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Abstract: Skin lesions are an important health concern, exposing the body to infection risks. Utilizing
natural products containing chamomile (Chamomilla recutita L.) holds promise for curative purposes.
Additionally, hyaluronic acid (HA), an active ingredient known for its tissue regeneration capacity,
can expedite healing. In this study, we prepared and characterized an extract of C. recutita and
integrated it into a nanoemulsion system stabilized with HA, aiming at harnessing its healing
potential. We assessed the impact of alcoholic strength on flavonoid extraction and chemically
characterized the extract using UHPLC/MS while quantifying its antioxidant and antimicrobial
capacity. We developed a nanoemulsion loaded with C. recutita extract and evaluated the effect of
HA stabilization on pH, droplet size, polydispersity index (PDI), zeta potential, and viscosity. Results
indicated that 70% hydroalcoholic extraction yielded a higher flavonoid content. The extract exhibited
antioxidant capacity in vitro, a desirable trait for skin regeneration, and demonstrated efficacy against
key microbial strains (Staphylococcus aureus, Streptococcus pyogenes, Escherichia coli, and Pseudomonas
aeruginosa) associated with skin colonization and infections. Flavonoids spireoside and apiin emerged
as the most abundant bioactives. The addition of HA led to increased viscosity while maintaining
a suitable pH for topical application. Zeta potential, droplet size, and PDI met acceptable criteria.
Moreover, incorporating C. recutita extract into the nanoemulsion enhanced its antimicrobial effect.
Hence, the nanoemulsion system loaded with C. recutita and HA stabilization exhibits favorable
characteristics for topical application, showing promise in aiding the healing processes.

Keywords: antibacterial activity; chamomile; emulsion; skin infection; skin lesion

1. Introduction

Skin trauma, characterized by interruptions in skin-mucosal integrity, serves as a
potential entry point for bacterial infections, significantly impacting individuals’ lives and
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causing socioeconomic disruptions [1]. A growing body of evidence suggests that natural
products hold promise in treating some skin diseases. This is due to their diverse phar-
macological effects, notably anti-inflammatory, antioxidant, and antimicrobial properties,
alongside good tolerability and safety, which contribute synergistically to tissue repair [2].

For thousands of years, the floral heads of chamomile (Chamomilla recutita L., Matricaria
recutita L., or Matricaria chamomilla) have been employed in traditional and folk medicine
via infusion, attributed to their antioxidant, anti-inflammatory, and antibacterial properties,
particularly associated with the flavonoids present in the extract. These properties have
facilitated its use across pharmaceutical, cosmetic, and food industries [3]. Moreover,
chamomile oil extract has demonstrated efficacy in accelerating tissue repair post-skin
injury [4] and burns [5] in in vivo models.

Additionally, the distinctive physicochemical properties and multifaceted physiolog-
ical functions of hyaluronic acid (HA), a primary component of the skin’s extracellular
matrix, have rendered it invaluable in regenerative medicine and tissue engineering, show-
ing promising applications in skin tissue repair [6]. Recent advancements in the treatment
and prevention of bacterial infections, leveraging nanomaterials, have underscored the effi-
cacy of combining HA with antibacterial agents to overcome the limitations of traditional
antibiotics in infection management and enhance the resolution of chronic wounds [7].
Hence, this study undertook the preparation, characterization, and integration of C. re-
cutita extract into a nanoemulsion system stabilized with HA, aiming to augment tissue
repair processes.

2. Materials and Methods
2.1. Chemicals

Sodium dodecyl sulfate, sorbitan monooleate (Span 80), polyoxyl 40 hydrogenated
castor oil (Cremophor® RH40), aluminum chloride, 2,2-diphenyl-1-picryhydrazyl (DPPH),
2,2-azinobis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,4,6-Tris(2-pyridyl)-s-triazine
(TPZT), Trolox, triphenyl tetrazolium chloride (TTC), and Folin-Ciocalteu reagent were
obtained from Sigma-Aldrich® (St. Louis, MO, USA). Hyaluronic acid (HA) (molecular
weight: 1.21 × 106 g/mol; purity: 95.7%) was purchased from Hyaxel® (São Paulo, SP,
Brazil). Corn oil and sodium carbonate (Na2CO3) were acquired from Liza (Mairinque, SP,
Brazil) and Êxodo Científica (Sumaré, SP, Brazil), respectively. Brain heart infusion (BHI)
broth and Neomycin were obtained from Acumedia® (Lansing, MI, USA) and Sovitá Ativos
Company (São Paulo, SP, Brazil), respectively. Methyl alcohol and ethyl alcohol P.A. were
purchased from Synth® (Diadema, SP, Brazil). All other reagents were of analytical grade.

