Formulation and Characterization of Nanoemulsion Incorporating Chamomilla recutita L. Extract Stabilized with Hyaluronic Acid
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of Chamomilla Recutita Extract
2.3. Extract Characterization
2.3.1. Phytochemical Identification by Ultra-High Pressure Liquid Chromatograph with a Mass Spectrometer (UHPLC-MS)
2.3.2. Antioxidant Capacity
2.4. Nanoemulsion System Loaded with C. recutita and Stabilized with Hyaluronic Acid Development
2.5. Nanoemulsion Systems Characterization
2.5.1. Droplet Size and Polydispersity Index
2.5.2. pH
2.5.3. Viscosity
2.5.4. Zeta Potential
2.6. Morphology
2.7. In Vitro Antimicrobial Activity
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, Y.; Ding, Q.; Hao, Y.; Cui, B.; Ding, C.; Gao, F. Pharmacological effects of shikonin and its potential in skin repair: A review. Molecules 2023, 28, 7950. [Google Scholar] [CrossRef] [PubMed]
- Mohd Zaid, N.A.; Sekar, M.; Bonam, S.R.; Gan, S.H.; Lum, P.T.; Begum, M.Y.; Mat Rani, N.N.I.; Vaijanathappa, J.; Wu, Y.S.; Subramaniyan, V.; et al. Promising natural products in new drug design, development, and therapy for skin disorders: An overview of scientific evidence and understanding their mechanism of action. Drug Des. Dev. Ther. 2022, 16, 23–66. [Google Scholar] [CrossRef] [PubMed]
- Saeedi, M.; Khanavi, M.; Shahsavari, K.; Manayi, A. Matricaria chamomilla: An updated review on biological activities of the plant and constituents. Res. J. Pharmacogn. 2024, 11, 109–136. [Google Scholar] [CrossRef]
- Jarrahi, M. An experimental study of the effects of Matricaria chamomilla extract on cutaneous burn wound healing in albino Rats. Nat. Prod. Res. 2008, 22, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Jarrahi, M.; Vafaei, A.A.; Taherian, A.A.; Miladi, H.; Rashidi Pour, A. Evaluation of topical Matricaria chamomilla extract activity on linear incisional wound healing in albino rats. Nat. Prod. Res. 2010, 24, 697–702. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Guan, S.; Su, J.; Liang, J.; Cui, L.; Zhang, K. The development of hyaluronic acids used for skin tissue regeneration. Curr. Drug Deliv. 2021, 18, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Alipoor, R.; Ayan, M.; Hamblin, M.R.; Ranjbar, R.; Rashki, S. Hyaluronic acid-based nanomaterials as a new approach to the treatment and prevention of bacterial infections. Front. Bioeng. Biotechnol. 2022, 10, 913912. [Google Scholar] [CrossRef] [PubMed]
- Woisky, R.G.; Salatino, A. Analysis of Propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 1998, 37, 99–105. [Google Scholar] [CrossRef]
- Dalmagro, M.; Pinc, M.M.; Donadel, G.; Tominc, G.C.; Jacomassi, E.; Lourenço, E.L.B.; Gasparotto, A., Jr.; Boscarato, A.G.; Belettini, S.T.; Alberton, O.; et al. Bioprospecting a film-forming system loaded with Eugenia uniflora L. and Tropaeolum majus L. leaf extracts for topical application in treating skin lesions. Pharmaceuticals 2023, 16, 1068. [Google Scholar] [CrossRef] [PubMed]
