loaded nanoemulsions and derived hydrogels. J. Drug Deliv. Sci. Technol. 2019, 55, 63–69. [Google Scholar] [CrossRef]
- Song, Z.; Sun, H.; Yang, Y.; Jing, H.; Yang, L.; Tong, Y.; Wei, C.; Wang, Z.; Zou, Q.; Zeng, H. Enhanced efficacy andanti-biofilm activity of novel nanoemulsions a gainst skin burn wound multi-drug resistant MRSA infections. Nanomedicine 2016, 12, 1543–1555. [Google Scholar] [CrossRef] [PubMed]
- Barradas, T.N.; Senna, J.P.; Cardoso, S.A.; Nicoli, S.; Padula, C.; Santi, P.; Rossi, F.; de Holanda E Silva, K.G.; Mansur, C.R.E. Hydrogel-thickened nanoemulsions based on essential oils for topical delivery of psoralen: Permeation and stability studies. Eur. J. Pharm. Biopharm. 2017, 116, 38–50. [Google Scholar] [CrossRef] [PubMed]
- Amparo, T.R.; da Silva, A.C.P.; Seibert, J.B.; da Silva, D.D.S.; dos Santos, V.M.R.; de Abreu Vieira, P.M.; Brandão, G.C.; de Souza, G.H.B.; Santos, B.A.M.C. In vitro and in silico investigation of the photoprotective and antioxidant potential of Protium spruceanum leaves and its main flavonoids. J. Photochem. Photobiol. 2022, 431, 114037. [Google Scholar] [CrossRef]
- Amparo, T.R.; Djeujo, F.M.; Silva, D.S.; Seibert, J.B.; Rodrigues, I.V.; Santos, O.D.; Brandão, G.C.; Vieira, P.M.; Froldi, G.; Souza, G.H.D. New Potential Use of Protium spruceanum in Hyperglycemia: α -Glucosidase Inhibition and Protection against Oxidative Stress. J. Braz. Chem. Soc. 2021, 32, 1988–1996. [Google Scholar] [CrossRef]
- ICH. Validation of Analytical Procedures: Definitions and Terminology. Q2A (CPMP/ICH/381/95). In Proceedings of the International Conference on Harmonization, Yokohama, Japan, 29 November–1 December 1995. [Google Scholar]
- Agência Nacional de Vigilância Sanitária. Resolução da Diretoria Colegiada—RDC N° 166, DE 24 DE JULHO DE 2017; Saúde, M.D., Ed.; ANVISA: Brasília, Brazil, 2017.
- Seibert, J.B.; Bautista-Silva, J.P.; Amparo, T.R.; Petit, A.; Pervier, P.; Dos Santos Almeida, J.C.; Azevedo, M.C.; Silveira, B.M.; Brandão, G.C.; de Souza, G.H.B.; et al. Development of propolis nanoemulsion with antioxidant and antimicrobial activity for use as a potential natural preservative. Food Chem. 2019, 287, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Mathias, T.R.d.S.; Andrade, K.C.S.; Rosa, C.L.d.S.; Silva, B.A. Avaliação do comportamento reológico de diferentes iogurtes comerciais. Braz. J. Food Technol. 2013, 16, 12–20. [Google Scholar] [CrossRef]
- Cavalcanti, I.M.; Mendonça, E.A.; Lira, M.C.; Honrato, S.B.; Camara, C.A.; Amorim, R.V.; Mendes Filho, J.; Rabello, M.M.; Hernandes, M.Z.; Ayala, A.P.; et al. The encapsulation of β-lapachone in 2-hydroxypropyl-β-cyclodextrin inclusion complex into liposomes: A physicochemical evaluation and molecular modeling approach. Eur. J. Pharm. Sci. 2011, 44, 332–340. [Google Scholar] [CrossRef] [PubMed]
- Jantratid, E.; Janssen, N.; Reppas, C.; Dressman, J.B. Dissolution media simulating conditions in the proximal human gastrointestinal tract: An update. Pharm. Res. 2008, 25, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Alhasso, B.; Ghori, M.U.; Conway, B.R. Development of a Nanoemulgel for the Topical Application of Mupirocin. Pharmaceutics 2023, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- M07-A10; Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. CLSI (Clinical and Laboratory Standards Institute): Wayne, PA, USA, 2015.
