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Abstract: This review discusses the current progress in the clinical use of magnetic resonance-
guided focused ultrasound (MRgFUS) and other ultrasound platforms to transiently permeabilize
the blood-brain barrier (BBB) for drug delivery in neurological disorders and neuro-oncology. Safety
trials in humans have followed on from extensive pre-clinical studies, demonstrating a reassuring
safety profile and paving the way for numerous translational clinical trials in Alzheimer’s disease,
Parkinson’s disease, and primary and metastatic brain tumors. Future directions include improving
ultrasound delivery devices, exploring alternative delivery approaches such as nanodroplets, and
expanding the application to other neurological conditions.

Keywords: focused ultrasound; MRgFUS; blood brain barrier; Parkinson’s disease; Alzheimer’s
disease; glioma; aducanumab

1. Introduction

The blood-brain barrier (BBB) is a semi-permeable barrier between blood vessels and
the brain parenchyma, comprising tight junctions between endothelial cells and efflux
transporters which actively remove substances from the central nervous system. Ions
and small lipid-soluble molecules that are less than 400 Daltons (Da) are often able to
pass through the BBB, but larger molecules are unable to gain entry [1]. While essential
for maintaining CNS composition and an immune-privileged environment, the BBB also
hinders potentially transformative therapies from reaching their intended targets in the
brain [2,3].

Numerous strategies for BBB permeabilization are under investigation. Broadly, these
strategies can be categorized as transcellular and paracellular [4]. In transcellular ap-
proaches, molecules can be made more lipophilic to promote passage across the BBB, or
carrier-mediated transport can be enhanced to bypass the BBB altogether [5]. Transcellular
approaches can be limited by pharmaceutical agents compatible with these types of ma-
nipulation. Paracellular methods involve the disruption of tight junctions, and this can
be performed through chemical or physical means. Chemical paracellular mechanisms of
BBB permeabilization often rely on vasoactive agents, hyperosmolar compounds (such as
mannitol), or antibodies to the claudin family of proteins (integral to the function of tight
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junctions). Chemical paracellular techniques are promising but often suffer from issues
with not being targetable and having off-target effects [4].

Paracellular physical mechanisms of BBB permeabilization are gaining traction. In
particular, the use of low-intensity ultrasound, combined with the intravenous injection of
microbubbles, has emerged as a safe, reproducible, and targeted method for transiently
permeabilizing the BBB conformally in a variety of brain structures. Ultrasound-mediated
BBB opening has been performed safely across a wide range of pre-clinical models [6],
which has led to reassuring safety trials in humans [7]. Figure 1A illustrates three common
devices in use today for ultrasound-mediated BBB opening.

The most common use of ultrasound-mediated BBB permeabilization in human clinical
trials is magnetic resonance-guided focused ultrasound (MRgFUS). MRgFUS involves a
helmet lined with a phased array of focused ultrasound (FUS) transducers, which is used
within an MRI under real-time imaging guidance. Conveniently, the MRI can then also be
used to monitor gadolinium extravasation as a marker for successful BBB opening. When
performed at high intensities, MRgFUS can create thermo-ablative lesions, which is useful
in the treatment of some movement disorders such as tremors, and psychiatric diseases
such as obsessive-compulsive disorder, amongst other expanding indications [8,9]. Low
intensity ultrasound (for BBB permeabilization) uses approximately 0.01% of the energy
required for ablation [10]. When performed without microbubble injection, MRgFUS has
also demonstrated utility for the purposes of neuromodulation [11].
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Figure 1. Ultrasound-mediated drug delivery systems and mechanisms. (A) Three systems in use are
illustrated. The ExAblate system utilizes a helmet lined with a phased array of ultrasound transducers
separated from the scalp by cooled degassed water and operated within an MRI. The SonoCloud is
an implanted device placed through a burr hole in the skull either at the time of a tumour resection
surgery, or with an independently planned procedure. It is powered through a transdermal needle
connected to an external power supply for each treatment. NaviFUS is a multi-channel array, like the
ExAblate system, but utilizes a smaller surface area and is not performed within an MRI. (B) When
microbubbles pass through sonicated tissue, they undergo cavitation, causing mechanical forces on
the capillary wall, astrocytic endfeet, and pericytes, causing the temporary opening of the blood-brain
barrier, allowing larger molecules to pass through into the parenchyma. This figure was adapted
with permission from Figures 2 and 3 in Meng et al. (2021) [11].