2.2. Preparation of Chamomilla Recutita Extract

Floral heads of C. recutita sourced from Mandirituba (Paraná State, Brazil), harvested
in August 2021, were procured from a supplier of botanical raw materials in Cascavel
(Paraná State, Brazil), along with a quality assurance report.

The material was pulverized in a knife mill (TE 631/2, TECNAL, Piracicaba, São
Paulo State, Brazil) to achieve a particle size of 0.180 mm and used for extractions at
various alcoholic concentrations (50, 60, 70, 80, 90, and 100%), employing a plant/solvent
ratio of 1:10 (w/v). Extraction was conducted by vortex extraction in a high-speed shear
apparatus (Ultra-Turrax® T-25, IKA, Wilmington, NC, USA) for 5 min at 9000 rpm and
25 ◦C. Subsequently, the extracts were filtered, and ethanol was removed using a rotary
evaporator (RV 10, IKA, Wilmington, NC, USA) at 60 ◦C, 180 mbar pressure, and 180 rpm.
The resultant extracts were then frozen and freeze-dried (model LJJ02, JJ Científica, São
Paulo, SP, Brazil) until dry.

Concurrently, conventional extraction was performed via infusion, maintaining a
plant/solvent ratio of 1:10. Boiling water was added, and the system was allowed to rest
for 30 min, followed by filtration, freezing, and freeze-drying.

To determine the optimal extraction conditions, the total flavonoid content (TFT) of
all extracts was quantified using a spectrophotometer (Model IL-592, Kasuaki, São Paulo,
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SP, Brazil) at 425 nm, following the methodology outlined by Woisky and Salatino [8].
Quercetin served as the standard, providing the equation for the calibration curve:
y = 81.561x − 126.41 (R2 = 0.9966). Analyses were performed in triplicate, and the results
were expressed as µg quercetin equivalents per gram of extract (µgQUE mgext

−1).

2.3. Extract Characterization
2.3.1. Phytochemical Identification by Ultra-High Pressure Liquid Chromatograph with a
Mass Spectrometer (UHPLC-MS)

Chromatographic profiling and identification were conducted using an ultra-high-
pressure liquid chromatograph (UHPLC) equipped with a BEH C-18 water absorption
column (150 mm × 2.1 mm × 1.7 µm), coupled to a mass spectrometer (MS) featuring
a quadrupole-time-of-flight system (BRUKER, Q-TOFII®, Billerica, MA, USA). Analyses
were carried out in both positive and negative modes, following the conditions outlined by
Dalmagro et al. [9].

For identification purposes, chromatograms were imported into MetaboScape software
(https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/
metaboscape.html, accessed on 19 May 2024, Bruker®, Billerica, MA, USA) and compared
with various databases (Bruker MetaboBASE® Personal Library 3.0, Bruker HMDB Metabo-
lite Library 2.0, and Bruker MetaboBASE® Plant Library, MA, USA). Peaks with a minimum
intensity of 1000 were observed with mSigma set at 20.

2.3.2. Antioxidant Capacity

The extract, at a concentration of 1000 µg mL−1, underwent triplicate evaluation for
its capacity to eliminate the radicals DPPH and ABTS•+, as well as its reducing capacity via
the FRAP assay, using a spectrophotometer.