- Goto, Y.; Hiramatsu, K.; Nasu, M. Improved efficacy with nonsimultaneous administration of netilmicin and minocycline against methicillin-resistant Staphylococcus aureus in in vitro and in vivo models. Int. J. Antimicrob. Agents 1999, 11, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Fratini, F.; Mancini, S.; Turchi, B.; Friscia, E.; Pistelli, L.; Giusti, G.; Domenico, C. A novel interpretation of the Fractional Inhibitory Concentration Index: The case Origanum vulgare L. and Leptospermum scoparium J. R. et G. Forst essential oils against Staphylococcus aureus strains. Microbiol. Res. 2017, 195, 11–17. [Google Scholar] [CrossRef]
- Mataraci, E.; Dosler, S. In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob. Agents Chemother. 2012, 56, 6366–6371. [Google Scholar] [CrossRef] [PubMed]
- Luepke, N.P. Hen’s egg chorioallantoic membrane test for irritation potential. Food Chem. Toxicol. 1985, 23, 287–291. [Google Scholar] [CrossRef] [PubMed]
- Mohammad, H.; Thangamani, S.; Seleem, M.N. Antimicrobial peptides and peptidomimetics—Potent therapeutic allies for staphylococcal infections. Curr. Pharm. Des. 2015, 21, 2073–2088. [Google Scholar] [CrossRef]
- Amparo, T.R.; Seibert, J.B.; de Abreu Vieira, P.M.; Teixeira, L.F.; Dos Santos, O.D.H.; de Souza, G.H.B. Herbal medicines to the treatment of skin and soft tissue infections: Advantages of the multi-targets action. Phytother. Res. 2020, 34, 94–103. [Google Scholar] [CrossRef] [PubMed]
- Sato, M.; Tanaka, H.; Yamaguchi, R.; Kato, K.; Etoh, H. Synergistic effects of mupirocin and an isoflavanone isolated from Erythrina variegata on growth and recovery of methicillin-resistant Staphylococcus aureus. Int. J. Antimicrob. Agents 2004, 24, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Onlen, Y.; Duran, N.; Atik, E.; Savas, L.; Altug, E.; Yakan, S.; Aslantas, O. Antibacterial activity of propolis against MRSA and synergism with topical mupirocin. J. Altern. Complement. Med. 2007, 13, 713–718. [Google Scholar] [CrossRef]
- Davey, H.M.; Hexley, P. Red but not dead? Membranes of stressed Saccharomyces cerevisiae are permeable to propidium iodide. Environ. Microbiol. 2011, 13, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Günther, S.; Hübschmann, T.; Wick, L.Y.; Harms, H.; Müller, S. Limits of propidium iodide as a cell viability indicator for bacteria. Cytom. Part A 2007, 71, 592–598. [Google Scholar] [CrossRef] [PubMed]
- Darzynkiewicz, Z.; Juan, G.; Li, X.; Gorczyca, W.; Murakami, T.; Traganos, F. Cytometry in cell necrobiology: Analysis of apoptosis and accidental cell death (necrosis). Cytometry 1997, 27, 1–20. [Google Scholar] [CrossRef]
- Weng, Z.; Zeng, F.; Wang, M.; Guo, S.; Tang, Z.; Itagaki, K.; Lin, Y.; Shen, X.; Cao, Y.; Duan, J.; et al. Antimicrobial activities of lavandulylated flavonoids in Sophora flavences against methicillin-resistant Staphylococcus aureus via membrane disruption. J. Adv. Res. 2024, 57, 197–212. [Google Scholar] [CrossRef] [PubMed]