- Silveira, A.C.; Kassuia, Y.S.; Domahovski, R.C.; Lazzarotto, M. Método de DPPH Adaptado: Uma Ferramenta Para Analisar Atividade Antioxidante de Polpa de Frutos de Erva-Mate de Forma Rápida e Reprodutível; EMBRAPA: Colombo, Brazil, 2018. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Santos, K.A.; Klein, E.J.; Gazim, Z.C.; Gonçalves, J.E.; Cardozo-Filho, L.; Corazza, M.L.; da Silva, E.A. Wood and industrial residue of candeia (Eremanthus erythropappus): Supercritical CO2 oil extraction, composition, antioxidant activity and mathematical modeling. J. Supercrit. Fluids 2016, 114, 1–8. [Google Scholar] [CrossRef]
- Aditya, N.P.; Aditya, S.; Yang, H.-J.; Kim, H.W.; Park, S.O.; Lee, J.; Ko, S. Curcumin and catechin co-loaded water-in-oil-in-water emulsion and its beverage application. J. Funct. Foods 2015, 15, 35–43. [Google Scholar] [CrossRef]
- Kleinubing, S.A.; Outuki, P.M.; Hoscheid, J.; Pelegrini, B.L.; da Silva, E.A.; de Almeida Canoff, J.R.; de Souza Lima, M.M.; Cardoso, M.L.C. Hyaluronic acid incorporation into nanoemulsions containing Pterodon pubescens Benth. fruit oil for topical drug delivery. Biocatal. Agric. Biotechnol. 2021, 32, 101939. [Google Scholar] [CrossRef]
- Naeem, M.; Iqbal, T.; Nawaz, Z.; Hussain, S. Preparation, optimization and evaluation of transdermal therapeutic system of celecoxib to treat inflammation for treatment of rheumatoid arthritis. An. Acad. Bras. Cienc. 2021, 93, e20201561. [Google Scholar] [CrossRef] [PubMed]
- Aronson, J.K. Cremophor. In Meyler’s Side Effects of Drugs; Elsevier: Amsterdam, The Netherlands, 2016; Volume 763. [Google Scholar] [CrossRef]
- Barbosa, C.; Diogo, F.; Alves, M.R. Fitting mathematical models to describe the rheological behaviour of chocolate pastes. AIP Conf. Proc. 2016, 1738, 370016. [Google Scholar] [CrossRef]
- Deshiikan, S.R.; Papadopoulos, K.D. Modified booth equation for the calculation of zeta potential. Colloid Poly. Sci. 1998, 276, 117–124. [Google Scholar] [CrossRef]
- Hoscheid, J.; Outuki, P.M.; Kleinubing, S.A.; Silva, M.F.; Bruschi, M.L.; Cardoso, M.L.C. Development and characterization of Pterodon pubescens oil nanoemulsions as a possible delivery system for the treatment of rheumatoid arthritis. Colloids Surf. A Physicochem. Eng. Asp. 2015, 484, 19–27. [Google Scholar] [CrossRef]
- Weber, B.; Herrmann, M.; Hartmann, B.; Joppe, H.; Schmidt, C.O.; Bertram, H.-J. HPLC/MS and HPLC/NMR as hyphenated techniques for accelerated characterization of the main constituents in chamomile (Chamomilla recutita [L.] Rauschert). Eur. Food Res. Technol. 2007, 226, 755–760. [Google Scholar] [CrossRef]
- Asadi, Z.; Ghazanfari, T.; Hatami, H. Anti-Inflammatory effects of Matricaria chamomilla extracts on BALB/c mice macrophages and lymphocytes. Iran. J. Allergy Asthma Immunol. 2020, 19, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.-Y.; Chen, F.-F.; Shi, Y.-P. Simultaneous determination of eight flavonoids in the flowers of Matricaria chamomilla by high-performance liquid chromatography. J. AOAC Int. 2014, 97, 778–783. [Google Scholar] [CrossRef]
- Qureshi, M.N.; Stecher, G.; Bonn, G.K. Determination of total polyphenolic compounds and flavonoids in Matricaria chamomilla flowers. Pak. J. Pharm. Sci. 2019, 32, 2163–2165. Available online: https://pubmed.ncbi.nlm.nih.gov/31813883/ (accessed on 14 January 2024).