For the DPPH method, a calibration curve (50–1000 µM) was constructed employ-
ing Trolox as the standard (y = −0.5771x + 673.63; R2 = 0.9968), with the DPPH radical
scavenging capacity expressed in µM Trolox equivalent (µMTrolox) [10]. The ABTS•+ free
radical scavenging assay followed the protocol outlined by Re et al. [11]. A calibration
curve (100–2000 µM) was generated using Trolox as the standard (y = −0.2465x + 750.59;
R2 = 0.9914), and the ABTS•+ free radical scavenging capacity was reported in µmol of
Trolox per gram of extract (µmolTrolox gext−1). The FRAP assay estimated the reducing
capacity based on a calibration curve (y = 0.6188x − 96.833; R2 = 0.9926) for ferrous sul-
fate (100–2000 µM), with results presented as µmol of Fe2+ per gram of extract (µmolFe2+

gext−1), following the methodology outlined by Santos et al. [12].

2.4. Nanoemulsion System Loaded with C. recutita and Stabilized with Hyaluronic
Acid Development

The nanoemulsion preparation involved two steps. Firstly, a pre-emulsion was pre-
pared by blending 0.1 M saline solution (22.0%, w/w), sodium dodecyl sulfate (2.5%, w/w),
and chamomile extract (1.0%, w/w), followed by gradual addition of this mixture to a
blend of corn oil (70%, w/w) and Span 80 (4.5%, w/w) through dripping, using a high-speed
shearing apparatus at 9000 rpm for 300 s. The resulting pre-emulsion underwent sonication
using an ultrasound device equipped with a 13 mm diameter ultrasonic tip (Eco-Sonics,
Indaiatuba, SP, Brazil), operating at a frequency of 20 kHz and power of 80%, for 60 s [13].
Concentrations were selected based on pre-formulation studies encompassing the lower
and upper limits of each variable.

In the second stage, the pre-emulsion was dripped into an aqueous phase consisting
of a surfactant agent (Cremophor RH 40) and 0.1 M saline solution, as outlined in Table 1,
using a high-speed shearing device at 9000 rpm for 300 s. Hyaluronic acid was subsequently
introduced, and stirring was continued for 2 h at room temperature (25 ◦C) employing a
magnetic stirrer [14]. The control formulation followed identical procedures but omitted the
incorporation of C. recutita extract into the pre-emulsion. All preparations were conducted

https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/metaboscape.html
https://www.bruker.com/en/products-and-solutions/mass-spectrometry/ms-software/metaboscape.html
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in triplicate and left to stand for 24 h at 25 ± 1 ◦C before characterization. The selection of
surfactant was based on previous studies confirming its safety and non-toxicity [15,16].

Table 1. Composition of nanoemulsion systems (%, w/w).

Nanoemulsion
System

Pre-Emulsion
without C. recutita

Pre-Emulsion
with C. recutita Cremophor Saline

Solution (0.1 M) HA

C1 20.0 - 7.5 72.5 -
C1 + HA 20.0 - 7.5 71.5 1.0

C2 20.0 - 10.0 70.0 -
C2 + HA 20.0 - 10.0 69.0 1.0

C3 20.0 - 12.5 67.5 -
C3 + HA 20.0 - 12.5 66.5 1.0

F1 - 20.0 7.5 72.5 -
F1 + HA - 20.0 7.5 71.5 1.0

F2 - 20.0 10.0 70.0 -
F2 + HA - 20.0 10.0 69.0 1.0

F3 - 20.0 12.5 67.5 -
F3 + HA - 20.0 12.5 66.5 1.0

C: nanoemulsion system without C. recutita extract. F: nanoemulsion system loaded with C. recutita extract. HA:
hyaluronic acid for stabilization.

2.5. Nanoemulsion Systems Characterization
2.5.1. Droplet Size and Polydispersity Index

For droplet size and polydispersity index (PDI) measurements, 20 µL of samples were
dispersed in 20 mL of 0.1 M NaCl solution at the time of analysis. The refractive index of the
oil phase was 1.420. Analyses were conducted using a laser diffraction particle size analyzer
(Partica LA-960, HORIBA Scientific, Piscataway, NJ, USA), with an evaluation range from
10 nm at 5 mm, at 25 ± 1 ◦C, in triplicate. Results were expressed as the mean ± standard
deviation.

2.5.2. pH

pH was measured in triplicate using a potentiometer calibrated at 25 ± 1 ◦C (Ionlab®,
PHB 500, Araucária, PR, Brazil).

