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Abstract: Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases
characterized by the gradual loss of neurons, culminating in the decline of cognitive and /or motor
functions. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common NDs and
represent an enormous burden both in terms of human suffering and economic cost. The available
therapies for AD and PD only provide symptomatic and palliative relief for a limited period and are
unable to modify the diseases’ progression. Over the last decades, research efforts have been focused
on developing new pharmacological treatments for these NDs. However, to date, no breakthrough
treatment has been discovered. Hence, the development of disease-modifying drugs able to halt or
reverse the progression of NDs remains an unmet clinical need. This review summarizes the major
hallmarks of AD and PD and the drugs available for pharmacological treatment. It also sheds light
on potential directions that can be pursued to develop new, disease-modifying drugs to treat AD and
PD, describing as representative examples some advances in the development of drug candidates
targeting oxidative stress and adenosine A2A receptors.

Keywords: neurodegenerative diseases; Parkinson’s disease; Alzheimer’s disease; drug discovery;
disease-modifying drugs

1. Introduction

Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable
neurological disorders characterized by the loss of neurons and synaptic connections, which
irreversibly produce a series of events commonly related to motor disability, cognitive
impairment, and dementia [1]. They represent an enormous disease burden, both in
terms of human suffering and economic costs [2], being the foremost contributors to
incapacity and dependence due to their debilitating nature [3]. The most common NDs
include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease (HD),
and Amyotrophic Lateral Sclerosis (ALS).

The etiology of NDs is not completely understood and the onset of neurodegeneration
may precede the clinical symptoms by many years. However, it is generally accepted that
the pathogenesis of NDs is multifactorial, involving a complex combination of genetic, envi-
ronmental, and endogenous factors acting cooperatively or independently [4,5]. Although
each disease presents its particular molecular mechanisms and clinical manifestations
(Figure 1), NDs share common pathogenic events [6].

Despite the intensive research performed so far, to date, no breakthrough treatment has
been discovered. The available therapies for NDs only provide symptomatic and palliative
relief for a limited period [7] and are unable to modify the disease progression [8,9].
Therefore, the development of disease-modifying drugs able to prevent, halt or reverse
the progression of NDs remains an unmet clinical need. In this review, we summarize
the major hallmarks of AD and PD, the drugs available for pharmacological treatment,
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and future directions for the development of new and disease-modifying drugs to treat
these NDs.
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Figure 1. Primary brain regions affected in the most common neurodegenerative diseases. Adapted
from [6].

2. Alzheimer’s and Parkinson’s Diseases: The Epidemiologic Forecast

The average human lifespan of the worldwide population has been rising in recent
decades [10]. Several factors seem to contribute to this success, namely the cumulative
progress in sanitation and medical care, rising living standards, and the decline in child
mortality [10,11]. Although the increased life expectancy must be celebrated, a proportional
rise in the frequency and prevalence of NDs is expected [10,12]. Therefore, the rise of elderly
populations has been soaring with the increased incidence of age-related degenerative
diseases, reaching epidemic proportions in high-income countries [13]. Several genetic risk
factors, lifestyles, and environmental exposure to a diversity of pollutants are implicated in
the neurodegeneration process [14]. In 2020, the worldwide population with age higher
than 65 years was estimated to be 727 million, a 195 million increase since 2010. Over the
next three decades, the number of worldwide elderly is projected to more than double,
reaching over 1.5 billion in 2050. By mid-century, one in six people globally will be aged
65 years or older [15]. Although the increase in longevity represents a progress per se, it
can become a social, economic, and medical burden when it is not associated with the
maintenance of the quality of life. The World Health Organization indicated that central
nervous system (CNS) diseases are the major medical challenge of the 21st Century. Among
them, NDs, namely AD and PD, are the most prevalent CNS disorders [16].

The World Health Organization recognized AD as the most common form of dementia
in the elderly, accounting for 50-56%, and a major cause of death, being considered one of
the greatest global public health challenges [17,18]. Currently, the number of people aged
65 and older affected by AD dementia is more than 55 million worldwide and it is expected
that this number will rapidly increase to 132 million by 2050 [19,20].

The overall number of people diagnosed with PD has also been growing progressively
at a global level. In 2019, approximately 8.5 million individuals received a PD diagnosis.
Estimates suggest that, in 2019, PD resulted in 5.8 million disability-adjusted life years, an
increase of 81% since 2000, and caused 329,000 deaths, an increase of over 100% since 2000.
This estimation is expected to increase to 12 million people in 2050 [21,22].

3. Major Hallmarks of Alzheimer’s and Parkinson’s Diseases
3.1. Alzheimer’s Disease

Alzheimer’s disease was first diagnosed in 1906 by Dr. Alois Alzheimer, when he
noticed changes in the brain tissue of a woman who had died of an unusual mental
illness [23].

AD is an irreversible, complex, and progressive ND that results in cognitive impair-
ment and memory injury. Despite its prevalence among the elderly, AD dementia is distinct
from a normal aging process [24]. The progression of AD can be divided into three stages.
The first is often mistakenly attributed to age-related upsets or manifestations of stress [25].
In this stage, the patient has memory lapses such as forgetting familiar words or the loca-
tion of everyday objects, which denotes its lack of ability to produce new memories and
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skills [26,27]. The second stage of AD is typically the longest one and can last for many
years. Herein, the progressive deterioration of neurons can lead to problems with speech
and severe difficulties in reading and writing. During this phase, memory problems worsen,
and the patient may fail to recognize close relatives [28]. In the most advanced phase, AD
patients show loss of cognitive and motor functions, confusion, and disorientation, with
most patients having mobility problems, hallucinations, and delirium, leading to absolute
dependence on 24 h supervision, hospital care, and unavoidable death [29,30].

Although the specific cause of AD is still unknown, it is well recognized that a multi-
plicity of pathological stimuli can play a key role, which causes an increased risk of disease
development [31,32]. Age and family history of the disease are considered the strongest risk
factors for familial and sporadic AD [33]. The presence of the €4 allele of the apolipoprotein
E4 (ApoE4) genotype, found on chromosome 19, appears to be a primarily risk factor for
patients with sporadic AD [34-36]. In addition, genetic mutations in APP on chromosome
21, presenilin-1 (PSEN-1) on chromosome 14, and presenilin-2 (PSEN-2) on chromosome
1 can also cause familial AD [37,38]. Other putative risk factors include head trauma,
depression, diabetes mellitus, hypothyroidism, and a series of vascular factors [39,40].

