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Abstract: Citrulline (C6H13N3O3) is an amino acid found in the body as a zwitterion. This means its
carboxylic and amine groups can act as Lewis donors to chelate metal cations. In addition, citrulline
possesses a terminal ureido group on its aliphatic chain, which also appears to coordinate. Here,
two new mixed complexes of citrulline were made with 1,10-phenanthroline and 2,2′-bipyridine.
These compounds, once dissolved in water, gave aquo-complexes that were subject to DFT stud-
ies and in vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15, and MCF7)
showed promising results. Docking studies with DNA were also conducted, indicating potential
anticancer properties.

Keywords: citrulline; anticancer; mixed-copper complexes; 1,10-phenanthroline; 2,2-bipyridine

1. Introduction

Since the discovery of the antineoplastic properties of Cisplatin by Rosenberg’s ac-
cidental experiment in the 1960s [1–3], coordination chemistry has expanded its areas
in medicine beyond the simple study of metal salts to which it seemed to be confined.
Although Cisplatin is the metallodrug of choice for a broad spectrum of malignancies, its
use has many drawbacks [4–8]. Unfortunately, only a few molecules have been approved
for the many coordination complexes expected to replace cisplatin [9–11]. Among the few
successful cases, Casiopeinas (Figure 1) have stood out for their excellent antineoplastic
properties and high DNA binding affinity [12–14]. Several Casiopeina-like compounds
have been prepared with different ligands to find suitable candidates for clinical trials, al-
ways seeking to meet the biocompatibility requirement. On the other hand, amino acids are
the most studied ligands for this purpose due to their biological involvement in metabolic
pathways and well-known chelating ability [15].
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Intrinsic amino acids in metabolic pathways attract attention as proposals for new 
complexes. One corresponds to citrulline, a non-essential, non-protein amino acid related 
to the urea cycle and arginine synthesis in the body [16]. Despite the widespread disinter-
est in this compound beyond arginine metabolism, in recent years, this amino acid has 
been identified as an essential regulatory factor in the blood pressure process [17]. It is 
directly related to NO regulation in the blood via the conversion of arginine [18]. Further-
more, the role of this amino acid in some autoimmune disorders, such as rheumatoid ar-
thritis and lupus, is directly associated with a natural post-translational process of pro-
teins called citrullination, where arginine residues in proteins are converted into citrulline 
[19]. In patients with these disorders, antibodies attack these post-translational products 
[20]. Therefore, the study of this amino acid has gained more weight in several recent 
investigations. Also, the toxicity of L-citrulline on HeLa cells was demonstrated in a man-
ner that depended on the dosage. According to the results obtained from Annexin and 
Caspase experiments, it can be inferred that L-citrulline had a pro-apoptotic impact on 
HeLa cells, but only when exposed for a brief period of time. L-citrulline also exhibited a 
migratory inhibitory effect. The results of this study suggest that L-citrulline should be 
further examined for its potential anticancer effects in laboratory and animal models, as 
well as as a potential treatment option for cancer [21]. 

Discovered by Wada in 1914, its identification was made possible thanks to the syn-
thesis of one of its complexes, copper (II) bis-citrullinato [Cu(Citr)2] [22,23]. The citrulline 
complex has been well-known for a long time but has attracted little interest since most of 
the research on this compound was described as “difficult to crystallize” [24]. This ex-
plains the widespread disinterest in citrulline complexes; e.g., in the Cambridge Crystal-
lographic Database, there are only three reported crystal structures for citrulline com-
pounds (1048343, 2172421, and 2287583). The structure of the palladium complex, de-
scribed by Mascaliovas [25], was determined using powder X-ray diffraction, whereas 
most investigations have been conducted in solution [26–31]. Our research group has pro-
vided the other two structures. 

Over three decades have passed since the inception of Casiopeinas, and substantial 
evidence has accumulated concerning the mechanisms by which these compounds oper-
ate. These molecules can potentially be used in cancer therapy because they can damage 
mitochondria and increase reactive oxygen species, which damage DNA [12–14,32,33]. 
The polypharmacological characteristics of these molecules guarantee their continued rel-
evance as viable alternatives for treating ailments such as cancer [34]. Based on the Lena 
Ruiz research group’s preclinical results and expertise, Casiopeina (CasIIIia) has been sub-
mitted to the Mexican regulatory agency (COFEPRIS). This signifies the commencement 
of the initial Phase I clinical trial in Mexico involving a copper-based anticancer com-
pound [35]. Recently, considerable scientific attention has been directed towards these 
molecules because of their biological activities and chemical properties [36,37].  