2.5.3. Viscosity

Viscosity was measured at speeds ranging from 1 to 40 rpm using number 2 cylindrical
spindles, with readings limited to the maximum speed, in a digital Brookfield viscome-
ter (QUIMIS®, model Q860M26, Diadema, SP, Brazil). The instrument provided precise
readings of ±2.0% with a measurement range of 1 to 6,000,000 mPa s, at 25 ± 1 ◦C [17].

2.5.4. Zeta Potential

Surface charge was determined by electrostatic mobility using a particle analyzer
(Malvern Panalytical, Malvern, UK) at 25 ± 1 ◦C. Aliquots were diluted 1:200 with NaCl
(pH = 7.40 ± 0.05) immediately before analysis. Zeta potential was calculated using the
Helmholtz–Smoluchowski equation [18].

2.6. Morphology

For morphological evaluation, the F2 + HA nanoemulsion was placed on a 300-mesh
copper grid coated with carbon film and negatively stained with a 2% phosphotungstic
acid solution. The grids were air-dried for 24 h at 25 ± 1 ◦C [19], and images were captured
using transmission electron microscopy (TEM) (JEOL JEM 1400 TEM, Peabody, MA, USA).

2.7. In Vitro Antimicrobial Activity

The minimum inhibitory concentration (MIC) was determined using the serial mi-
crodilution method in 96-well plates, in triplicate, following a previously described method-
ology [9]. The test was performed against the following microorganisms: Staphylococcus
aureus (ATCC 12026), Streptococcus pyogenes (ATCC 19615), Escherichia coli (ATCC 25922),
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and Pseudomonas aeruginosa (ATCC 9027). The positive control comprised the first three lines
containing broth, microorganisms, and commercial antimicrobial (neomycin at concentra-
tions ranging from 1.22 × 10−3 to 2.5 mg mL−1). The negative control consisted of the last
line containing broth and microorganisms. The C. recutita extract, as well as the nanoemul-
sions control (C2 and C2 + HA) and those loaded with extract (F2 and F2 + HA), were
added to microplates containing BHI at concentrations ranging from 0.24 to 500 mg mL−1.
The plates were then incubated at 36 ºC for 24 h, after which 2% TTC developer was added
and the appearance of a pink color was observed, indicating bacterial growth.

2.8. Statistical Analysis

The results were subjected to analysis of variance (ANOVA) and compared using the
Tukey test at a significance level of 5%, using the STATISTICA 13.0 program (Statsoft®,
Tulsa, OK, USA).

3. Results

This study aimed to prepare, characterize, and integrate C. recutita extract into a
nanoemulsion system stabilized with HA, with the potential to combat bacterial infections
and facilitate differential healing of skin lesions. Different alcoholic contents were employed
to optimize the extraction of flavonoids (Table 2).

Table 2. Total flavonoid content (µgQUE mgext
−1) in C. recutita extracts as a function of the extractive

alcohol content.

Method Alcohol Content (%) Total Flavonoid Content (µgQUE mgext−1)

Vortex
Extraction

50.0 165.08 ± 2.55 c

60.0 195.53 ± 4.03 c

70.0 280.41 ± 2.19 a

80.0 275.10 ± 3.38 ab

90.0 233.33 ± 1.28 b

100.0 176.73 ± 0.57 c

Infusion 0.0 117.08 ± 0.89 d

Mean value (n = 3) ± standard deviation. Averages showing the same letter within columns do not differ
significantly from each other (p < 0.05) according to the ANOVA with Tukey’s test.

The 70% ethanol extraction yielded a higher TFT, and the extract obtained under this
condition underwent phytochemical characterization by UHPLC-MS (Table 3). This extract,
at a concentration of 1000 µg mL−1, exhibited scavenging capacities for DPPH and ABTS•+

radicals of 22.324 ± 0.36 µMTrolox and 778.593 ± 27.01 µmolTrolox gext
−1, respectively. Addi-

tionally, the reduction capacity of FRAP was measured at 1085.702 ± 23.31 µmolFe
2+ gext

−1.

Table 3. Phytochemical identification of C. recutita extract by UHPLC-MS.