A conclusive diagnosis of AD requires a detailed post-mortem microscopic exami-
nation of the brain [37]. However, AD can be currently diagnosed with more than 95%
accuracy in living patients by carefully analyzing the patients’ family history, assessing
cognitive function with neuropsychological tests, and evaluating AD biomarkers, namely
with high-tech neuroimaging data or cerebrospinal fluid analysis [41,42].

The progressive cognitive impairment observed in AD patients can be associated
with the significant reduction of brain size [43]. The brain atrophy arises from the loss of
synapses and from the selective neuronal death in the hippocampus and in the cerebral
cortex [43—46]. The most prominent losses are observed in neurons with long projections,
such as cholinergic neurons in the basal forebrain (Figure 2A) [47]. These neurons innervate
the hippocampus, thalamus, amygdala, and neocortex, and play key roles in attention,
cognitive flexibility, and learning [48]. Although the neurons that degenerate in AD are
mostly cholinergic [49], glutamatergic neurons are also affected [50].

AD is characterized by extensive atrophy of the brain caused by two main neuropatho-
logic changes—the formation of amyloid plaques (also called senile plaques) and the ap-
pearance of neurofibrillary tangles (NFTs)—that lead to neuronal loss and synaptic changes
in brain-specific areas essential for cognitive and memory functions (Figure 2B) [51].
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Figure 2. Major hallmarks of AD. (A) Degeneration of cholinergic neurons in the basal forebrain.
(B) Formation of senile plaques and neurofibrillary tangles. Adapted from [52].
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The amyloid plaques result from the abnormal extracellular accumulation and depo-
sition of insoluble aggregates of fibrillar $-amyloid (AB) [53]. Sequential cleavage of the
amyloid precursor protein (APP) in the cell membrane by the enzymes-f3 and Y-secretases
gives rise to the family of AP peptides (most commonly, 40—42 amino acids in length) [54,55].
Although the formation of A is believed to be a physiological process in normal aging [56],
AP1-42 isoform was identified as a major contributor to the disease process [57,58].

Intracellular NFTs are formed by aggregated misfolded tau protein (tau-P), the major
microtubule-associated protein predominantly found in the axons of mature neurons [59].
In AD, tau hyperphosphorylation induces a loss of function that hampers its ability to
bind to microtubules, leading to microtubule depolymerization that compromises the
axonal trafficking and the dendrite structure [60]. When tangle-bearing neurons die, NFTs
become extraneuronal and activate a series of neurotoxic processes that can cause synaptic
dysfunction and neuronal death [61]. Overall, AD brains show a decline in neuronal mass
in regions related to cognition and memory, which leads to a depletion of cholinergic
neurons and acetylcholine (ACh), resulting in synaptic dysfunction [47,62].

Other pathological features also play a crucial role in the progress of AD, including
cholinergic deficit, enhanced brain oxidative stress, the overproduction of free radical,
mitochondrial dysfunction, and the disruption of metal homeostasis [63]. The downstream
consequences of neuropathological processes contribute to neurodegeneration, with exten-
sive neuronal loss, synaptic changes, and brain neurotoxic events leading to macroscopic
atrophy [18,64].

3.2. Parkinson’s Disease

Initially described by the English surgeon James Parkinson in 1817, Parkinson’s disease
is the second most prevalent ND and the most common movement disorder [65].

Clinical manifestations of PD include four cardinal motor symptoms: bradykinesia,
resting tremor, rigidity, and postural instability [66,67]. Patients with PD may also experi-
ence numerous non-motor symptoms, such as autonomic deficiency, cognitive impairment,
neuropsychiatric problems (mood, cognition, behavior, or thought alterations), and both
sensory (especially altered sense of smell) and sleep disorders [7,67-69]. Non-motor symp-
toms are common in the PD early stages (pre-motor/prodromal phase) and frequently
precede the onset of motor symptoms [68,69]. Motor dysfunction worsens with the disease
progression and is managed with symptomatic treatments [69]. However, long-term ther-
apy is associated with the gradual loss of efficacy and the emergence of adverse effects such
as motor fluctuations, dyskinesia, and psychosis [69,70]. Late-stage PD is characterized
by treatment-resistant motor and non-motor symptoms that substantially contribute to
the patient’s disability [69]. The median age of the onset of PD is 60 years, and the mean
duration from diagnosis to death is 15 years [67].

Parkinson’s disease is mostly sporadic, resulting from a complex interplay between
genetic susceptibility and environmental factors [66]. However, approximately 5-10%
of PD cases are caused by familial genetic mutations [71,72] that usually result in early
onset PD [73]. Mutations in SNCA, LRRK2 and VPS35 genes were associated with auto-
somal dominant PD, while mutations in PINK1, PARK7/D]J-1, PARK2/PARKIN, PLA2G®6,
ATP13A2, and FBXO?7 cause autosomal recessive PD and/or parkinsonism [74]. Despite
being extensively studied, the gun trigger that causes PD remains unknown. An appraisal
of the literature points towards a complex multifactorial etiology, in which a multiplicity of
pathological stimuli contributes to the neurodegenerative cascade. So far, the main causes
include impaired calcium homeostasis, iron overload, inflammation, protein aggregation,
and defective metabolism [75]. In addition, several studies showed that oxidative stress
can cause neuronal death and mitochondrial dysfunction [76].

The motor dysfunction observed in PD is linked to the loss of dopaminergic neu-
rons in specific areas of the substantia nigra pars compacta (SNpc) region of the midbrain,
which contributes to severe dopamine (DA) deficiency in the putamen and the caudate nu-
cleus [77]. The cell bodies of nigrostriatal neurons are in the SNpc and their axon terminals
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are projected to the dorsal striatum (i.e., putamen and caudate nucleus) (Figure 3A) [5,72].
Dopamine synthesized in this brain region is directed to the striatum and frontal cortex,
allowing for the control of the musculoskeletal system and movement. Therefore, the
degeneration of dopaminergic neurons leads to a decrease in DA levels. Symptoms of PD
only develop after the loss of 50-60% of nigral neurons and the depletion of 70-85% of DA
levels [67,78]. Although the neuropathology of PD is primarily characterized by dopamin-
ergic neuron loss, neurodegeneration also extends to other neurotransmitter systems [68].
Indeed, cholinergic (nucleus basalis of Meynert, dorsal nucleus of vagus), serotonergic
(raphe), and noradrenergic (locus coeruleus) neurons are also affected [79].
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Figure 3. Major hallmarks of Parkinson’s disease. (A) Degeneration of nigrostriatal dopaminergic
neurons. (B) Formation of Lewy inclusions. Adapted from [80,81].