Another use of ultrasound-mediated BBB permeabilization is through the use of an
implantable device. The SonoCloud is implanted in a 3 cm burr hole, either at the time
of another planned surgery (i.e., resection of a tumor) or through a separate surgery. The
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device is powered through a transdermal needle at the time of each treatment. While
this method lacks the spatial targeting offered by MRgFUS, it may be advantageous for
instances where numerous treatments are required.

Following BBB opening, systemic drug administration can lead to spatially and tem-
porally targeted passage of molecules into the CNS, ranging from small molecules to large
monoclonal antibodies or even neural stem cells [12]. This approach is gaining traction
with human studies in several conditions, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and primary/secondary brain tumors [13,14]. This mini-review will outline
the use of ultrasound-mediated BBB permeabilization in human clinical trials.

2. Mechanism of Ultrasonic BBB Opening

Microbubbles are small spheres filled with a high molecular weight gas and lined
with a thin microsphere shell, which are then injected peripherally into the bloodstream.
Originally developed as a contrast agent for diagnostic cardiac ultrasound, microbubble
injection has been repurposed for BBB opening with ultrasound [15]. As the microbubbles
pass through a region of ultrasound sonication, as defined conformally with a high degree
of accuracy on patient-specific brain MRIs, they undergo oscillations that cause a transient
disruption in the BBB (Figure 1B). The extent of BBB disruption is related to acoustic
pressure, sonication duration, and the size of microbubbles [16,17]. While these oscillation-
related forces open the BBB, if too great, they can lead to hemorrhage. Oscillations induce
stretching, acoustic streaming, and shear forces on the vasculature, which can affect the
permeability of tight junctions and the function of efflux transporter proteins [18,19]. There
are several varieties of microbubbles available on the market, and an ideal agent is one
which induces stable cavitation, decreases the nearby production of P-glycoprotein, and
results in the formation of caveolae (invaginations in the plasma membrane) [20,21]. A
study comparing three commercially available types of microbubbles found all three to
perform equivalently in terms of degree and persistence of BBB permeabilization [22];
based on the size and half-life of the microbubble, ultrasound parameters (power and
duration) can be varied slightly to optimize MB performance [22].

Early pre-clinical studies were vital in determining a safe range of parameters for FUS.
They showed that using lower frequency and peak pressures is consistently safe, creating
harmonic bubble oscillations rather than bubble collapse, thereby not damaging blood
vessels, neurons, or glia [23]. A mechanical index (MI) was described, calculated as the peak
negative pressure (estimated in situ) divided by the square root of the ultrasound frequency;
an MI ≤ 0.45 has consistently demonstrated safe outcomes without hemorrhage [24].

BBB permeabilization is a dynamic process, occurring almost immediately following
the ultrasound sonication of microbubbles, with confirmation of closure via histology
and non-invasive imaging like MRI at approximately 3–24 h [7,25,26]. A T1 MRI with
gadolinium infusion is the most commonly used method for demonstrating opening and,
later, the restoration of the BBB. While initial human trials sonicated a relatively small
volume of tissue (1 cm3) in a single treatment, more recently, it has been shown to be safe to
sonicate larger volumes (up to 40 cm3) with repeated treatments [27] (even larger volumes
have been sonicated in non-human primates [28]).

Alternative approaches using ultrasound to enhance drug delivery are also under
active investigation. For example, nanodroplets, which have a longer half-life than mi-
crobubbles, can be loaded with a therapeutic agent, administered systemically, and when
passing through a focal area of sonication, will vaporize, leading to the local delivery of the
drug [29]. This technique has been used to deliver phenobarbital to the amygdala for the
treatment of agitation in an AD mouse model [30]. Recently, an innovative technique was
reported in which rodents were administered a piezoelectric nanogenerator, which embeds
into neuronal membranes and, when sonicated with FUS, stimulates tyrosine hydroxylase
activity, thus boosting dopamine production in striatal neurons [31]. While the nanodroplet
and nanogenerator fields may soon bring revolutionary developments, the reassuring
safety and reliability data supporting transcranial and implantable FUS devices for BBB
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opening has enabled numerous translational human clinical trials to be completed, with
many more ongoing.