 
Figure 1. General representation of Casiopeina structure, based on the Ruiz-Azuara work. Figure 1. General representation of Casiopeina structure, based on the Ruiz-Azuara work.

Intrinsic amino acids in metabolic pathways attract attention as proposals for new
complexes. One corresponds to citrulline, a non-essential, non-protein amino acid related
to the urea cycle and arginine synthesis in the body [16]. Despite the widespread disinterest
in this compound beyond arginine metabolism, in recent years, this amino acid has been
identified as an essential regulatory factor in the blood pressure process [17]. It is directly
related to NO regulation in the blood via the conversion of arginine [18]. Furthermore, the
role of this amino acid in some autoimmune disorders, such as rheumatoid arthritis and
lupus, is directly associated with a natural post-translational process of proteins called cit-
rullination, where arginine residues in proteins are converted into citrulline [19]. In patients
with these disorders, antibodies attack these post-translational products [20]. Therefore, the
study of this amino acid has gained more weight in several recent investigations. Also, the
toxicity of L-citrulline on HeLa cells was demonstrated in a manner that depended on the
dosage. According to the results obtained from Annexin and Caspase experiments, it can be
inferred that L-citrulline had a pro-apoptotic impact on HeLa cells, but only when exposed
for a brief period of time. L-citrulline also exhibited a migratory inhibitory effect. The
results of this study suggest that L-citrulline should be further examined for its potential
anticancer effects in laboratory and animal models, as well as as a potential treatment
option for cancer [21].

Discovered by Wada in 1914, its identification was made possible thanks to the syn-
thesis of one of its complexes, copper (II) bis-citrullinato [Cu(Citr)2] [22,23]. The citrulline
complex has been well-known for a long time but has attracted little interest since most of
the research on this compound was described as “difficult to crystallize” [24]. This explains
the widespread disinterest in citrulline complexes; e.g., in the Cambridge Crystallographic
Database, there are only three reported crystal structures for citrulline compounds (1048343,
2172421, and 2287583). The structure of the palladium complex, described by Mascalio-
vas [25], was determined using powder X-ray diffraction, whereas most investigations
have been conducted in solution [26–31]. Our research group has provided the other
two structures.

Over three decades have passed since the inception of Casiopeinas, and substantial
evidence has accumulated concerning the mechanisms by which these compounds operate.
These molecules can potentially be used in cancer therapy because they can damage mi-
tochondria and increase reactive oxygen species, which damage DNA [12–14,32,33]. The
polypharmacological characteristics of these molecules guarantee their continued relevance
as viable alternatives for treating ailments such as cancer [34]. Based on the Lena Ruiz re-
search group’s preclinical results and expertise, Casiopeina (CasIIIia) has been submitted to
the Mexican regulatory agency (COFEPRIS). This signifies the commencement of the initial
Phase I clinical trial in Mexico involving a copper-based anticancer compound [35]. Re-
cently, considerable scientific attention has been directed towards these molecules because
of their biological activities and chemical properties [36,37].

As mentioned above, despite the intrinsic difficulties of crystallization of citrulline,
previous works from our laboratory have reported the structures from single crystal
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XRD of copper(II)bis-citrullinato and aquabipyridinecitrullinatonitratocopper(II) monohy-
drate [24,38], The landmarks in these findings lie in the ability of citrulline to form polymeric
structures and the ability of copper to isomerize citrulline from L to D stereoisomer. This
information, together with in-silico research, shows that the amino acid complexes promise
to exhibit biological activity. The synthesis in methanol resulted in interesting polymeric
structures that, upon recrystallization, generated monomeric species that were studied by
the DFT method. Here, we report two new catena complexes [Cu(L-Citr)(bipy)(NO3)]n
(Complex 1) and [Cu(L-Citr)(phen)(NO3)]n (Complex 2), that were fully characterized
through spectroscopic and computational techniques and their biological capabilities were
analyzed through in vitro and cytotoxic assays. Importantly, docking studies with relevant
proteins and In vitro toxicity studies on cancer cell lines (HeLa, MDA-MB-231, HCT 15,
and MCF7) showed potential anticancer properties.