One pathological hallmark of PD is the formation of Lewy bodies, which are lamel-
lated and fibrillated aggregates that include x-synuclein («Syn) and ubiquitin [82]. The
accumulation of «Syn results in the death of dopaminergic neurons [83]. In dopaminergic
neurons, xSyn regulates the synthesis, storage, and release of DA [84]. «Syn is prone to
form oligomeric and fibrillar bodies in the cytosol or associate to the cellular membrane [85].
The formation of «Syn inclusions begins in the lower brainstem nuclei [86,87], spreads
through the pons to the midbrain and basal forebrain and reaches the neocortex [86]. These
inclusions may accumulate in neuronal perikarya (Lewy bodies) and neuronal processes
(Lewy neurites) (Figure 3B) [88,89]. The presence of these aggregates is associated with the
accumulation of synaptic vesicles, decreased DA release, the impairment of degradation
pathways, and increased oxidative stress [84].

4. Pharmacotherapy of Alzheimer’s and Parkinson’s Diseases

Neurodegeneration is a complex process resulting from multiple defects [90]. The
most obvious pathological features of AD and PD include the selective loss of neuronal
populations with a consequent decrease in neurotransmitter levels, and the formation
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of protein aggregates [66,91]. These observations led to the identification of the primary
brain enzymatic targets (e.g., cholinesterases (ChEs), monoamine oxidases (MAQOs), and
catechol-O-methyltransferase (COMT)) [90], which are related to the regulation of neuro-
transmitter levels, and to the subsequent development of the currently available therapeutic
agents [92,93].

4.1. Targeting Neurotransmitter Depletion in Alzheimer’s Disease

Cholinergic neurons are widely distributed in both the central and the peripheral
nervous systems [48]. Although they represent less than 1% of neurons in the nervous sys-
tem, almost every brain region and peripheral target receives cholinergic innervation [94].
Cholinergic neurons in the basal forebrain contain extensive cortical projections that are
involved in the modulation of other neurotransmitter systems [95].

Studies focusing on the cholinergic system have received particular attention since the
decline of cholinergic function was linked to age-related learning impairments and memory
loss in AD [96]. The damage or the presence of abnormalities in cholinergic pathways,
especially in the basal forebrain neurons, was correlated with the level of cognitive decline
in late-stage AD patients [97]. Together with the loss of cholinergic markers, such as
choline acetyltransferase (ChAT) and AChE, these observations led to the formulation
of the “cholinergic hypothesis” [98], which states that the dysfunction of the cholinergic
system contributes to the cognitive deficits in AD [99].

Acetylcholine (ACh) was the first neurotransmitter to be identified [100,101] and is
widely distributed in the nervous system, playing important functional roles in attention,
memory, learning, stress response, wakefulness and sleep, and sensory information [102].
The hippocampal and cortical levels of ACh in the brain of AD patients are decreased
by approximately 90% [103]. It also has a very important role in the structural and func-
tional remodeling of cortical circuits by establishing synaptic contacts in the networks of
cells [104,105].

The synthesis of ACh is catalyzed by ChAT in the cytosol of presynaptic cholinergic
neurons in a single-step reaction, in which choline and acetyl-coenzyme A (acetyl-CoA)
are used as substrates (Figure 4) [106]. While acetyl-CoA is synthesized by mitochon-
dria, choline is taken up from the extracellular space since it is not synthesized in neu-
rons [107]. The rate-limiting step for the synthesis of ACh is the uptake of choline by
the Na*-dependent, high-affinity choline transporter (ChT1) [108]. The neurotransmitter
ACh is then accumulated in synaptic vesicles by the vesicular acetylcholine transporter
(VAT). This transporter uses an electrochemical gradient generated by a proton adenosine
triphosphate (ATP)ase to perform the uptake of one ACh molecule in exchange for two
protons [107-109]. During neurotransmission, ACh is released from the presynaptic neuron
into the synaptic cleft, where it binds to cholinergic receptors (muscarinic or nicotinic) in
the postsynaptic and presynaptic membranes [106,110].

The action of ACh may persist for a long time due to the chemical stability of the
neurotransmitter [111]. Therefore, the rapid hydrolysis of ACh by cholinesterases is a
process to prevent cholinergic overactivation [112]. Two ChEs are present in mammals and
can metabolize Ach: acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) [98].
While the Ch obtained from Ach inactivation is taken up by a pre-synaptic neuron via
ChT1 [96,106,111], acetic acid is further decomposed [111].
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Figure 4. Enzymes and transporters involved in the synthesis, storage, and metabolism of
acetylcholine. Abbreviations: Ach, acetylcholine; AchE, acetylcholinesterase; BchE, butyryl-
cholinesterase; ChT1, high-affinity choline transporter; VAT, vesicular acetylcholine transporter.
Adapted from [110,113].

Although different approaches have been investigated to improve cholinergic neuro-
transmission by modulating ACh release [114,115], cholinesterase inhibitors are the only
pharmacological strategy approved so far. Cholinesterase inhibitors enhance cholinergic
neurotransmission through the inhibition of ChEs, thereby decreasing the breakdown
of ACh and increasing its levels at the synaptic cleft. In healthy human brains, AChE
represents 80% of the ChEs activity, while BChE plays a supporting role [116]. Over the
progression of AD, AChE levels decrease as much as 85% in specific brain areas [95], while
BChE levels increase, possibly as a result of glial cell proliferation [113]. As a result, the
ratio of BChE to AChE in the cortical areas of the brain shifts from 0.2 to as much as 11 [95].
In AD, the elevated BChE levels are a compensatory mechanism for ACh metabolism [113].
Therefore, the inhibition of both AChE and BChE is considered desirable for the effective
management of AD [90,117]. AChE inhibitors are used to treat cognitive and behavioral
symptoms of AD patients. Currently available AChE inhibitors used in AD therapy include
donepezil, rivastigmine, and galantamine (Figure 5) [118].