- Fonseca, F.N.; Tavares, M.F.M.; Horváth, C. Capillary electrochromatography of selected phenolic compounds of Chamomilla recutita. J. Chromatogr. A 2007, 1154, 390–399. [Google Scholar] [CrossRef]
- Haghi, G.; Hatami, A.; Safaei, A.; Mehran, M. Analysis of phenolic compounds in Matricaria chamomilla and its extracts by UPLC-UV. Res. Pharm. Sci. 2014, 9, 31–37. Available online: https://pubmed.ncbi.nlm.nih.gov/25598797/ (accessed on 15 January 2024). [PubMed]
- Catani, M.V.; Rinaldi, F.; Tullio, V.; Gasperi, V.; Savini, I. Comparative analysis of phenolic composition of six commercially available chamomile (Matricaria chamomilla L.) extracts: Potential biological implications. Int. J. Mol. Sci. 2021, 22, 10601. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.; Nile, S.H.; Cespedes-Acuña, C.L.; Oh, J.-W. Spireoside extracted from red onion skin ameliorates apoptosis and exerts potent antitumor, antioxidant and enzyme inhibitory effects. Food Chem. Toxicol. 2021, 154, 112327. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, D.S.; Farias Rodrigues, M.M. Atividades farmacológicas dos flavonoides: Um estudo de revisão. Estac. Cient. (UNIFAP) 2017, 7, 29. [Google Scholar] [CrossRef]
- Lui, D.C.G. Prevenção de Lesões de Pele: Desenvolvimento de Formulação Tópica de Micropartículas de Quitosana Com Chamomilla recutita (L.) Rauschert e Estudos Preliminares de Seu Uso. Ph.D. Thesis, São Paulo University, São Paulo, Brazil, 2016. Available online: https://www.teses.usp.br/teses/disponiveis/83/83131/tde-31072019-151849/en.php (accessed on 29 May 2023).
- De Araujo, M.O.; Bento, R.d.C.; Furtado, L.M.; de Lima Santos, I.L.V.; da Silva, C.R.C. Benefícios da Camomila: Análise do Uso em Idosos; Editora Realize: Campina Grande, Brazil, 2020; Available online: https://editorarealize.com.br/artigo/visualizar/73278 (accessed on 15 January 2024).
- Dugas, A.J.; Castañeda-Acosta, J.; Bonin, G.C.; Price, K.L.; Fischer, N.H.; Winston, G.W. Evaluation of the total peroxyl radical-scavenging capacity of flavonoids: Structure-activity relationships. J. Nat. Prod. 2000, 63, 327–331. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Song, D.; Zhuang, L.; Liu, G.; Liang, L.; Zhang, J.; Liu, X.; Li, Y.; Xu, X. Isolation and identification of polyphenol monomers from celery leaves and their structure-antioxidant activity relationship. Process Biochem. 2022, 121, 69–77. [Google Scholar] [CrossRef]
- Farmoudeh, A.; Akbari, J.; Saeedi, M.; Ghasemi, M.; Asemi, N.; Nokhodchi, A. Methylene blue-loaded niosome: Preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv. Transl. Res. 2020, 10, 1428–1441. [Google Scholar] [CrossRef] [PubMed]
- Górniak, I.; Bartoszewski, R.; Króliczewski, J. Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem. Rev. 2019, 18, 241–272. [Google Scholar] [CrossRef]
- Jucá, M.M.; Filho, F.M.S.C.F.; Almeida, J.C.; Mesquita, D.S.; Barriga, J.R.M.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; et al. Flavonoids: Biological activities and therapeutic potential. Nat. Prod. Res. 2020, 34, 692–705. [Google Scholar] [CrossRef]
- Fathima, A.; Rao, J.R. Selective toxicity of catechin—A natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 2016, 100, 6395–6402. [Google Scholar] [CrossRef] [PubMed]