2. Materials and Methods
2.1. Materials

All the reagents (ACS purity), media, solvents, and biological supplies (DNA from
calf thymus) were purchased from Sigma-Aldrich (Merck KGaA, Darmstadt, Germany).
The pUC19 plasmid was acquired by OXYGENE (Oxford Genetics Ltd., Oxford, UK). The
plasmid was expressed in the E. Coli HB101 strain (Bio-Rad Laboratories, Inc., Hercules,
CA, USA) and purified via alkaline lysis with the GenElute® plasmid miniprep kit (Merck
KGaA, Darmstadt, Germany). Cancer cell lines were provided by Laboratorio de Fisiologia
Celular from the Faculty of Medicine of the Benemérita Universidad Autónoma de Puebla
(BUAP). The cell lines belonged to the ATCC (Manassas, VA, USA) cell culture collection
and were maintained according to the supplier’s recommendations [39].

2.2. Equipment

The UV-Vis studies in solution were conducted using a Cary 50 spectrophotometer
(Agilent Technologies, Santa Clara, CA, USA), utilizing a quartz cuvette with a width of
10 mm for measuring concentrations. A Nicolet 6700 FTIR spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA), equipped with the iTR attachment featuring a
diamond tip, was used to capture the infrared spectra in the range of 4000 to 650 cm−1.
X-ray diffraction tests were conducted on high-quality crystals. The data was gathered
using an Oxford Diffraction Gemini-Atlas diffractometer (Oxford Instruments, Oxfordshire,
UK) that had a charge-coupled device area detector and used graphite monochromated
Mo-Kα radiation (λ = 0.71073 Å). The electrophoresis experiments were conducted using
a Bio-Rad Mini-Sub Cell GT Cell electrophoresis (Bio-Rad Laboratories, Inc., Hercules,
CA, USA) chamber equipped with a Daigger Biotech 300 power supply (Daigger, Vernon
Hills, IL, USA). Fluorometric assays were performed on a Varian Cary Eclipse fluorescence
spectrometer (Agilent Technologies, Santa Clara, CA, USA).

2.3. Software Crystallography

Data collection and absorption correction were performed using the CrysAlis PRO and
CrysAlis RED software packages [40]. The structure was resolved using direct approaches
with the ShelXT software and subsequently refined through full-matrix least-squares on
F2 with SHELXL-2019 [41]. Refinement was conducted on the positional and anisotropic
atomic displacement parameters of all non-hydrogen atoms. The hydrogen atoms were
identified in various Fourier maps and accounted for as fixed components attached to
their parent atoms. The isotropic thermal factors for the hydrogen atoms were selected to
be 1.2 times that of their parent atoms. The Olex2 program [42] served as the graphical
interface. The crystallographic data for the structure described in this research have been
submitted to the Cambridge Crystallographic Data Center (CCDC 23418117, 2341818).



Pharmaceutics 2024, 16, 747 4 of 26

2.4. Synthesis of Complexes
2.4.1. Synthesis of [Cu(L-Citr)(bipy)(NO3)]n (Complex 1)

The synthesis of Complex 1 was performed in the same manner described in previous
work [24]. In 30 mL of a methanolic mixture of citrulline (C6H13N3O3) (1 mmol) and copper
nitrate monohydrate (Cu(NO3)2·3H2O) (1 mmol), 1 mL of 2,2′-bipyridine (C10H8N2) in
methanol (1 M) was added, the pH was adjusted to 7–8, the resulting solution was filtered
and leave to crystallize at room temperature, but in this case the product did not recrystallize
in water. After one day, anhydrous blue crystalline needles were isolated, but the product
was not recrystallized in water. The anhydrous blue crystalline needles were obtained.
FT-IR (ATR, cm−1): 3460m, 3329m, 3281m, 3226w, 3083w, 2944w, 1669s, 1582br, 1558br,
1323vs, 1311vs, 773s. UV-Vis (εmax, M−1 cm−1): 300 nm (1.43 × 104), 312 nm (1.35 × 104),
605 nm (60).

2.4.2. Synthesis of [Cu(L-Citr)(phen)(NO3)]n (Complex 2)

The synthesis of Complex 2 was performed in the same way that Complex 1, using
1,10-phenanthroline (C12H8N2) as a tertiary ligand instead of bipyridine. After one day,
deep blue crystal clusters were isolated. FT-IR (ATR, cm−1): 3393m, 3319m, 3257m, 3218w,
2925w, 1644w, 1597br, 1582br, 1554s, 1385s, 1315s, 852s, 724s. UV-Vis (εmax, M−1 cm−1):
272 nm (3.20 × 104), 294 nm (1.02 × 104), 615 nm (52).