AChE inhibitors can be prescribed with memantine (Figure 5), an uncompetitive and
low-affinity N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist approved for
the treatment of moderately severe to severe AD [119-121]. The NMDAR is an ionotropic
receptor of glutamate, the main neurotransmitter in CNS [115]. The activation of NMDAR
generates a long-lasting influx of Ca?" into neurons, which isthought to be involved in
the cellular processes underlying learning and memory [122,123]. In AD, an increase in
extracellular glutamate is observed, leading to the excessive activation of NMDAR with
consequent intracellular accumulation of Ca?* and neuronal death [124]. By blocking
excessive NMDAR activation, memantine antagonizes glutamate-mediated excitotoxicity
and prevents neuronal cell death [125].
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4.2. Targeting Neurotransmitter Depletion in Parkinson’s Disease

Dopamine is a catecholamine neurotransmitter present in the CNS and in some pe-
ripheral areas [126]. In the brain, DA transmission is associated with the control of fine
motor movements and with cognitive functions that include learning, reward, attention,
and decision-making [126,127]. The DA released in the nigrostriatal pathway is linked to
the performance of voluntary movements, as well as the selection and initiation of suitable
motor actions [128].

In the cytoplasm of the presynaptic dopaminergic neuron, DA biosynthesis occurs
in two steps (Figure 6). The first step involves the hydroxylation of tyrosine into L-3,4-
dihydroxyphenylalanine (L-DOPA) by tyrosine hydroxylase (TH), which is followed by
a decarboxylation reaction catalyzed by aromatic amino acid decarboxylase (AADC) to
afford DA [81,129]. The neurotransmitter is then transported into synaptic vesicles by the
vesicular monoamine transporter (VMAT2) or metabolized by intraneuronal monoamine
oxidase A (MAO-A) [130]. Following the release into the synaptic cleft, DA binds to
the dopaminergic receptors present in the postsynaptic neuron [129]. The transport of
the released DA into the presynaptic neuron occurs via a DA transporter (DAT) and is
followed by DA recycling into the synaptic vesicles or by DA deamination by MAO-A.
Alternatively, the DA transported into non-dopaminergic post-synaptic neurons and glial
cells is metabolized by MAO-B and COMT [130].
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Figure 6. Enzymes and transporters involved in the synthesis, storage, and metabolism of
dopamine. Abbreviations: 3-MT, 3-methoxytyramine; AADC, aromatic amino acid decarboxy-
lase; COMT, catechol-O-methyltransferase; DA, dopamine; DAT, dopamine transporter; DOPAC,
3,4-Dihydroxyphenylacetic acid; HVA, homovanillic acid; L-DOPA, L-3,4-dihydroxyphenylalanine;
MAO-A, monoamine oxidase A; MAO-B, monoamine oxidase B; TH, tyrosine hydroxylase; VMAT?2,
vesicular monoamine transporter. Adapted from [130,131].
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The loss of nigrostriatal dopaminergic neurons is associated with the development of
the motor symptoms of PD, namely the difficulty in initiating and terminating movements,
gait disturbance, and muscular rigidity [128]. Therefore, to reduce the severity of motor
handicaps, most PD therapies are based on enhancing the dopaminergic signaling [92,132].

The use of the DA precursor L-DOPA (Figure 7) remains the gold-standard treatment
for PD [133]. Unlike DA, L-DOPA can cross the blood-brain barrier (BBB) and increase
DA synthesis in the brain [129]. To prevent the peripheral metabolic activation to DA,
L-DOPA is commonly administered with decarboxylase inhibitors (e.g., carbidopa and
benserazide) [134]. Despite the efficacy of L-DOPA in ameliorating motor symptoms,
its long-term use is associated with the progressive loss of efficacy together with motor
fluctuations and dyskinesia [70,135].
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Figure 7. Drugs in clinical use for PD treatment.
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In addition to L-DOPA, other therapeutic approaches involve the use of selective MAO-
B inhibitors (rasagiline, selegiline, safinamide), COMT inhibitors (entacapone, tolcapone
and opicapone) [136,137], or the agonists of postsynaptic DA receptors (pramipexole,
ropinirole, apomorphine) (Figure 7) [138,139].

Due to their pivotal role in neurotransmitter catabolism and their affinity for specific
neurotransmitters, MAQOs are considered attractive drug targets in the treatment of de-
pression and NDs [140,141]. In particular, MAO-B is the main isozyme involved in DA
metabolism in the aged Parkinsonian brain [142]. While MAO-A activity is maintained with
aging, the activity and expression of MAO-B in the human brain increase approximately
4-fold in most brain areas such as the basal ganglia [142,143], possibly as a result of glial cell
proliferation and the concomitant loss of neuronal cells [144]. The amplified MAO-B activity
leads to nigrostriatal DA depletion and to a higher production of H,O, and toxic aldehydes,
which contribute to increased oxidative stress and neuronal degeneration [142,143].

MAO-B inhibitors (Figure 7) are currently used in PD therapies to prevent DA
catabolism and prolong the action of DA in the basal ganglia [145]. The inhibition of
MAO-B may also decrease the formation of dopamine-derived oxidative products, thereby
delaying the disease progression [146]. Usually, MAO-B inhibitors are prescribed either
as monotherapy or in combination with L-DOPA. Their use in monotherapy is more effec-
tive at the early stages of PD and may delay the use of L-DOPA [147]. When combined
with L-DOPA, MAO-B inhibitors prolong the therapeutic effects of L-DOPA, decrease
the dose of L-DOPA required to control the symptoms, and reduce the occurrence of
L-DOPA-associated side effects [142,147].

COMT has received considerable attention due to its involvement in the metabolism
of L-DOPA [148]. Given adjunctively with L-DOPA, COMT inhibitors (Figure 7) decrease
L-DOPA premature inactivation, prolonging its half-life and improving its delivery to
the brain [148,149]. In addition, COMT inhibitors enable a decrease in both the dose and
administration frequency of L-DOPA, reducing “off” time (i.e., decreasing periods of time
when symptoms are more noticeable and movements are more difficult) and increasing
“on” time (i.e., increasing periods when PD patients experience good symptom control),
thereby improving and prolonging the clinical response to L-DOPA [149].

Inhibitors of peripheral (entacapone, opicapone, Figure 7) and cerebral COMT (tol-
capone, Figure 7) were developed and are available for the adjunctive treatment of PD.
Peripheral COMT inhibition decreases the systemic decomposition of L-DOPA. Still, COMT
inhibition in the CNS has the additional advantage of decreasing the metabolism of both
L-DOPA and DA in the brain [130].