3. Alzheimer’s Disease

AD is a progressive neurodegenerative condition that is the most common cause of
dementia. AD etiology is closely tied to the accumulation of toxic extracellular amyloid-beta
(Aβ) plaques, intracellular neurofibrillary tangles of tau-protein, neuronal loss (particularly
along the circuit of Papez), and dysfunction of the default mode network [32–35]. Aβ

plaques occur at an increased rate throughout the brain of individuals with AD, and they
accumulate at sites of vulnerability along nodes of the default mode network (DMN); this
Aβ accumulation along the DMN scales with cognitive decline [36,37]. There is substantial
interest in utilizing targeted pharmacotherapies for Aβ, such as monoclonal antibodies like
aducanumab and lecanemab, to clear Aβ plaques from the CNS [38]. The FDA approved
aducanumab on the basis of Aβ clearance alone in 2021 [39], followed by approval of
lecanemab in 2023, after a randomized controlled trial suggested both Aβ clearance and
modest mitigation of cognitive decline [40]. Despite a half-life of 15–20 days, only 0.01% of
Aβ immunoglobins cross the BBB [41]. As most targeted therapies involve large molecules
normally filtered by the BBB, there is a strong rationale for delivery using ultrasound (see
Table 1) [42].

Table 1. FUS-mediated BBB-opening in Alzheimer disease.

Study Condition,
Subjects Device, Treatments, Parameters, Targets Findings

Lipsman et al.,
2018 [7]

AD
6 subjects

ExAblate helmet array + MB injections
2 treatments, 1 month apart
220 KHz, Power = 50% of cavitation
threshold—average of 4.5 W
Right frontal lobe (DLPFC), 1 cm3

MRI-gad confirmed BBB opening, closed at
24 h.
No SAEs, 1 patient with transient
neuropsychiatric symptoms
2 patients with transient gradient echo
changes, nearly resolved by 24 h—possible
microhemorrhages
No significant change in amyloid at
target (PET)

Park et al.,
2021 [43]

AD
6 subjects

ExAblate helmet array + MB infusion
2 treatments, 3 months apart
220 KHz, 8–40 W, targeting cavitation of 0.4–0.65
Bilateral frontal lobes, 21 cm3

No adverse events
MRI-gad confirmed BBB opening in 96% of
targeted region
1.6% reduction in PET-measured amyloid in
frontal lobes
Stable MMSE scores, transient improvement
in neuropsychiatric symptoms

Epelbaum
et al., 2022 [44]

AD
10 subjects

SonoCloud implantable device + MB injections
7 treatments, every 2 weeks
1 MHz, 0.9–1.03 MPa
Implanted overtop the left supramarginal gyrus,
explanted after 9 months

1 patient withdrawn due to a thick
scalp—unable to activate the
implanted device.
1 hemorrhage remote from the implanted
device, causing acute delirium.
Treatments lasted 4.5 min
Possible reduction in amyloid around
implant (non-significant)
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Table 1. Cont.

Study Condition,
Subjects Device, Treatments, Parameters, Targets Findings

Meng et al.,
2023 [27]

AD
9 subjects

ExAblate helmet array + MB infusion
3 treatments, 2 weeks apart
220 KHz, Power = 50% of cavitation threshold
Targeting the DMN: bilateral precuneus and
ACC, and bilateral or unilateral hippocampi
(started unilateral, advanced to bilateral after
safe in first patients); 9 cm3

Successful BBB opening and no SAEs.
2 patients had acute confusion, lasting a
week in one patient (P9), who was excluded
from further procedures.
2 patients with immediate gradient echo
changes, resolved the following day
Small but significant reduction in
PET-measured beta amyloid in sonicated
right parahippocampal/inferior
temporal region.