2.5. Quantum Mechanical Calculations

Calculations based on the density functional theory, DFT [43], were carried out to
analyze the non-polymeric complexes’ molecular structure, electronic properties, and
non-covalent interactions. The PBEPBE functional [44] was used with the LANL2DZ
basis set [45]. The solvent effect, using water as a solvent, was implicitly included in the
universal solvation model (SMD) [46]. The vibrational frequencies were calculated to ensure
minimum structures on the potential energy surface (PES). Two structures were modeled to
test their behavior in solution: Complexes 1′ and 2′. In both, the H2O molecule was placed
at the top of a distorted square pyramid. The molecular electrostatic potential (MEP) maps
were analyzed for the two systems. The calculations were carried out with the Gaussian
16 program [47]. The results were visualized with the Gaussian View 6.0.16 program [48].
The main non-covalent interactions were characterized using the atoms in molecules (AIM)
approach with the AIMAll software 19.10.12 [49].

2.6. Docking Studies with AutoDock 4.2

A molecular docking study was carried out using AutoDock 4.2 software to explore
the potential interactions of complexes with two different DNA targets [50]. The crystal
structures of the targets were obtained from the RSCB Protein Data Bank (PDB) [51]. The
PDB IDs 1BNA and 151D [52,53] were used to evaluate the complexes’ binding interactions
with DNA using AutoDock Tools. The macromolecule and its ligands were prepared
by removing the water molecules, adding polar hydrogens, and setting the Gasteiger
charges. The receptor grid box was set according to the targets studied, as follows: for
1BNA, the box was centered at x = 14.78 Å, y = 20.976 Å, and z = 8.807 Å with a box size
of 70 × 70 × 120 Å3, the box used for 151D was centered at x = 14.385 Å, y = 13.535 Å,
z = 13.098 Å with a box size of 70 × 70 × 70 Å3. Docking studies were conducted using
a population size of 150 individuals, a maximum energy evaluation of 2,500,000, and a
maximum generation of 27,000 to result in 50 docking poses. The parameters for the
copper(II) compounds during the docking procedure followed the protocol outlined in
our previous studies [54,55], where the force field used was a semiempirical free energy
scoring function that considers the contribution of the hydrogen bonds and the electrostatic
interactions. The corresponding interaction figures were prepared using Biovia Discovery
Studio Visualizer v21.1.0 [56] and VMD v1.9.4 software [57].
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2.7. In-Vitro Assays
2.7.1. Affinity for CT-DNA

The ability of complexes to bind DNA was studied via spectrophotometry titrations
with pure CT-DNA solutions (A280/A260 ≥ 1.8) (ε260 = 6600 cm−1 M−1 [58]). Using 1 mL of
10 µM solutions of every complex in TBS buffer (1× pH = 7.4) in a 1 cm path quartz cuvette,
a solution of 10 µM CT-DNA in the same buffer was added to the complex solutions in
different micro-volumes for every point in the titration curve, and the changes produced
in the UV-Vis spectra of the complex were recorded. The changes produced in molar
absorptivity constants (εmax) in the spectra of the complex were mathematically modeled
using the Wolfe-Schimer model of the Benesi-Hildebrand equation [59] to estimate the
affinity constant (Kb) (Equation (1)).

[DNA]

∆ε(a− f )
=

[DNA]

∆ε(b− f )
+

1
Kb∆ε(a− f )

(1)

where [DNA] is the CT-DNA concentration, and ∆ε(a−f) and ∆ε(b−f) are the differences in
the absorptivity coefficients between the apparent and fully bound states of the complex
concerning the free state, respectively. The parameters were calculated using a linear
regression model in a plot [DNA] vs. [DNA]/∆ε(a−f) by clearing them from the slope
and intercept.

2.7.2. Fluorometric Assays

Fluorometric titrations of the EB-dsDNA system with the complexes were used to study
how well the complexes could displace the strong DNA intercalator ethidium bromide (EB)
out of the EB-dsDNA system. This assay is an excellent test to help elucidate the binding
mode between the DNA and the complexes [60]. The EB-dsDNA system was prepared
by mixing CT-DNA (A280/A260 ≥ 1.8) and EB in TBS buffer (1x, pH = 7.4) to achieve a
concentration of 10 µM and 0.37 µM, respectively. Then, 1 mL of the mix, equilibrated at
room temperature for 5 min in the dark, was titrated with a solution (10 µM) of the tested
complex (always using the same buffer). The changes produced in the fluorescent spectra
(550–700 nm, Ex: 525 nm) were recorded at every point in the titration curve. If a decrease
in the intensity of the system spectrum is observed, intercalation may be inferred as the
mode of DNA binding due to the displacement of the ethidium bromide, which breaks the
enhanced intensity provided by this intercalator when it binds DNA in this mode [61]. The
differences in intensity between the EB-dsDNA system free and titrated with the complex
were mathematically modeled using the Stern-Volmer model for quenching studies [62],
applied for this case, which takes the following form (Equation (2)).