Compound m/z Retention Time
(min) % *

Spireoside 463.08 14.50 29.47
Apiin 563.09 17.24 12.62

Corymbosin 357.09 11.03 6.34
Isoxanthohumol 353.09 17.12 6.21

Kaempferol 3-O-neohesperidoside 593.12 18.53 6.05
Isosakuranin 447.13 3.36 4.10
Xanthohumol 353.13 20.10 3.58

Aspalathin 451.13 9.14 3.14
Scaposin 389.08 8.05 3.12

Salicylic acid 137.02 8.10 2.95
Neohesperidin 609.17 3.39 2.93
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Table 3. Cont.

Compound m/z Retention Time
(min) % *

Pseudobaptigenin 281.04 3.93 2.84
Humulone 361.20 11.04 2.67

Morin 299.02 19.15 2.55
Apigenin 269.10 11.88 2.55

Kaempferol-3-O-glucoside 447.08 16.09 1.62
4′,7-dimethoxy-5-hydroxyflavanone 299.09 3.23 1.38

5,7-dihydroxy-2′-methoxyflavone 283.06 3.34 1.14
Kaempferide 299.05 3.21 0.90

Chrysin 253.05 3.39 0.90
4-Malonyl ononin 267.06 3.11 0.83

3-Ara-28-Glu hederagenin 811.44 3.39 0.82
Luteolin 4′-O-glucoside 447.09 15.32 0.38

Sinapoyl malate-4′-methyl ester 353.06 4.22 0.37
6-Methoxyluteolin 315.05 10.52 0.29

Naringin 579.17 12.56 0.20
Sinapoyl malate-1′-methyl ester 353.07 3.16 0.07

Free flavonoids 65.62
Glycosylated flavonoids 15.63

Cinnamic acid derivatives 6.25
Organic acids 6.25
Cyclic ketone 3.13

Terpenes 3.12
* Percentages of phytochemical compounds were calculated based on the total amount of identified compounds.

Smaller droplet sizes and PDI values (Table 4) were attained with a 10.0% surfactant
concentration (hydrophilic–lipophilic balance = 11.37). Incorporating the C. recutita extract
did not cause a statistically significant difference in droplet size or PDI, compared to the
corresponding control, indicating that the extract does not interfere with nanoemulsion
formation. The systems exhibited pH levels compatible with topical application and
satisfactory zeta potential.

Table 4. Influence of different surfactant concentrations on the size, PDI, pH, viscosity, and zeta
potential of nanoemulsion systems loaded with C. recutita and stabilized with HA.

Formulation Droplet Size (nm) PDI pH Viscosity (mPa s) * Zeta Potential
(mV) **

C1 254.09 ± 14.13 a 0.296 ± 0.015 ab 6.37 ± 0.15 bc 339.80 ± 20.35 g -
C1 + HA 258.95 ± 3.18 a 0.262 ± 0.007 bcd 6.28 ± 0.03 cde 2316.97 ± 45.54 e -

C2 139.12 ± 10.49 c 0.118 ± 0.006 g 6.55 ± 0.14 ab 268.83 ± 5.46 g −41.93 ± 1.67 c

C2 + HA 142.19 ± 16.54 c 0.196 ± 0.006 f 6.28 ± 0.02 cde 2543.87 ± 77.01 d −51.83 ± 1.27 b

C3 231.45 ± 9.99 ab 0.244 ± 0.010 cde 6.55 ± 0.05 ab 338.73 ± 15.80 g -
C3 + HA 248.32 ± 8.80 a 0.279 ± 0.009 abc 6.33 ± 0.01 bcd 2969.07 ± 148.38 b -

F1 254.09 ± 4.20 a 0.278 ± 0.008 abc 5.80 ± 0.08 g 306.93 ± 17.38 g -
F1 + HA 262.63 ± 11.50 a 0.218 ± 0.011 ef 6.09 ± 0.00 ef 2039.97 ± 40.26 f -

F2 139.70 ± 3.96 c 0.116 ± 0.007 g 6.50 ± 0.05 abc 295.93 ± 37.89 g −51.6 ± 0.3 b

F2 + HA 173.85 ± 1.91 bc 0.144 ± 0.006 g 6.52 ± 0.02 ab 2840.23 ± 180.79 bc −55.2 ± 0.4 a