Rezai et al.,
2022 [45]

(longterm data
from Rezai

et al., 2020 [46])

AD
10 subjects

ExAblate helmet array + MB injections/infusion
3 treatments, 2 weeks apart
220 kHz
Initially unilateral hippocampus/EC, 2–5 cm3,
increased to include frontal and parietal targets
(up to 30 cm3) in final patients

No SAEs
Hippocampal edema in 1 patient, resolved at
72 h.
MRI-Gad showed immediate BBB opening in
82% of targeted brain volume, complete
closure within 24–48 h.
ADAS-Cog/MMSE showed cognition stable
at 6 months, mild (expected) decline at
12 months.

Rezai et al.,
2024 [47]

AD
3 subjects

ExAblate helmet array + MB infusions
6 monthly treatments paired with aducanumab
infusion 2 h prior
220 kHz
Patient 1: right frontal lobe (10 mL), patient 2:
left frontal/parietal lobe (20 mL),
patient 3: left frontal/parietal/temporal lobes &
hippocampus (40 mL).

Cognitive worsening in patient 3 a 30 days,
not associated with changes in activities of
daily living
Significant reduction PET-measured amyloid
in targeted regions, compared to baseline
and untreated contralateral regions

ACC: anterior cingulate cortex; ADAS-Cog: Alzheimer disease assessment scale–cognitive subscale; DLPFC:
Dorsolateral prefrontal cortex; DMN: Default mode network; EC: entorhinal cortex; MB: microbubble; MHz:
Megahertz; MMSE: Mini-mental state examination; MPa: Megapascal; PET: positron emission tomography; SAE:
serious adverse event; W: watts.

A 2018 report described the first use of MRgFUS to safely open the BBB in five patients
with AD [7]. With the primary goal of demonstrating safety, the BBB was opened in a small
volume (approximately 9 × 9 × 9 mm) twice, each 1 month apart [7]. A T1 gadolinium-
enhanced MRI demonstrated that BBB opening was transient, closing within 24 h [7].
Other studies then demonstrated the safety of opening the BBB in a larger volume and
alternative anatomical targets [43,46]. Recently, MRgFUS-mediated BBB opening was
carried out at multiple large-volume nodes of the DMN, such as the bilateral hippocampi
and precuneus [27], setting the stage for drug delivery to these and other sites.

Based on pre-clinical studies in which FUS BBB opening resulted in a 5–8 fold increase
in CNS penetration of aducanumab [48,49], a recent first-in-human trial was published us-
ing MRgFUS to enhance aducanumab delivery in three patients with AD [47]. Six monthly
MRgFUS-mediated BBB treatments were paired with increasing doses of intravenous ad-
ucanumab infusion. The targeting approach was escalated between patients, sonicating
10 mL in the non-dominant frontal lobe of patient 1 and sonicating 40 mL in the dominant
frontal/temporal/hippocampus regions of patient 3. Using contralateral, homologous,
untreated brain regions as a control for each patient, marked reductions in Aβ were ap-
preciated on florine-18 florbetaben positron emission tomography (PET) [47]. Patient 3
experienced cognitive deterioration noted at the 30-day follow-up timepoint, the inter-
pretation of which illustrates the difficulty in the AD field of distinguishing expected
clinical deterioration from treatment-related adverse effects. This is further challenged by
remaining uncertainties, regarding whether reductions in Aβ will translate into improved
cognition [50].
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4. Neuro-Oncology

Improvements in outcomes in neuro-oncology have lagged behind other fields of
oncology, due in part to the BBB blocking access of targeted chemotherapeutics to the
CNS [51]. Neuro-oncology is one of the most active aspects of research in ultrasound-
mediated BBB disruption. Here, we provide a limited overview of the recent studies and
future directions in neuro-oncology (see Table 2).

Table 2. FUS-mediated BBB-opening in neuro-oncology.