- Schmidts, T.; Dobler, D.; Nissing, C.; Runkel, F. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions. J. Colloid Interface Sci. 2009, 338, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Cui, B.; Guo, L.; Wang, A.; Zhao, X.; Wang, Y.; Sun, C.; Zeng, Z.; Zhi, H.; Chen, H.; et al. Fabrication and evaluation of lambda-cyhalothrin nanosuspension by one-step melt emulsification technique. Nanomaterials 2019, 9, 145. [Google Scholar] [CrossRef] [PubMed]
- Outuki, P.M.; Kleinübing, S.J.; Hoscheid, J.; Montanha, M.C.; da Silva, E.A.; do Couto, R.O.; Kimura, E.; Cardoso, M.L.C. The incorporation of Pterodon pubescens fruit oil into optimized nanostructured lipid carriers improves its effectiveness in colorectal cancer. Ind. Crop. Prod. 2018, 123, 719–730. [Google Scholar] [CrossRef]
- Kibbelaar, H.V.M.; Deblais, A.; Velikov, K.P.; Bonn, D.; Shahidzadeh, N. Stringiness of hyaluronic acid emulsions. Int. J. Cosmet. Sci. 2021, 43, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Tang, X.; Jia, Y.; Ho, C.-T.; Huang, Q. Applications and delivery mechanisms of hyaluronic acid used for topical/transdermal delivery—A review. Int. J. Pharm. 2020, 578, 119127. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Tong, X.; Cheng, J.; Peng, Z.; Yang, S.; Cao, X.; Wang, M.; Wu, H.; Wang, H.; Jiang, L. Impact of pH on the interaction between soy whey protein and gum arabic at oil–water interface: Structural, emulsifying, and rheological properties. Food Hydrocoll. 2023, 139, 108584. [Google Scholar] [CrossRef]
- Lukić, M.; Pantelić, I.; Savić, S.D. Towards optimal pH of the skin and topical formulations: From the current state of the art to tailored products. Cosmetics 2021, 8, 69. [Google Scholar] [CrossRef]
- Artiga-Artigas, M.; Acevedo-Fani, A.; Martín-Belloso, O. Effect of sodium alginate incorporation procedure on the physicochemical properties of nanoemulsions. Food Hydrocoll. 2017, 70, 191–200. [Google Scholar] [CrossRef]
- Bokatyi, A.N.; Dubashynskaya, N.V.; Skorik, Y.A. Chemical modification of hyaluronic acid as a strategy for the development of advanced drug delivery systems. Carbohydr. Polym. 2024, 337, 122145. [Google Scholar] [CrossRef] [PubMed]
- Saechio, S.; Akanitkul, P.; Thiyajai, P.; Jain, S.; Tangsuphoom, N.; Suphantharika, M.; Winuprasith, T. Astaxanthin-loaded pickering emulsions stabilized by nanofibrillated cellulose: Impact on emulsion characteristics, digestion behavior, and bioaccessibility. Polymers 2023, 15, 901. [Google Scholar] [CrossRef] [PubMed]
- Ateeq, M.A.M.; Aalhate, M.; Mahajan, S.; Kumar, G.S.; Sen, S.; Singh, H.; Gupta, U.; Maji, I.; Dikundwar, A.; Guru, S.K.; et al. Self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel and carvacrol synergizes the anticancer activity and enables safer toxicity profile: Optimization, and in-vitro, ex-vivo and in-vivo pharmacokinetic evaluation. Drug Deliv. Transl. Res. 2023, 13, 2614–2638. [Google Scholar] [CrossRef]
- Menezes, L.K.; Barreto, F.; Zappani, N.; Dreher, M.; Rodrigues, P.; Rossi, E.M. Incidence of multidrug-resistant microorganisms in skin lesions of hospitalized patients. Braz. J. Dev. 2021, 7, 31839–31855. [Google Scholar] [CrossRef]