- Eumkeb, G.; Siriwong, S.; Phitaktim, S.; Rojtinnakorn, N.; Sakdarat, S. Synergistic activity and mode of action of flavonoids isolated from smaller galangal and amoxicillin combinations against amoxicillin-resistant Escherichia coli. J. Appl. Microbiol. 2012, 112, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Cushnie, T.P.; Lamb, A.J. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents 2005, 26, 34356. [Google Scholar] [CrossRef]
- Abreu, A.C.; McBain, A.J.; Simões, M. Plants as sources of new antimicrobials and resistance-modifying agents. Nat. Prod. Rep. 2012, 29, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.L.; Lee, K.K.H.; Wong, R.S.M.; Cheng, G.Y.M.; Bian, Z.X.; Chui, C.H.; Gambari, R. Recent advances on topical antimicrobials for skin and soft tissue infections and their safety concerns. Crit. Rev. Microbiol. 2018, 44, 40–78. [Google Scholar] [CrossRef] [PubMed]
- Seibert, J.B.; Rodrigues, I.V.; Carneiro, S.P.; Amparo, T.R.; Lanza, J.S.; Frezard, F.; de Souza, G.H.B.; dos Santos, O.D.H. Seasonality study of essential oil from leaves of Cymbopogon densiflorus and nanoemulsion development with antioxidant activity. Flavour Fragr. J. 2019, 34, 5–14. [Google Scholar] [CrossRef]
- Kong, M.; Chen, X.G.; Kweon, D.K.; Park, H.J. Investigations on skin permeation of hyaluronic acid based nanoemulsion as transdermal carrier. Carbohydr. Polym. 2011, 86, 837–843. [Google Scholar] [CrossRef]
- Forgiarini, A.; Esquena, J.; González, C.; Solans, C. Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 2001, 17, 2076–2083. [Google Scholar] [CrossRef]
- Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for drug delivery: The need for precision in reporting particle size parameters. Eur. J. Pharm. Biopharm. 2008, 69, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yue, Y.; Liu, G.; Li, Y.; Zhang, J.; Gong, Q.; Yan, Z.; Duan, M. Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res. Lett. 2009, 5, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Liu, R.; Liang, B.; Wu, T.; Sui, W.; Zhang, M. Microparticulated whey protein-pectin complex: A texture-controllable gel for low-fat mayonnaise. Food Res. Int. 2018, 108, 151–160. [Google Scholar] [CrossRef]
- Hao, Z.; Chen, Z.; Chang, M.; Meng, J.; Liu, J.; Feng, C. Rheological properties and gel characteristics of polysaccharides from fruit-bodies of Sparassis crispa. Int. J. Food Prop. 2018, 21, 2283–2295. [Google Scholar] [CrossRef]
- Ortan, A.; Parvu, C.D.; Ghica, M.V.; Popescu, L.M.; Ionita, L. Rheological Study of a Liposomal Hydrogel Based on Carbopol. Rom. Biotechnol. Lett. 2011, 16, 47–54. [Google Scholar]
- Mohamed, M.I. Optimization of chlorphenesin emulgel formulation. AAPS J. 2004, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- EPA. Validation and Peer Review of U.S. Environmental Protection Agency Chemical Methods Analysis. 2016. Available online: https://www.epa.gov/sites/default/files/2016-02/documents/chemical_method_guide_revised_020316.pdf (accessed on 9 March 2024).