Study Condition,
Subjects Device, Treatments, Parameters, Targets Findings

Mainprize et al.,
2019 [52]

GBM
5 subjects

ExAblate helmet array + MB injections
1 treatment prior to resection
220 KHz, 50% of cavitation threshold
9 × 9 × 6 mm3 at the tumour periphery

MRI-Gad BBB opening in peri-tumour
tissue immediately following sonication.
Increased chemotherapy concentration in
sonicated tumour in 2 patients

Idbaih et al., 2019
[53] (longterm data

from Carpentier
et al., 2016 [54])

Recurrent GBM
19 subjects

SonoCloud1 implantable device + MB
injections, followed by IV carboplatin
Mean of 3 treatments, separated by 4 weeks
1 MHz, 0.41–1.15 MPa (dose escalation)

BBB opening occurred in 52/65 sonications
(improved with increased
acoustic pressure)
2 patients experienced post-sonciation
edema, responsive to steroids
Authors suggest patients with grade 2/3
BBB opening trended towards longer PFS
and OS

Anastasiadis et al.,
2021 [55]

Infiltrating
glioma (WHO
grade 2 and 3)

4 subjects

ExAblate helmet array + MB injection,
followed by fluorescein injection and
surgical resection.
230 KHz, Power = 50% of cavitation
threshold (ranging from a mean of 3–26 W).
0.5 cm3 in subjects 1–3, 10 cm3 in subject 4.

No SAEs
MRI-Gad, and intraoperative
visualization/histopathology of
fluorescence confirmed increased BBB
opening in targeted regions

Meng et al.,
2021 [14]

Her2+ breast
metastases to

brain
4 subjects

ExAblate helmet array + MB infusion
220 KHz, mean power of 13 W
Entire tumour volumes targeted, mean
volume of 27 cm3

Possible to target entire tumour volumes,
including lesions in the posterior fossa
No SAEs
Trastuzumab delivery confirmed with
SPECT-imaging
Reduction in tumour volume in all
4 patients.

Sonabend et al.,
2023 [56]

Newly resected
recurrent GBM

17 subjects

SonoCloud9 implantable
device + MB injection
Up to 6 treatments (median 3) immediately
followed with IV paclitaxel administration,
dose escalation.
Borders of resection cavity, mean volume of
12.6 mL

No SAEs
Effective BBB opening, with restoration
occurring as early as 1 h.
Sonications resulted in transient neurologic
deficits (paresthesias, aphasia) related to
brain structures adjacent to
sonication fields.
2 patients developed reversible
encephalopathy at higher paclitaxel dosing

BBB: blood brain barrier; GBM: Glioblastoma multiforme; IV: intravenous; OS: overall survival; PFS: progression-
free survival; SPECT: Single-photon emission computed tomography; WHO: world health organization.

Although the blood-tumor barrier of CNS tumors is altered, larger molecule chemother-
apeutics continue to have limited penetration [57,58]. Pre-clinical studies have demon-
strated the feasibility, safety, and anti-tumoral effects of FUS-mediated BBB opening when
paired with chemotherapies [59]. FUS has been used to enhance the delivery of relatively
small molecules, ranging from 150 Da to 1 kDa, such as carmustine (BCNU) [60], etopo-
side [61], cisplatin [62], irinotecan [63], carboplatin [59], and doxorubicin [64,65]. Even if a
substance is able to cross the BBB under normal circumstances (such as BCNU), issues with
the half-life and systemic toxicity strengthen the rationale for enhanced targeted delivery.
With similar success, larger molecules, ranging from 70 to 150 kDa have been delivered



Pharmaceutics 2024, 16, 719 7 of 13

with the help of FUS [64], such as trastuzumab [66], pertuzumab [67], adeno-associated
virus [68], IL-12 [69], and a radio-labeled form of bevacizumab [70].

The first-in-human study using MRgFUS, demonstrated the safety of BBB-opening
in peri-tumoral tissue in five patients with high-grade gliomas [52]. Participants then
underwent surgical resection, and in two patients, pathology specimens were collected
of sonicated and non-sonicated tissues. The chemotherapy concentration appeared to be
increased in the sonicated area in two patients, however, the overall low drug levels limited
the interpretation of this result [52]. This study demonstrated the safety and feasibility
of incorporating a BBB-opening procedure into the care of patients with aggressive brain
tumors, paving the way for several now-completed and other ongoing trials in this field.

Another study of MRgFUS-mediated BBB opening demonstrated enhanced penetra-
tion of fluorescein, which was infused shortly after the FUS procedure, with both visual
and biochemical confirmation [55]. A multi-center trial further examining the safety and
effect of MRgFUS-mediated BBB opening, combined with maintenance temozolomide
therapy in patients with newly diagnosed glioblastoma multiforme, has been concluded
with results pending publication (NCT03616860, www.clinicaltrials.gov, accessed 1 March
2024). Accumulating experience with this technology within studies that also incorporate
longer follow-ups will help understand whether MRgFUS impacts the progression-free
survival or overall survival of high-grade glioma patients.