F3 231.45 ± 12.09 ab 0.235 ± 0.007 de 5.97 ± 0.16 fg 330.03 ± 32.58 g -
F3 + HA 245.57 ± 8.73 ab 0.255 ± 0.008 cde 6.12 ± 0.04 def 3515.27 ± 197.25 a -

Results are expressed as mean ± standard deviation (n = 3). Different letters within the same column represent
significant differences (p < 0.05). C: nanoemulsion system without C. recutita extract. F: nanoemulsion system
loaded with C. recutita extract. HA: hyaluronic acid for stabilization. * Viscosity at 5 rpm. ** Only the most
promising formulations were evaluated for zeta potential.

The incorporation of HA notably elevated the viscosity of the nanoemulsion systems
compared to those not stabilized with HA. Moreover, higher surfactant concentrations in
HA-stabilized systems resulted in a slight increase in resting viscosity. Rheogram analysis
revealed pseudoplastic flow behavior (Figure 1), confirming the heightened viscosity in
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nanoemulsions stabilized with HA. Importantly, the addition of the extract did not exert a
significant influence on viscosity parameters.
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Figure 1. Surfactant concentration effect on the rheology of a nanoemulsion system loaded with
C. recutita extract and stabilized with hyaluronic acid. (A) Nanoemulsions with 7.5% surfactant;
(B) nanoemulsions with 10.0% surfactant; and (C) nanoemulsions with 12.5% surfactant. C: na-
noemulsions system without C. recutita extract. F: nanoemulsions system loaded with C. recutita
extract. HA: hyaluronic acid for stabilization.

To elucidate the morphology and validate the droplet size, the nanoemulsion exhibit-
ing satisfactory characteristics (F2 + HA) was examined via TEM. As depicted in Figure 2,
the nanoemulsion displays a spherical shape with a narrow distribution. Additionally, the
presence of HA chains surrounding the droplets was observed. Importantly, the droplet
size observed aligns with the data obtained from laser diffraction.
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In conclusion, the assessment of MIC affirmed the efficacy of C. recutita extract and
nanoemulsions loaded (F2) and stabilized with HA (F2 + HA) in inhibiting bacterial
multiplication (Table 5). It is noteworthy that the MIC for F2 denotes the concentration
(mg mL−1) of nanoemulsion, where 250 mg is equivalent to 0.5 mg of C. recutita extract,
indicating the augmentation of the antibacterial effect of the extract when incorporated into
the nanoemulsion system. Additionally, the stabilization of the system with HA reduced
the MIC against S. aureus and P. aeruginosa (MIC equivalent to 0.333 mg of extract). As
anticipated, nanoemulsions (C2 and C2 + HA) lacking C. recutita extract demonstrated no
inhibitory activity.
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Table 5. Minimum inhibitory concentration (mg mL−1) of the pure C. recutita extract incorporated
into a nanoemulsion system stabilized with HA.

S. aureus S. pyogenes E. coli P. aeruginosa

C. recutita extract 26.04 ± 9.02 1.62 ± 0.56 62.50 ± 0.00 15.62 ± 0.00
C2 - - - -

C2 + HA - - - -
F2 * 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00 250.00 ± 0.00

F2 + HA * 166.66 ± 72.16 250.00 ± 0.00 250.00 ± 0.00 166.66 ± 72.16
Neomycin 4.88 × 10−3 ± 0.00 4.88 × 10−3 ± 0.00 39.06 × 10−3 ± 0.00 9.76 × 10−3 ± 0.00

* Values correspond to the amount (in mg mL−1) of nanoemulsion required for antimicrobial effect. (-) indicates
no activity. C: nanoemulsion system without C. recutita extract. F: nanoemulsion system loaded with C. recutita
extract. HA: hyaluronic acid for stabilization.

4. Discussion

The vortical extraction method demonstrated a significantly higher potential for
flavonoid extraction when using 70% ethanol. This observation is consistent with findings
by Weber et al. [20], who illustrated superior extraction outcomes for chamomile using
hyphenation techniques at the same ethanol concentration. Additionally, Asadi et al. [21]
reported that C. recutita extract in 70% ethanol affects macrophages, promoting the reduction
of nitric oxide synthesis and displaying anti-inflammatory properties. This activity was
attributed to apigenin, which was also identified during the chemical characterization of
our extract.