- Moretto, L.D.; Calixto, J. Qualificações e Validações: Guia Sindusfarma para a Indústria Farmacêutica; Sindusfarma: São Paulo, Brazil, 2016. [Google Scholar]
- Taveniers, I.; Loose, M.D.; Bockstaele, E.V. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. TrAC Trends Anal. Chem. 2004, 23, 535–552. [Google Scholar] [CrossRef]
- Schaffazick, S.R.; Guterres, S.S.; de Lucca Freitas, L.; Pohlmann, A.R. Caracterização e estabilidade físico-química de sistemas poliméricos nanoparticulados para administração de fármacos. Quím. Nova 2003, 26, 726–737. [Google Scholar] [CrossRef]
- Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control. Release 2008, 125, 193–209. [Google Scholar] [CrossRef] [PubMed]
- Theerdhala, S.; Harikrishnan, N. Mupirocin Loaded Niosomal Gel for Topical Wound Healing Applications. Trop. J. Nat. Prod. Res. 2023, 3676, 82. [Google Scholar] [CrossRef]
- Wongsa, P.; Phatikulrungsun, P.; Prathumthong, S. FT-IR characteristics, phenolic profiles and inhibitory potential against digestive enzymes of 25 herbal infusions. Sci. Rep. 2022, 12, 6631. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, R.N.; Mancini, M.C.; Oliveira, F.C.S.D.; Passos, T.M.; Quilty, B.; Thiré, R.M.D.S.M.; McGuinness, G.B. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. Matéria 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Di Domenico, E.G.; Farulla, I.; Prignano, G.; Gallo, M.T.; Vespaziani, M.; Cavallo, I.; Sperduti, I.; Pontone, M.; Bordignon, V.; Cilli, L. Biofilm is a Major Virulence Determinant in Bacterial Colonization of Chronic Skin Ulcers Independently from the Multidrug Resistant Phenotype. Int. J. Mol. Sci. 2017, 18, 1077. [Google Scholar] [CrossRef] [PubMed]
- Otto, M. Staphylococcal Biofilms. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Fontecha-Umaña, F.; Ríos-Castillo, A.G.; Ripolles-Avila, C.; Rodríguez-Jerez, J.J. Antimicrobial Activity and Prevention of Bacterial Biofilm Formation of Silver and Zinc Oxide Nanoparticle-Containing Polyester Surfaces at Various Concentrations for Use. Foods 2020, 9, 442. [Google Scholar] [CrossRef] [PubMed]
- Hamida, R.S.; Ali, M.A.; Goda, D.A.; Khalil, M.I.; Al-Zaban, M.I. Novel Biogenic Silver Nanoparticle-Induced Reactive Oxygen Species Inhibit the Biofilm Formation and Virulence Activities of Methicillin-Resistant. Front. Bioeng. Biotechnol. 2020, 8, 433. [Google Scholar] [CrossRef] [PubMed]
- Trentin, D.S.; Silva, D.B.; Frasson, A.P.; Rzhepishevska, O.; da Silva, M.V.; Pulcini, E.L.; James, G.; Soares, G.V.; Tasca, T.; Ramstedt, M. Natural Green coating inhibits adhesion of clinically important bacteria. Sci. Rep. 2015, 5, 8287. [Google Scholar] [CrossRef]
- Slobodníková, L.; Fialová, S.; Rendeková, K.; Kováč, J.; Mučaji, P. Antibiofilm Activity of Plant Polyphenols. Molecules 2016, 21, 1717. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Wu, X.; Li, J.; Liu, L.; Zhang, R.; Shao, D.; Du, X. The specific anti-biofilm effect of gallic acid on Staphylococcus aureus by regulating the expression of the ica operon. Food Control 2017, 73, 613–618. [Google Scholar] [CrossRef]
- Derouiche, M.T.T.; Abdennour, S. HET-CAM test. Application to shampoos in developing countries. Toxicol. In Vitro 2017, 45, 393–396. [Google Scholar] [CrossRef] [PubMed]
- Palmeira-de-oliveira, R.; Machado, R.M.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, A. Testing Vaginal Irritation with the Hen’s Egg Test-Chorioallantoic Membrane Assay. ALTEX Altern. Anim. Exp. 2018, 35, 495–503. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Pierscionek, B.; Carew, M.; Wu, Z.; Alany, R.G. Critical appraisal of alternative irritation models: Three decades of testing ophthalmic pharmaceuticals. Br. Med. Bull. 2015, 113, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Brasil Conselho Nacional de Controle de Experimentação Animal. Resolução Normativa CONCEA no 18, de 24 de Setembro de 2014. Diário Oficial da União 25 de Setembro de 2014. Available online: https://www.gov.br/mcti/pt-br/composicao/conselhos/concea/arquivos/arquivo/legislacao/resolucao-normativa-no-18-de-24-de-setembro-de-2014.pdf (accessed on 12 March 2024).