I0

I
= 1 + kqτ0[CuLL] = 1 + Ksv[CuLL] (2)

where I0 and I represent the maximal intensity of the system between zero and every point
in the titration curve, respectively, the complex concentration [CuLL] is at every point in
the titration curve; kq is the quenching constant for the tested complex; τ0 is the system’s
lifetime; and Ksv is the Stern-Volmer constant for the tested complex. This model provides
a Stern-Volmer plot when the intensity quotient is plotted against complex concentration,
using the linear regression model with an intercept equal to 1 and a slope equal to Ksv.

2.7.3. Interaction with pUC19 Plasmid

The ability of complexes to bind and cleave plasmid DNA was studied in the pUC19
plasmid by electrophoresis. A sample of 300 ng of pUC19 plasmid in 20 µL of nuclease-free
water was incubated at 37 ◦C for 24 h with the metal complex at different concentrations
(5–100 µM). The samples were run in a 1% agarose gel stained with ethidium bromide
(EB) (10 mg/mL) (5 µL EB/100 mL agarose gel) over TAE buffer (1x pH = 7.4) at 100 V
and 300 mA for 1 h. Once electrophoresis was complete, the gel was revealed in a UV
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transilluminator, monitoring the changes in the plasmid bands produced by complex action.
A typical plasmid sample exhibits the supercoiled form (Form I) and the relaxed coil form
(Form II). However, if a cleavage in the structure is made by complex action, a third band
would be expected to be observed between the two forms, which corresponds to the lineal
form of a plasmid (Form III) [63,64].

2.7.4. Cytotoxic Assays

The cytotoxicity of complexes was tested in four cancer cell lines: HeLa (cervix cancer),
HCT-15 (colorectal cancer), MDA-MB-231, and MCF-7 (breast cancer). The cells were grown
in appropriate media (see Table S1) supplemented with 5% fetal bovine serum (FBS) and
100 U/0.1 mg/mL of penicillin/streptomycin antibiotic mix at 37 ◦C under a 5% CO2
atmosphere in triplicate, each cell line to test was seeded in 96-well plates (3 × 103 cells
per well) and incubated under the same conditions described previously. Subsequently,
the media was aspirated and replaced with media supplemented with a filtered (0.25 µm)
solution of each tested complex, increasing the concentration (1–10 µM) in each well row
from the positive and negative control well rows. Finally, the plates were incubated for
another 24 h under the same conditions described above, and the percentage of viable cells
was measured by the XTT colorimetric assay [65] using a microplate spectrophotometer.
The absorbance values (ABSi) were transformed to the percentage of response (dead cell
population) (Ri) with the relationship described in Equation (3):

Ri = 1 − ABSi − ABSnc

ABSpc − ABSnc
(3)

The average absorbance values of the negative (ABSnc) and positive (ABSpc) controls
are those produced by fully viable and fully non-viable populations, respectively. The
transformed values give a dose-response curve, which can be numerically fitted with the
Hill equation using the Sigma Plot v.12.0 (Systat Software, Inc., San Jose, CA, USA), which
allows calculating the IC50 parameter.

3. Results
3.1. Molecular Structures

Complexes 1 and 2 are related compounds containing the amino acid citrulline and
nitrogen-based heterocycles (i.e., bipyridine or phenanthroline) as ligands. Both com-
plexes present similar asymmetric units, but variances are shown in the three-dimensional
arrangement.

Crystals of Complex 1 comprise polymeric chains parallel to the “b crystallographic
axis”. Complex 2 comprises chains interlaced and connected by hydrogen bonds (Table 1).
The asymmetric units of both compounds contain one Cu(II) ion in a distorted octahedral
geometry coordinated to one bipy or phen ligand and one citrulline in the equatorial plane.
On the other hand, one nitrate ion and another citrulline molecule belonging to an adjacent
molecule occupy the apical positions (Figure 2). This causes the complexes to acquire a
polymeric nature.