4.3. Alzheimer’s and Parkinson’s Diseases: Looking for New Targets

Currently, the pharmacotherapy for AD and PD consists of drugs approved by the
Food and Drug Administration (FDA) that regulate neurotransmitter levels. Unfortunately,
they only provide valuable but modest symptomatic benefits, being unable to modify the
course of these diseases [9,150]. These treatments are also accompanied by limitations. For
instance, AChE inhibitors offer relatively short-lasting positive effects in AD patients [151]
and display cholinomimetic actions on the gastrointestinal tract that result in diarrhea,
nausea, and vomiting [152]. The efficacy of PD medicines also decreases over time, and
the chronic treatment often culminates in motor complications (e.g., L-DOPA-induced
dyskinesia) [153].

The need for beneficial neuroprotective agents has been the driving force for the devel-
opment of new and innovative therapeutic strategies, preferably with disease-modifying
outcomes. For instance, over the last years, efforts have been made to develop new drug
candidates able to tackle increased oxidative stress, metal dyshomeostasis (iron, copper),
neuroinflammation, and the aggregation of misfolded protein (Table 1). The following
subsections will discuss the development of pharmacological agents targeting oxidative
stress or the adenosine receptors in NDs as representative examples.



Pharmaceutics 2024, 16, 708

11 of 30

Table 1. Examples of therapeutic targets looked at for drug discovery and the development of AD

and PD.
Target
(Patho)physiological Process
AD PD
Metal dyshomeostasis copper [154]; iron [155]; zinc [156] Copper [157]; iron [158]
Mitochondria and metabolic functions MCL1 [159] ROCK [160], 6-opioid receptor [161]

Mutated /misfolded proteins

Amyloid-p [162]; B-secretase [163];
y-secretase [164]; GSK3-f [165];
RAGE [166]; Tau [167]

DJ1 [168]; LRRK2 [169]; Pink1 [170];
a-synuclein [171]; CK15 [172];
CK16+GSK3b [173]

Adenosine receptors [175]; cannabinoid
receptor 2 [176]; monoacylglycerol

Neuroinflammation NRLP3 inflammasome [174] lipase [177]; NRLP3 Inflammasome [178];
PPAR [179]; TRPC5 [180]
Apoptosis [184];
. . . o autophagy /neuroinflammation [185];
Neuroprotection Apoptosis [181]; ferroptosis [182]; sigma CDNEF peptidomimetic [186];

1 and 2 receptors [183]

ferroptosis [187]; nurrl [188]; sigma 1 and
2 receptors [189]

Oxidative stress

Antioxidants [190]; NRF2 signaling
pathway [191]

Aldose reductase [192]; NRF2 signaling
pathway [193]

Synaptic activity

AChE [110]; «7nAChR [194];
butyrylcholinesterase [195]; NMDA
receptor [196]

5-HT2A [197]; adenosine
receptors [198,199]; a6 AChR [200];
COMT [201]; dopaminergic D1-D4
receptors [202-204]; GPR6 [205];

MAO-B [206]; mGlu4 [207]; PDE4 [208]

4.3.1. Oxidative Stress as a Target in Alzheimer’s and Parkinson’s Diseases

Oxidative stress is one of the major contributors to the pathogenic cascade that leads
to neurodegeneration in AD and PD [209,210]. Evidence of reactive oxygen species (ROS)-
mediated injuries, with increased levels of oxidative markers and damaged cell components,
were observed in AD and PD brains [211]. A decline in the pool of endogenous antioxidants
and a decrease in the activity of antioxidant enzymes were also reported [25,212].

The brain is particularly prone to oxidative stress-induced damage. Although the
brain constitutes only ~2% of the total body weight, it is responsible for more than 20%
of the body’s oxygen consumption, with a significant amount of oxygen being converted
into ROS [210,213,214]. Despite this massive oxygen consumption, the brain presents a
lower content of endogenous antioxidants (e.g., glutathione and catalase) in comparison
to other tissues, thus being more sensitive to cellular redox dyshomeostasis [213,215]. In
addition, redox-active metals (e.g., iron and copper) accumulate in specific brain regions
and catalyze the formation of ROS [122,210]. Finally, the high levels of polyunsaturated
fatty acids in the brain increase the susceptibility to lipid peroxidation and subsequent
formation of toxic compounds [210,213,216].

The increased oxidative stress in NDs is strictly connected to other pathological events,
namely mitochondrial dysfunction, dopamine oxidation, neuroinflammation, and the
accumulation of protein aggregates (e.g., AP and x-syn) (Figure 8) [217].

Although ROS are generated in several cellular compartments, mitochondria is one
of the main sources of the overproduction of ROS [123]. The formation of ROS in mi-
tochondria occurs primarily at the ETC present in the inner mitochondrial membrane
(Figure 9) [124,210]. The mitochondrial ETC consists of a series of membrane-bound com-
plexes (complexes I, IL, Il and IV) [119], which generate a proton gradient across the inner
mitochondrial membrane through electron transfers, leading to the production of ATP by
ATP synthase (complex V) [210]. Metabolic intermediates formed during the Krebs cycle are
used for oxidative phosphorylation [120]. During the ETC, a small proportion of electrons
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occasionally leak and directly reduce O, to O3~ [120,121], which is, in turn, converted into
other ROS such as H,O, and HO® [123]. The formation of O~ occurs mainly in complexes
I and III [121,218]. Enzymes from the Krebs cycle (e.g., x-ketoglutarate dehydrogenase,
pyruvate dehydrogenase, and aconitase) may also generate ROS [218,219].

Mitochondrial dysfunction Dopamine oxidation

HOD/\/NHZ
HO

V ) ~
>7§ :
\
Protein aggregation Neuroinflammation

Figure 8. Pathological events of neurodegenerative diseases associated with increased oxidative stress.