Furthermore, among the identified compounds, luteolin, naringin, kaempferide, and
its conjugates, as well as salicylic acid, are commonly encountered [22–26]. Evidence sug-
gests that spireoside, the predominant component, functions as an effective antioxidant and
anti-inflammatory agent in wound healing by reducing reactive oxygen species (ROS) [27].

Flavonoids comprise the majority class in the floral heads of C. recutita. These com-
pounds are directly linked to antioxidant, cytotoxic, anti-allergic, analgesic, and bactericidal
activities, as well as acceleration of the healing process [28–30]. Studies on structure-activity
relationships have identified several factors potentially responsible for the high antioxidant
activity of flavonoids. These factors include the presence of hydroxyl groups at positions 3
and 5 of ring A, position and quantity of –OH in ring B, degree of methylation of 3–OH,
the double bond between carbons 2–3 in conjugation, presence of the 4–oxo function in the
C ring, and angulation of flavonoid skeleton [31,32].

Furthermore, after a skin injury, ROS over production during the inflammatory phase
can induce damage and hinder wound healing [33]. Hence, the application of C. recutita
extract offers a promising alternative as a natural product in the development of topical
delivery systems. Moreover, the extract has demonstrated potential antimicrobial activity,
fostering a conducive environment for the healing process.

Flavonoids are well known for their antimicrobial effects through various mechanisms.
For example, apigenin disorients the lipid components of the membrane, leading to cell
disruption [34]. Additionally, apigenin, naringenin, kaempferol, chrysin, and quercetin
interfere with biofilm formation [35]. Moreover, epicatechin and quercetin, along with their
glycosylated derivatives such as spireoside, induce oxidative damage to the membrane,
increasing cellular permeability [36]. Furthermore, quercetin and luteolin inhibit bacterial
DNA replication [34].

Notably, variations in surfactant concentration during the nanoemulsion system de-
velopment cause changes in droplet size and PDI. As the concentration of surfactant agent
increases up to 10.0%, particle size and PDI gradually decrease. This is because surfactants
play a crucial role in maintaining the stability and resistance of nanoemulsion structures
to variations [37]. However, adding surfactants at concentrations above the ideal leads to
particle entanglement, thereby destabilizing the system [38]. This observation aligns with
the data presented here, wherein a concentration of 12.5% surfactant increased in size and
droplet PDI.

In general, most nanoemulsions without HA exhibited a narrower size distribution.
The increase in droplet diameter and PDI in the presence of HA can be attributed to the
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presence of HA chains at the interface of the oil droplets and the formation of surfactant–
HA aggregates on the interfacial surface of the droplet [14]. Despite the increase in PDI,
the values remained below 0.3, which is considered a narrow distribution and indicates
homogeneous droplets [19,39]. Although coalescence is an unfavorable phenomenon for
emulsifier systems and occurs in formulations with high PDI, it is important to note that
PDI is only one of the general factors that influence stability. Therefore, despite the increase
in PDI, HA also increased viscosity, reducing Brownian movement and collision between
droplets and consequently protecting the coalescence system [14].

The viscosity increase resulting from HA inclusion is linked to the hygroscopic nature
of the molecule. This property attracts water to its polysaccharide structure, forming a three-
dimensional network capable of enhancing the viscoelasticity of emulsifying systems [40].
The rheograms revealed that as shear force increased, viscosity tended to decrease, a
characteristic of formulations with pseudoplastic flow [14]. This phenomenon occurs
because as shear stress rises, the polymer structure aligns along the shear direction, resulting
in faster subsequent shear and a decrease in apparent viscosity [19]. Notably, HA exhibits
great potential as a carrier molecule for delivering active ingredients, both in topical
and transdermal systems. Its viscoelasticity, biocompatibility, biodegradability, and non-
allergenic characteristics make it pivotal for the development of emulsions [41].