- Serra, R.; Grande, R.; Butrico, L.; Rossi, A.; Settimio, U.F.; Caroleo, B.; Amato, B.; Gallelli, L.; de Franciscis, S. Chronic wound infections: The role of Pseudomonas aeruginosa and Staphylococcus aureus. Expert Rev. Anti-Infect. Ther. 2015, 13, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Nanda, D.K. Potential of curcumin nanoemulsion as antimicrobial and wound healing agent in burn wound infection. Burns 2022, 49, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, F.; Wong, C.K.; Collins, M.N. Hyaluronic acid association with bacterial, fungal and viral infections: Can hyaluronic acid be used as an antimicrobial polymer for biomedical and pharmaceutical applications? Bioact. Mater. 2023, 19, 458–473. [Google Scholar] [CrossRef] [PubMed]
- Suo, H.; Hussain, M.; Wang, H.; Zhou, N.; Tao, J.; Jiang, H.; Zhu, J. Correction to “injectable and pH-sensitive hyaluronic acid-based hydrogels with on-demand release of antimicrobial peptides for infected wound healing”. Biomacromolecules 2021, 22, 5400. [Google Scholar] [CrossRef] [PubMed]
Nanoemulsion System | Pre-Emulsion without C. recutita | Pre-Emulsion with C. recutita | Cremophor | Saline Solution (0.1 M) | HA |
---|---|---|---|---|---|
C1 | 20.0 | - | 7.5 | 72.5 | - |
C1 + HA | 20.0 | - | 7.5 | 71.5 | 1.0 |
C2 | 20.0 | - | 10.0 | 70.0 | - |
C2 + HA | 20.0 | - | 10.0 | 69.0 | 1.0 |
C3 | 20.0 | - | 12.5 | 67.5 | - |
C3 + HA | 20.0 | - | 12.5 | 66.5 | 1.0 |
F1 | - | 20.0 | 7.5 | 72.5 | - |
F1 + HA | - | 20.0 | 7.5 | 71.5 | 1.0 |
F2 | - | 20.0 | 10.0 | 70.0 | - |
F2 + HA | - | 20.0 | 10.0 | 69.0 | 1.0 |
F3 | - | 20.0 | 12.5 | 67.5 | - |
F3 + HA | - | 20.0 | 12.5 | 66.5 | 1.0 |
Method | Alcohol Content (%) | Total Flavonoid Content (µgQUE mgext−1) |
---|---|---|
Vortex Extraction | 50.0 | 165.08 ± 2.55 c |
60.0 | 195.53 ± 4.03 c | |
70.0 | 280.41 ± 2.19 a | |
80.0 | 275.10 ± 3.38 ab | |
90.0 | 233.33 ± 1.28 b | |
100.0 | 176.73 ± 0.57 c | |
Infusion | 0.0 | 117.08 ± 0.89 d |
Compound | m/z | Retention Time (min) | % * |
---|---|---|---|
Spireoside | 463.08 | 14.50 | 29.47 |
Apiin | 563.09 | 17.24 | 12.62 |
Corymbosin | 357.09 | 11.03 | 6.34 |
Isoxanthohumol | 353.09 | 17.12 | 6.21 |
Kaempferol 3-O-neohesperidoside | 593.12 | 18.53 | 6.05 |
Isosakuranin | 447.13 | 3.36 | 4.10 |
Xanthohumol | 353.13 | 20.10 | 3.58 |
Aspalathin | 451.13 | 9.14 | 3.14 |
Scaposin | 389.08 | 8.05 | 3.12 |
Salicylic acid | 137.02 | 8.10 | 2.95 |
Neohesperidin | 609.17 | 3.39 | 2.93 |
Pseudobaptigenin | 281.04 | 3.93 | 2.84 |
Humulone | 361.20 | 11.04 | 2.67 |
Morin | 299.02 | 19.15 | 2.55 |
Apigenin | 269.10 | 11.88 | 2.55 |
Kaempferol-3-O-glucoside | 447.08 | 16.09 | 1.62 |
4′,7-dimethoxy-5-hydroxyflavanone | 299.09 | 3.23 | 1.38 |
5,7-dihydroxy-2′-methoxyflavone | 283.06 | 3.34 | 1.14 |
Kaempferide | 299.05 | 3.21 | 0.90 |
Chrysin | 253.05 | 3.39 | 0.90 |
4-Malonyl ononin | 267.06 | 3.11 | 0.83 |
3-Ara-28-Glu hederagenin | 811.44 | 3.39 | 0.82 |
Luteolin 4′-O-glucoside | 447.09 | 15.32 | 0.38 |
Sinapoyl malate-4′-methyl ester | 353.06 | 4.22 | 0.37 |
6-Methoxyluteolin | 315.05 | 10.52 | 0.29 |
Naringin | 579.17 | 12.56 | 0.20 |
Sinapoyl malate-1′-methyl ester | 353.07 | 3.16 | 0.07 |
Free flavonoids | 65.62 | ||
Glycosylated flavonoids | 15.63 | ||
Cinnamic acid derivatives | 6.25 | ||
Organic acids | 6.25 | ||
Cyclic ketone | 3.13 | ||
Terpenes | 3.12 |