In a study of four patients with progressive Her2-positive breast cancer metastases,
MRgFUS-mediated BBB opening of the tumor and its periphery was paired with the admin-
istration of Indium-111-radiolabeled trastuzumab [14]. Single-photon emission computed
tomography (SPECT) demonstrated significantly enhanced chemotherapy delivery to the
lesion, which was associated with stable or reduced tumor volume during the study [14].
This study also included unique target locations within the posterior fossa, which were
targeted safely and effectively [14]. Building on these experiences, a multi-center study
to examine the safety of the procedure in patients with diffuse midline glioma is cur-
rently underway (NCT05615623). An ongoing multicenter study is looking to compare
the MRgFUS-enhanced delivery of pembrolizumab, an immune checkpoint inhibitor, to
non-enhanced delivery in patients with non-small cell lung cancer with brain metastases
(NCT05317858) [21].

Data from the fluorescein and radiolabeling studies provided important data on the
pharmacokinetics of drug delivery using MRgFUS. Unfortunately, the knowledge gaps
in the pharmacokinetic profile remain a difficult hurdle in incorporating MRgFUS into
standard lines of oncologic treatment. Fluid biomarkers and advanced imaging offer less
invasive ways of gathering this type of data. Window of opportunity studies also play an
important role in this respect [71].

5. Parkinson’s Disease

Parkinson’s disease (PD) is the most common neurodegenerative movement disorder,
affecting 1% of those over age 60 [72]. The primary motor symptoms of PD are attributed
to dopaminergic neuronal loss in the substantia nigra pars compacta associated with
Lewy pathology, leading to a shortage of dopamine in the striatum [73]. The etiology
of PD remains an area of investigation, but increasingly, it appears to be an interaction
between lifestyle, environment, and genetics [74]. While aging is the primary risk factor for
PD [75], other risk factors have been identified, such as exposure to toxins like rotenone and
paraquat [76] or gene mutations including, but not limited to, mutations in the GBA1 [77,78]
or LRRK2 gene [79]. As with AD and neuro-oncology, potential therapies for PD have
been limited by the BBB, prompting considerable interest in the FUS-enhanced delivery
of agents such as alpha-synuclein targeted therapies or neurotrophic factors to mitigate
neuronal loss within the basal ganglia [80].

In pre-clinical models, numerous studies have demonstrated that the BBB can be
opened safely in the putamen [81]. When paired with the administration of an alpha-
synuclein silencing viral vector or neurotrophic factors, it can attenuate nigrostriatal neu-

www.clinicaltrials.gov
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ronal loss in MPTP or transgenic mice [82,83]. A recent article describes MRgFUS-mediated
BBB opening paired with systemic administration of an adeno-associated virus (AAV)
vector, eliciting novel protein expression in the putamen and substantia nigra, highlighting
a promising avenue for viral-vector protein expression modulation in patients with PD [28].
However, significant challenges remain with this approach. The cost of systemic delivery
of an AAV at sufficient titers to achieve transduction in humans, as well as risks associated
with systemic exposure, even with the enhanced BBB opening, will require further investi-
gation. Certainly, advances in AAV serotypes that are neuron-selective and have limited
systemic uptake may provide a path forward to allow for more practical combinations of
gene therapy technology with MRgFUS [84].

In humans with PD, MRgFUS-mediated BBB opening in the putamen has been shown
to be well tolerated with repeat treatments, and there is some early experience with bi-
lateral and repeat treatments (see Table 3) [13,85]. In PD, the putamen is known to be
exquisitely sensitive to physical insult [86], and thus far, MRgFUS-mediated BBB opening
does not appear to worsen dopaminergic denervation-based radiographic measures, al-
though the existing data are still limited [85], further investigation is needed to understand
the thresholds.

Table 3. FUS-mediated BBB-opening in Parkinson’s disease.