The pH of a formulation must be compatible with biological tissues to ensure its
stability and effectiveness. Additionally, extremely low pH values should be avoided in
nanoemulsion systems because they diminish electrostatic repulsion between particles,
leading to an increase in droplet size and coalescence [42]. In this study, the pH of the
nanoemulsions ranged between 5.80–6.55, which is suitable for topical application [43].
Studies have indicated that pH values close to neutrality (≈6–7) promote an increase in zeta
potential in emulsions containing HA. This occurs through the deprotonation of carboxyl (–
COO–) and hydroxyl (OH–) groups in the molecular structure of HA, imparting a negative
charge to the oil–water interface [14,44,45], consistent with the findings of this study.

High zeta values (>30 mV absolute value) have been proposed as an indicator of
physical stability, as they ensure the creation of a high repulsive energy barrier between
lipid droplets [46]. Furthermore, in addition to the effect of HA at the droplet interface, the
use of a non-ionic surfactant (Cremophor) on the surface also contributed to the adequate
absolute zeta value. This is due to the presence of free fatty acids in the surfactant, which
facilitate the adsorption of OH– ions from the water onto the surface of the droplets,
resulting in a negative charge at pH close to neutrality [14,47]. Based on the smallest
droplet size and satisfactory PDI, zeta potential, pH, and viscosity, the nanoemulsions
prepared with 10.0% surfactant were found to be promising for the intended purpose and
were evaluated for antimicrobial effect.

In the early infection stage, S. aureus and S. pyogenes are the dominant pathogens
involved, while E. coli and P. aeruginosa are more frequently found when a chronic wound
develops [48]. Notably, in addition to antimicrobial resistance, S. aureus and P. aeruginosa
are strains that most express virulence factors affecting skin healing [49]. Although the an-
timicrobial activity of chamomile is well-documented scientifically, this work found that the
incorporation of the extract into the nanoemulsion system (F2) enhanced the antimicrobial
effect compared to the isolated extract, against all bacteria tested. Furthermore, in addition
to providing an adequate skin distribution system, the emulsification or encapsulation of
antimicrobial agents can accelerate their absorption and increase the bioavailability of the
active ingredients, thereby enhancing the therapeutic effect [50], justifying the findings of
this study.

Additionally, against S. aureus and P. aeruginosa, the MIC significantly decreased after
stabilization of the nanoemulsion with HA (F2 + HA), indicating a possible synergistic
effect. According to Zamboni et al. [51], HA can exert a bacteriostatic effect. Therefore,
incorporating products with antimicrobial action in systems with HA can potentially
generate a synergistic action, inhibiting the multiplication of bacteria and promoting an
effective approach to treating topical infections.
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Hyaluronic acid plays an integral role in wound healing, facilitating fibrin coagulation,
modulating inflammatory response, promoting re-epithelialization, inducing migration
and multiplication of dermal fibroblasts, and favoring angiogenesis [52]. Hence, combining
the fight against oxidative stress and the antimicrobial effect of C. recutita extract, linked
to the inherent benefits of the presence of HA in a formulation, leads to the inference that
the F2 + HA nanoemulsion has potential for topical application, with a possible auxiliary
effect on the healing process. The scope of this study was limited to the development of the
nanoemulsion system. In future studies, the physicochemical stability and in vivo wound
healing activity should be evaluated.

5. Conclusions

C. recutita extract, prepared with a 70% hydroalcoholic solution, exhibits in vitro antimi-
crobial activity against S. aureus (MIC = 26.04 mg mL−1), S. pyogenes (MIC = 1.62 mg mL−1),
E. coli (MIC = 62.50 mg mL−1), and P. aeruginosa (MIC = 15.62 mg mL−1) and antioxidant
capacity in DPPH, ABTS, and FRAP assays (22.32 µMTrolox, 778.59 µmolTrolox gext

−1 and
1085.70 µmolFe

2+ gext
−1, respectively). This antimicrobial activity is further enhanced by

incorporating the extract into a nanoemulsion system stabilized with HA. Based on physic-
ochemical data, F2 + HA, formulated with 10.0% surfactant agent, 1.0% HA, and enriched
with C. recutita extract, demonstrates homogeneous droplet size and PDI, a pH compatible
with the skin, and satisfactory zeta potential and viscosity. These attributes make it suitable
for topical application, potentially assisting in healing processes.
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