- Brasil Conselho Nacional de Controle de Experimentação Animal. Resolução Normativa CONCEA no 31, de 18 de Agosto de 2016. Diário Oficial da União 19 de Agosto de 2016. Available online: https://www.gov.br/mcti/pt-br/composicao/conselhos/concea/arquivos/arquivo/legislacao/resolucao-normativa-no-31-de-18-de-agosto-de-2016.pdf (accessed on 12 March 2024).
Bacteria | Extract | Antibiotic | Combination | ICIF |
---|---|---|---|---|
MIC (μg/mL) | MIC (μg/mL) | MIC (μg/mL) | ||
S. aureus | 2000 ± 577 a | 0.13 ± 0.07 a | 250 ± 72 *a/0.06 ± 0 #a | 0.62 ± 0.25 a |
MRSA | 2000 ± 0 a | 0.06 ± 0.02 a | 125 ± 36 *a/0.03 ± 0.01 #a | 0.56 ± 0.17 a |
Validation Parameter | Quercitrin | Mupirocin | |
---|---|---|---|
Selectivity | Purity angle | 1.267 | 0.726 |
Purity angle | 2.284 | 1.729 | |
Linearity | r2 | 0.9999 | 0.9995 |
Calibration curve | y = 31,807x − 2115 | y = 9428x + 56,707 | |
Significance (a ≠ 0) | p = <0.0001 (a ≠ 0) | p = <0.0001 (a ≠ 0) | |
Linearity deviation | p = 1.0000 (linear) | p = 1.0000 (linear) | |
Parameter | Concentration (µg/mL) | RSD | RSD |
Intra-day precision | 5 | 4.94 | 4.25 |
10 | 4.88 | 4.60 | |
50 | 1.40 | 2.77 | |
100 | 1.37 | 4.89 | |
250 | 1.45 | 0.86 | |
Parameter | Concentration (µg/mL) | RSD | RSD |
Accuracy | 5 | 4.13 | 4.25 |
50 | 1.40 | 2.77 | |
250 | 1.45 | 0.86 |
Sample | 30 s | 120 s | 300 s | Score |
---|---|---|---|---|
NaCl 0.9% | - | - | - | 0 |
NaOH 0.1 mol/L | Hyperemia/hemorrhage | Coagulation/hyperemia | Coagulation/hyperemia | 13.5 |
Nanoemulsion-based hydrogel | - | - | Hyperemia | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amparo, T.R.; Sousa, L.R.D.; Xavier, V.F.; Seibert, J.B.; Paiva, D.L.; da Silva, D.d.S.; Teixeira, L.F.d.M.; dos Santos, O.D.H.; Vieira, P.M.d.A.; de Souza, G.H.B.; et al. Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections. Pharmaceutics 2024, 16, 700. https://doi.org/10.3390/pharmaceutics16060700
Amparo TR, Sousa LRD, Xavier VF, Seibert JB, Paiva DL, da Silva DdS, Teixeira LFdM, dos Santos ODH, Vieira PMdA, de Souza GHB, et al. Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections. Pharmaceutics. 2024; 16(6):700. https://doi.org/10.3390/pharmaceutics16060700
Chicago/Turabian StyleAmparo, Tatiane Roquete, Lucas Resende Dutra Sousa, Viviane Flores Xavier, Janaína Brandão Seibert, Débora Luiza Paiva, Débora dos Santos da Silva, Luiz Fernando de Medeiros Teixeira, Orlando David Henrique dos Santos, Paula Melo de Abreu Vieira, Gustavo Henrique Bianco de Souza, and et al. 2024. "Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections" Pharmaceutics 16, no. 6: 700. https://doi.org/10.3390/pharmaceutics16060700
APA StyleAmparo, T. R., Sousa, L. R. D., Xavier, V. F., Seibert, J. B., Paiva, D. L., da Silva, D. d. S., Teixeira, L. F. d. M., dos Santos, O. D. H., Vieira, P. M. d. A., de Souza, G. H. B., & Brandão, G. C. (2024). Protium spruceanum Extract Enhances Mupirocin Activity When Combined with Nanoemulsion-Based Hydrogel: A Multi-Target Strategy for Treating Skin and Soft Tissue Infections. Pharmaceutics, 16(6), 700. https://doi.org/10.3390/pharmaceutics16060700