Study Condition,
Subjects Device, Treatments, Parameters, Targets Findings

Meng et al.,
2022 [13]

PD, GBA1
mutation
4 subjects

ExAblate helmet array + MB infusion
3 treatments paired with infusion of GCase,
separated by 2 weeks
220 KHz, mean of 6 W
Mean target of 3.4 cm3, covering 66% of the
unilateral putamen

66% of the putamen (unilateral)
No SAEs
2 patients developed transient contralateral
dyskinesias.
1 transient microhemorrhage detected on
T2* and resolved on the following scan
Reduction in putaminal hypermetabolism
on PET

Pineda-Pardo et al.,
2022 [85]

PD
7 subjects

ExAblate helmet array + MB injections
2 treatments, separated by 2–4 weeks.
220 KHz, <15 W
Posterior putamen (unilateral in 1st
treatment, 3 patients treated bilaterally
in 2nd)

No SAEs
2 subjects with transient vasogenic edema
at target
5/7 had persistent SWI hypointensities,
thought to be microhemorrhages
Stable UPDRS scores
PET imaging revealed stable dopamine
synthesis capacity, and local clearance
of amyloid.

GCase: Glucocerebrocidase; PD: Parkinson’s disease; PET: positron emission tomography; SAE: serious adverse
events; UPDRS: Unified Parkinson’s Disease Rating Scale; W: Watts.

The first use of MRgFUS-mediated BBB opening paired with drug delivery in hu-
mans with PD was recently described in PD patients with GBA1 mutations (Gaucher’s
disease) [13]. GBA1 encodes for the enzyme glucocerebroside (GCase), and pre-clinical
work suggests that the deficiency or reduced activity of GCase can lead to the accumula-
tion of alpha-synuclein and reversal of this may reduce dopamine neuron cell loss [87,88].
Intravenously administered recombinant GCase is a safe and effective therapy in patients
with PD in the context of GBA1 mutation, but its BBB penetration is poor [89].

Therefore, a study was undertaken to test the safety of combining MRgFUS-mediated
BBB opening concurrently with intravenous GCase administration in GBA1-related PD [13,90].
In all four patients, a total of three MRgFUS-mediated BBB opening procedures were
performed with an increasing dose of GCase administered with each treatment, spaced
by two weeks between treatments. A gadolinium-enhanced MRI demonstrated successful
BBB opening unilaterally in the putamen without serious adverse effects [13]. Two pa-
tients experienced a transient increase in dyskinesia, which was theorized to be related to
increased levodopa exposure due to BBB permeabilization [13]. Positron emission tomog-
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raphy demonstrated reduced putamenal metabolism at 1 month, which has been shown
to correlate with treatment efficacy in other studies [91]. While this was a small phase
1 trial, it has charted a way forward for targeted delivery of GCase or other molecules
(such as neurotrophins or monoclonal antibodies) in the treatment of movement disorders.
Future studies will continue to better understand the safety profile of MRgFUS in patients
with Parkinson’s disease and the pharmacodynamics of GCase in the brain once delivered
via ultrasound.

6. Future Directions

In the near future, interest in the use of MRgFUS-mediated BBB opening with drug
delivery will continue to increase in AD, PD, neuro-oncology, and numerous other indica-
tions. With increased cohort sizes, the biological effect of drugs in the brain being delivered
in this fashion will be better understood, allowing for optimized peri-procedural dosing
and timing of re-treatment(s). Depending on the indication, randomized controlled trials
may allow for better estimates of efficacy. Improvements in the MRgFUS device itself are
also expected to yield advancements in the field. Frameless technologies and workflows
that require only a minimal haircut are already in early use.

7. Conclusions

After extensive pre-clinical development, low-intensity MRgFUS microbubble soni-
cation has emerged as a safe and feasible method of BBB opening in humans. MRgFUS-
mediated BBB disruption, paired with systemic drug administration, allows for a drug
previously unable to freely bypass the BBB to pass into the targeted region over the ensuing
hours. This method has now been applied in human trials in pathologies including AD,
Parkinson’s disease, and primary and metastatic cancers. The future of MRgFUS-mediated
BBB opening for drug delivery will include a less invasive treatment interface and more
seamless workflows to allow for better incorporation with standard treatment paradigms.
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