Formulation | Droplet Size (nm) | PDI | pH | Viscosity (mPa s) * | Zeta Potential (mV) ** |
---|---|---|---|---|---|
C1 | 254.09 ± 14.13 a | 0.296 ± 0.015 ab | 6.37 ± 0.15 bc | 339.80 ± 20.35 g | - |
C1 + HA | 258.95 ± 3.18 a | 0.262 ± 0.007 bcd | 6.28 ± 0.03 cde | 2316.97 ± 45.54 e | - |
C2 | 139.12 ± 10.49 c | 0.118 ± 0.006 g | 6.55 ± 0.14 ab | 268.83 ± 5.46 g | −41.93 ± 1.67 c |
C2 + HA | 142.19 ± 16.54 c | 0.196 ± 0.006 f | 6.28 ± 0.02 cde | 2543.87 ± 77.01 d | −51.83 ± 1.27 b |
C3 | 231.45 ± 9.99 ab | 0.244 ± 0.010 cde | 6.55 ± 0.05 ab | 338.73 ± 15.80 g | - |
C3 + HA | 248.32 ± 8.80 a | 0.279 ± 0.009 abc | 6.33 ± 0.01 bcd | 2969.07 ± 148.38 b | - |
F1 | 254.09 ± 4.20 a | 0.278 ± 0.008 abc | 5.80 ± 0.08 g | 306.93 ± 17.38 g | - |
F1 + HA | 262.63 ± 11.50 a | 0.218 ± 0.011 ef | 6.09 ± 0.00 ef | 2039.97 ± 40.26 f | - |
F2 | 139.70 ± 3.96 c | 0.116 ± 0.007 g | 6.50 ± 0.05 abc | 295.93 ± 37.89 g | −51.6 ± 0.3 b |
F2 + HA | 173.85 ± 1.91 bc | 0.144 ± 0.006 g | 6.52 ± 0.02 ab | 2840.23 ± 180.79 bc | −55.2 ± 0.4 a |
F3 | 231.45 ± 12.09 ab | 0.235 ± 0.007 de | 5.97 ± 0.16 fg | 330.03 ± 32.58 g | - |
F3 + HA | 245.57 ± 8.73 ab | 0.255 ± 0.008 cde | 6.12 ± 0.04 def | 3515.27 ± 197.25 a | - |
S. aureus | S. pyogenes | E. coli | P. aeruginosa | |
---|---|---|---|---|
C. recutita extract | 26.04 ± 9.02 | 1.62 ± 0.56 | 62.50 ± 0.00 | 15.62 ± 0.00 |
C2 | - | - | - | - |
C2 + HA | - | - | - | - |
F2 * | 250.00 ± 0.00 | 250.00 ± 0.00 | 250.00 ± 0.00 | 250.00 ± 0.00 |
F2 + HA * | 166.66 ± 72.16 | 250.00 ± 0.00 | 250.00 ± 0.00 | 166.66 ± 72.16 |
Neomycin | 4.88 × 10−3 ± 0.00 | 4.88 × 10−3 ± 0.00 | 39.06 × 10−3 ± 0.00 | 9.76 × 10−3 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tominc, G.C.; Dalmagro, M.; Pereira, E.d.C.A.; Adamczuk, M.S.; Bonato, F.G.C.; Almeida, R.M.d.; Schneider, R.; Negri, M.F.N.; Gonçalves, D.D.; Hoscheid, J. Formulation and Characterization of Nanoemulsion Incorporating Chamomilla recutita L. Extract Stabilized with Hyaluronic Acid. Pharmaceutics 2024, 16, 701. https://doi.org/10.3390/pharmaceutics16060701
Tominc GC, Dalmagro M, Pereira EdCA, Adamczuk MS, Bonato FGC, Almeida RMd, Schneider R, Negri MFN, Gonçalves DD, Hoscheid J. Formulation and Characterization of Nanoemulsion Incorporating Chamomilla recutita L. Extract Stabilized with Hyaluronic Acid. Pharmaceutics. 2024; 16(6):701. https://doi.org/10.3390/pharmaceutics16060701
Chicago/Turabian StyleTominc, Getulio Capello, Mariana Dalmagro, Elton da Cruz Alves Pereira, Maisa Steffani Adamczuk, Francieli Gesleine Capote Bonato, Rafael Menck de Almeida, Ricardo Schneider, Melyssa Fernanda Norman Negri, Daniela Dib Gonçalves, and Jaqueline Hoscheid. 2024. "Formulation and Characterization of Nanoemulsion Incorporating Chamomilla recutita L. Extract Stabilized with Hyaluronic Acid" Pharmaceutics 16, no. 6: 701. https://doi.org/10.3390/pharmaceutics16060701
APA StyleTominc, G. C., Dalmagro, M., Pereira, E. d. C. A., Adamczuk, M. S., Bonato, F. G. C., Almeida, R. M. d., Schneider, R., Negri, M. F. N., Gonçalves, D. D., & Hoscheid, J. (2024). Formulation and Characterization of Nanoemulsion Incorporating Chamomilla recutita L. Extract Stabilized with Hyaluronic Acid. Pharmaceutics, 16(6), 701. https://doi.org/10.3390/pharmaceutics16060701