Inner membrane
space

Succinate ADP + Pi

Fumarate
NAD* + H*
Fenton and
Haber-Weiss
. ‘ SOD2 reactions ‘
> > I-& L
GPx
CAT
Mitochondrial 2H,0
Matrix

Figure 9. Formation of ROS in mitochondria. Abbreviations: ADP, adenosine diphosphate; ATP,
adenosine triphosphate; CAT, catalase; Cyt C, Cytochrome C; GPx, Glutathione peroxidase; I, complex
L I, complex II; III, complex III; IV, complex IV; NADH, Nicotinamide adenine dinucleotide; Q,
coenzyme Q10; SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; V, complex V (ATP
synthase). Adapted from [119,220].
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Mitochondrial ETC is one of the primary targets of the harmful effects inflicted by
high levels of ROS [119,221]. The oxidative damage at this level leads to the inhibition of
ATP synthesis and the increased production of ROS in a vicious and detrimental cycle,
contributing to cell dysfunction and cell death [124,221,222]. Mitochondria contain other
components susceptible to oxidative damage, namely several iron-sulfur centers, proteins
and unsaturated fatty acids in the inner membrane, and mitochondrial DNA (mtDNA), all
of which are important for proper mitochondrial function [124]. Considering that mtDNA
encodes some of the subunits of the complexes that constitute the ETC, the oxidative
damage of mtDNA leads to the defective production of these proteins and subsequent
mitochondrial dysfunction [221].

Since neurons have limited glycolytic capacity, they are particularly dependent on
mitochondrial oxidative phosphorylation to meet their high energy requirements [222-224].
In addition to ATP synthesis, mitochondria are involved in other crucial cellular functions
such as the synthesis of amino acids and steroids, B-oxidation of fatty acids, Ca?* home-
ostasis, and the regulation of apoptotic cell death [225]. Therefore, improper mitochondrial
function compromises neuronal survival and contributes to neurodegeneration [219,225].

In PD, DA oxidation is associated with a selective vulnerability of dopaminergic
neurons to oxidative stress [220]. Despite the essential role of DA in neurotransmission,
DA contains a catechol group that may participate in the generation of ROS and metal
chelation [226]. Dopamine is normally stored in monoaminergic vesicles under a low pH
environment that prevents its oxidation [227]. However, DA may undergo enzymatic and
non-enzymatic decomposition in the cytosol, which is accompanied by the formation of

ROS (Figure 10) [228].
HO NH, HO NH,
JT JTT
HO
SO

DA o-semiquinone
radical

e HOJCD
MAO ,\.\) e HO H
P 3 + > .
v 0, Leukoaminochrome
1
I .- SAM
COoMT 05"
I,
i's
>
! SAH O
Y
e NAD* + H,0 N Aminochrome
1
ALDH
i '> NADH +H* NAD(P)H
1
¢ Flavoenzymes
HO 0
Homovanillic acid HO H

Leukoaminochrome
o-semiquinone radical
Figure 10. Generation of ROS during enzymatic (dashed line) and non-enzymatic (plain line) DA de-
composition. Abbreviations: ALDH, aldehyde dehydrogenase; COMT, catechol O-methyltransferase;
DA, dopamine; DA-quinone, dopamine quinone; MAO, monoamine oxidase, NAD(P)H, nicoti-
namide adenine dinucleotide (phosphate). Adapted from [229].
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In the presence of O, DA generates O~ and electron-deficient DA semiquinones and
DA quinones (Figure 10) [228,230,231]. The reaction rate of DA semiquinone formation
is slow, but it is accelerated by redox-active transition metals [215]. The spontaneous
cyclization of DA quinone yields leucoaminochrome whose further autoxidation forms
aminochrome and O3~ [230]. Aminochrome participates in redox-cycling reactions that
result in the formation of O3~ and in the depletion of cellular nicotinamide adenine din-
ucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH) [232].
Dopamine quinone and aminochrome also form adducts, with cellular nucleophiles modi-
fying their function [233,234]. These include DNA, biothiols (e.g., glutathione), x-synuclein
and proteins involved in ATP synthesis (complexes I, IIl and V of the ETC), proteasomal
degradation (parkin), microtubule stabilization («- and (3-tubulin) and axonal transport
(actin) [229]. Therefore, the formation of these adducts will contribute to mitochondrial
dysfunction, the impairment of the axonal transport, the inhibition of the proteasomal
system, the disruption of cytoskeleton architecture, and the formation of x-synuclein ag-
gregates in PD [229]. Aminochrome also polymerizes into neuromelanin, a brain pigment
that contributes to neurodegeneration by triggering neuroinflammatory processes [210].

The oxidative deamination of DA by MAOs uses O,, and generates H,O, and am-
monia as by-products (Figure 10) [235]. Due to the increased expression with age in
neuronal tissue [102,236], MAO-B becomes the predominant isoform involved in DA
metabolism [210]. Monoamine oxidase B is mainly found in glial cells [105,237], but the
H;,0; produced during DA deamination can permeate cell membranes and induce toxic ef-
fects in the neighboring neurons [210]. In fact, compared with astrocytes, neurons are more
vulnerable to H,O, due to the lower content in antioxidants involved in its detoxification
(e.g., GPx and glutathione) [237]. The H,O, generated from MAO-B activity in astrocytes is
also associated with increased amyloid plaque deposition [111].

Neuroinflammation represents a set of inflammatory processes occurring in the central
nervous system that involve the action of glial cells in CNS (microglia, oligodendrocytes,
astrocytes), non-glial resident myeloid cells (macrophages and dendritic cells) and periph-
eral leukocytes [238,239]. Neuroinflammation plays an important role in the progression
of NDs [228]. For instance, in AD, microglia are activated by the presence of A} and co-
localize with the plaques [240]. However, instead of efficiently removing the A3 deposits,
microglia release pro-inflammatory mediators that lead to neuronal damage [241]. In PD,
extracellular xXSYN aggregates can also interact with and activate surrounding glial cells to
trigger a deleterious pro-inflammatory response [242]. In NDs, the expression of NADPH
oxidases (NOXs) in activated microglia and reactive astrocytes is increased, resulting in
the excessive formation of O3~ [228,243]. The activation of RS-producing enzymes in glial
cells is associated with neurotoxic effects, which arise not only from the direct oxidative
damage in neurons, but also from the intracellular redox signaling that exacerbates the
pro-inflammatory response [243,244].

Targeting Oxidative Stress with Mitochondria-Targeted Antioxidants

Considering the involvement of oxidative stress in the pathophysiology of NDs,
the rationale for using exogenous antioxidants to prevent delay or remove the oxidative
damage is evident [214,245]. In fact, several exogenous antioxidants showed promising
results in animal and cellular models [213,214]. However, the results obtained in clinical
trials were inconclusive, negative, or showed little benefit in NDs [246]. Numerous factors
contribute to the discrepancy between pre-clinical and clinical results. In addition to
the aspects associated with the design of clinical trials (e.g., posology, the duration of
treatment, age, and the disease stage of the patients), most known dietary antioxidants
display poor bioavailability and are unable to cross the BBB, affecting their delivery into
the brain [213,214,246,247].

A common strategy used to overcome these pharmacokinetic limitations is the in-
troduction of minor structural modifications on the antioxidant scaffold. The resulting
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derivatives may improve the targeting and drug-like properties while preserving or en-
hancing the antioxidant profile of the parent compounds [248,249].

Aside from the pharmacokinetic constraints, the lack of the clinical efficacy of an-
tioxidants may also result from the uniform distribution of antioxidants across all tissues
and organs following administration, with only a small fraction being taken up by mito-
chondria [246,250], the main source and the target of ROS. Therefore, the development of
antioxidants that selectively accumulate within mitochondria and tackle oxidative damage
is of particular interest [251]. Compounds lacking mitochondriotropism but with relevant
biological activities towards mitochondrial targets usually need to be directed to mito-
chondria [252]. In this sense, several approaches were developed to deliver antioxidants
and other bioactive molecules to mitochondria, but one of the most widely used is their
conjugation with lipophilic cations such as triphenylphosphonium (TPP*) [251,253].

Lipophilic TPP* cations can diffuse across phospholipid bilayers because their pos-
itive charge is surrounded and dispersed over a large hydrophobic surface area, which
decreases the activation energy for membrane permeation [254-256]. In response to the
plasma and mitochondrial membrane potentials (AY pjasma and AY yiitochondria, respectively),
these compounds accumulate within the mitochondrial matrix against the concentration
gradient [254] (Figure 11A). Then, TPP* conjugates are taken up from the intracellular
space to the mitochondrial matrix in response to the AY ;i1ochondria (—140 to —160 mV),
leading to 100- to 500-fold accumulation within the mitochondrial matrix [220,256].

Cationic
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3-10x @
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o) &) @) @

QO

Triphenylphosphonium Picolinium Isoquinolinium  Imidazolium
cation (TPP*) cation cation cation

Figure 11. (A) Mitochondrial uptake of lipophilic cations. (B) Representative examples of lipophilic
cations to target bioactive molecules to mitochondria. Adapted from [255,257].

The increased accumulation of lipophilic TPP* conjugates enhances the compounds’ po-
tency and decreases the external dose required, limiting the extramitochondrial metabolism
that results in inactivation, excretion, or toxicity [124,258]. However, the extensive accumu-
lation of these compounds within the mitochondrial matrix can disrupt membrane integrity,
thereby compromising cellular respiration and ATP production [259,260].

Following oral or intravenous administration, lipophilic TPP* conjugates are rapidly
taken up by the organs most affected by mitochondrial dysfunction (e.g., liver, heart,
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and brain) [254,261]. Therefore, targeting antioxidants in mitochondria stands out as a
promising strategy in the discovery of new therapies for oxidative stress-related disorders.

Over the last decade, TPP* cations have been conjugated with dietary antioxidants
such as hydroxybenzoic [262] and hydroxycinnamic acids [263]. These compounds dis-
played remarkable antioxidant properties and were able to protect neuroblastoma cells
against the oxidative damage induced by 6-hydroxydopamine or HyO; [264]. Moreover,
in studies performed in skin fibroblasts from male sporadic PD (sPD) patients, the caffeic
acid-based TPP* conjugate AntiOXCIN4 restored mitochondrial membrane potential and
mitochondrial fission, decreased autophagic flux, and enhanced cellular responses to stress
by improving the cellular redox state and decreasing ROS levels [265]. To circumvent
the drawbacks associated with the use of the TPP* cation, its replacement with nitrogen-
based cationic carriers (e.g., isoquinolinium, imidazolium, and picolinium) was recently
performed (Figure 11B) [266]. This chemical modification resulted in decreased cytotoxicity
while maintaining the compounds’ antioxidant properties and their ability to accumulate
within mitochondria [266].

4.3.2. Adenosine Receptors as a Target in Alzheimer’s and Parkinson’s Diseases

Adenosine is a purine nucleoside that may act as a neurotransmitter as neuromod-
ulator in the CNS [267]. It is involved in several physiological and pathophysiological
processes in the brain, including motor function, sleep/wake cycle, learning and memory,
pain, and astrocytic activity [268]. To perform its physiological roles, adenosine binds to
four distinct G-coupled protein adenosine receptors (ARs), designated as Aj, Axa, Asp
and Ajz. Adenosine receptors (ARs) represent a group of glycoproteins containing seven
transmembrane domains and are coupled to different G proteins [269] (Figure 12). While
adenosine A; and Aj receptors are coupled to inhibitory G proteins, Aya and Ayp ARs
are coupled to stimulatory G proteins. The Ays and Ay ARs preferably interact with
members of the Gg family of G proteins, stimulating adenylyl cyclase to produce cyclic
AMP (cAMP) and leading to the activation of a series of downstream signaling pathways.
In contrast, A; and Az ARs inhibit adenylyl cyclase activity by interacting with G; proteins
(Figure 12) [270].
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Figure 12. Schematic representation of G protein-coupled adenosine receptors.
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ARs are widely distributed in the human body and participate in a broad range
of physiological and pathophysiological processes [198]. While A1Rs and A;Rs can be
predominantly found in specific parts of the CNS, AygRs and A3Rs are mainly located in
peripheral tissues [271].

In the CNS, A{Rs are widely distributed in neocortical and limbic systems and are
linked to cognitive functions [198,272,273]. AaRs are highly expressed in striatal ar-
eas [198,272] and participate in the regulation of motor behavior and the management of
dopamine-mediated responses [199]. AyaRs co-localize with dopamine D, receptors (D,Rs)
on GABAergic striatopallidal output neurons, where they form heteromer complexes [274].
These receptors within the heteromeric complex exert opposite effects on motor behavior,
in which Ays AR agonism induces antagonistic effects on D,Rs. For instance, the stimu-
lation of dopamine D,Rs enhances motor activity, while Ay5 ARs decrease this effect by
decreasing the affinity and response of D,Rs to their ligands [273,275].

Excessive Apa AR function has been linked to neuronal damage [276], and increased
Aja AR expression is a characteristic feature of PD progression [277]. The cellular mech-
anisms responsible for Ay;p AR-mediated neurodegeneration remain elusive. However,
evidence suggests that the activation of Ay ARs leads to increased glutamate release,
increased Ca?* entry, and enhanced long-term potentiation, all of which may culminate
in excitotoxic damage [275]. The localization of Aps ARs at the basal ganglia, coupled
with their pathophysiological role in PD, makes these receptors attractive drug targets to
treat this disease [275]. Apsa AR antagonism decreases motor impairment by enhancing
dopamine D;R-mediated signaling. Moreover, Ayx AR antagonism modulates choliner-
gic, glutamatergic, and GABAergic functions in the CNS [273]. The blockade of Ayp AR
signaling with selective Ayp AR receptor antagonists was shown to be beneficial, not only
by enhancing the therapeutic effects of L-DOPA, but also by reducing dyskinesia from
long-term L-DOPA treatment [274].

Recent studies have also disclosed a close association between A;s ARs and cognitive
impairment in AD. For instance, abnormally high levels of Ay4 AR were detected in the
hippocampus and in the cortex of AD patients [266,278] and in APP/PS1 transgenic AD
mice [279]. Remarkably, the activation of Ap4 ARs with agonists and optogenetic agents led
to severe impairments in spatial discrimination in wild-type mice [280]. The involvement
of Apa ARs in in hippocampal-dependent spatial reference memory was also shown in Apa
AR knock-out studies in an A1.4p-based mice model of AD [281]. The memory deficits in
APP/PS1 mice were reverted by the blockade of Ays ARs with a selective antagonist or
by downregulation driven with shRNA interference [279]. Finally, recently, it was shown
that the improvement of spatial memory deficits by Ay4 AR antagonists in APP/PS1 mice
results from the promotion of the synaptic plasticity of adult-born granule cells [282]. Thus,
the blockade of Ayp AR activation with selective antagonists can be of great therapeutic
benefit to AD patients.

A2A Adenosine Receptor Antagonists

The knowledge acquired over the last decades concerning the involvement of adeno-
sine in motor functions, mainly through the modulation of A5 AR, makes A;p AR an-
tagonists promising non-dopaminergic agents for the treatment of PD motor symptoms.
Over the last decades, the development of potent and selective ligands for ARs has been
a dynamic area. Excellent reviews were recently published on this topic [283,284]. A
small number of selective Ao AR antagonists reached advanced clinical trials for the
treatment of motor symptoms in PD, namely the xanthine derivative istradefylline (KW-
6002) and the non-xanthine derivatives Tozadenant (SYN115), Preladenant, and KW-6356
(Figure 13) [272,277].
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Figure 13. Chemical structures of selective Ay5 AR antagonists evaluated in clinical trials.

Istradefylline was approved for the adjunctive treatment of PD in Japan in 2013 and by
the FDA in 2019, being the first non-dopaminergic drug approved by the FDA for PD in the
last two decades [285]. Preladenant and Tozadenant underwent clinical evaluation for the
treatment of PD (Preladenant: NCT00406029, NCT01227265; Tozadenant: NCT02453386,
NCT03051607) [286]. Unfortunately, the clinical evaluation for both drug candidates was
discontinued due to the lack of efficacy (Preladenant) or safety (Tozadenant) in phase 3
clinical trials [287].

KW-6356 is a new, selective, nonxanthine A, receptor antagonist/inverse agonist.
Compared to istradefylline, KW-6356 exhibits approximately 100-times higher affinity for
the human Ajx receptor and a prolonged drug residence time [288]. In a phase 2b clinical
study in patients with PD, KW-6356 was safe and effective in the adjunctive treatment with
L-DOPA (NCT03703570) [289]. Moreover, in a phase 2a clinical trial, KW-6356 monotherapy
was well tolerated and more effective than placebo in patients with early, untreated PD
(NCT02939391) [277].

5. Conclusions

The discovery of new drugs for NDs remains an enormous unmet medical need [290].
The available treatments for AD and PD provide valuable symptomatic relief, but only
reduce the symptoms for a short period before the cognitive or motor functions continue
to deteriorate [291]. Given the lack of therapeutic efficacy in current treatments, the use
of single-target drugs may be insufficient to address the multiple pathological aspects of
NDs [292]. The treatment of AD and PD may thus require the manipulation of several tar-
gets to restore physiological balance, thereby attaining significant therapeutic efficacy [293].

Traditionally, the “one-drug, one-target” paradigm is the mainstay drug discovery
concept in the pharmaceutical industry [91]. This paradigm is mainly focused on generating
drugs that selectively bind to a single biological target, avoiding potential adverse side
effects associated with mistargeting other biological entities [294]. The current therapy
for AD and PD management is based on this paradigm. However, current single-target
drugs address the diseases” symptomatology, without halting or modifying the disease
progression [294,295]. Therefore, drugs that can simultaneously manipulate multiple targets
may provide therapeutic benefits in AD and PD diseases due to their multifactorial nature
and complexity [296]. The limited clinical efficacy and the lack of disease-modifying effects
of the available drugs shifted the research focus from single-target agents to multitarget-
directed drugs [237,247]. The field of the multitarget approach may thus provide innovative
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therapeutic solutions to feed the pipeline of disease-modifying drugs for AD and PD. The
potential of the multitarget approach in discovering new drug candidates for multifactorial
diseases such as AD and PD was extensively reviewed in [294,297,298].

Over the last decades, continuous efforts have been made to unveil the pathological
mechanisms underlying AD and PD development. Processes such as oxidative stress,
metal dyshomeostasis, neuroinflammation, and protein misfolding and aggregation were
identified, and new pathological events were discovered daily. As a result, promising drug
targets have been emerging, providing excellent opportunities to innovate in developing
new drug candidates. Thus, where do we go now? With the growing popularity of the
multitarget paradigm, the possibilities are endless, and several paths can be followed.
Medicinal chemists can explore multiple combinations of pharmacological effects in the
search for disease-modifying drugs with a multitarget mode of action. Another emerging
area is the development of new chemical modalities such as protein degraders. Targeted
protein degradation (TDP) technologies include proteolysis-targeting chimeras (PROTACs),
autophagy-targeting chimeras (AUTACs), and autophagosome-anchoring chimeras (AT-
ACCs). Although the application of TDP technologies for NDs is still in its infancy, recent
studies have shown that their use is a strategy worth exploring [299,300]. The combination
of TDP technologies with multitarget strategies is also a direction that can be followed.
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