The coordination spheres in both complexes undergo deformation due to the splitting
of energy of the degenerate d-orbitals caused by the Jahn-Teller effect [66]. In Complex 1,
the equatorial plane’s Cu-Neq and Cu-Oeq bonds acquire length values of 1.983(2)–2.001(2)
and 1.952(2) Å, respectively. However, because of the Jahn-Teller effect, the Cu-Oap (O28,
O25) bond distances in the apical positions are larger, ranging from 2.443(2) to 2.668(3) Å
values. Similarly, Complex 2 undergoes the same effect, with Cu-Neq and Cu-Oeq bond
distances in the range of 1.990(4)–2.044(3) Å and 1.939(3)–1.942(3) Å, respectively, and
Cu-Oap (O9, O6) bond lengths of 2.340(3)–2.784(4) Å. All values are nearly identical in
both molecules and similar to the hydrated complex [Cu(Citr)(bipy)(H2O)(NO3)]·(H2O),
previously reported by us [24].
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Table 1. Crystallographic data and structure refinement details.

Complex 1 Complex 2

Empirical formula C16H20CuN6O6 C18H20CuN6O6
CCDC 2341818 2341817

Formula weight (g/mol) 455.92 479.94
Temperature (K) 293(2) 293(2)
Crystal system Monoclinic Triclinic

Space group P21 P1
a (Å) 5.5321(2) 9.2213(3)
b (Å) 9.1050(3) 9.4194(3)
c (Å) 18.6006(6) 12.3091(4)
a (◦) 90 93.660(3)
β (◦) 92.816(3) 93.753(3)
γ (◦) 90 110.190(3)

Volume (Å3) 935.78(6) 997.04(6)
Z 2 2

ρcalc (g/cm3) 1.618 1.599
µ (mm−1) 1.216 1.146
Radiation MoKα (λ = 0.71073) MoKα (λ = 0.71073)

Index ranges −8 ≤ h ≤ 8, −14 ≤ k ≤ 14,
−29 ≤ l ≤ 30

−14 ≤ h ≤ 14, −14 ≤ k ≤ 14,
−18 ≤ l ≤ 18

Largest diff. peak/hole
(e Å−3)

0.34/−0.47 0.42/−0.43

Rint 0.0496 0.0482
GoF on F2 1.044 1.004

Final R indexes [I > 2σ(I)] R1 = 0.0366, wR2 = 0.0652 R1 = 0.0461, wR2 = 0.0807
Final R indexes [all data] R1 = 0.0647, wR2 = 0.0756 R1 = 0.0834, wR2 = 0.0934
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The polymeric chains formed by these complexes are similar, but their arrangements
are entirely different. Complex 1, due to the 2-fold axis in its structure, forms two parallel
chains along the “b-axis”, with bipy and citrulline ligands pointing outwards and inwards,
respectively (Figure 3). In this configuration, the pair of chains interact through N-H···O hy-
drogen bonds between the amines and carboxylate groups of citrulline molecules (Table 2).
Moreover, chains interact with one another along the “a axis” through hydrogen bonds
between the carboxylate group of citrulline and the amine group of the α-carbon of adjacent
chains, as well as by п-п stacking interactions (3.460 Å length) between bipyridine rings.
Along the “c-axis”, the pair of chains is isolated.
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bonds; (c) п-п stacking interactions exist between aromatic rings of equivalent chains.

Table 2. Lengths (Å) and angles (◦) for selected hydrogen bonds in Complex 1.

D-H···A D-H Distance H···A
Distance

D···A
Distance Angle

N24-H24B···O26 0.89 2.289 3.103(3) 151.9
N24 i-H24A···O14 0.89 2.347 3.236(3) 177.6
N20 ii-H20···O23 0.86 2.158 2.947(3) 152.3

N22 ii-H22A···O23 0.83(3) 2.37(3) 3.113(3) 149.7(3)
N22 iii-H22B···O23 0.88(4) 2.32(4) 3.161(3) 158.2(3)

Symmetry operations: i = 1 + x, y, z; ii = 2 − x, ½ + y, 2 − z; iii = 1 + x, 1 + y, z.

On the other hand, Complex 2 contains two non-equivalent Cu(II) ions, which create
two different kinds of polymeric chains, named A and B. Chains A and B run parallel
to the “a and b crystallographic axes”, respectively. In addition, chains of the same type
are arranged in a laminated shape, as shown in Figure 4. This configuration results in a
grill-shaped structure. Further, an intricate network of N-H···O hydrogen bonds that hold
chains A and B together stabilizes the chains (Table 3).
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Table 3. Lengths (Å) and angles (◦) for selected hydrogen bonds in Complex 2.

D-H···A D-H Distance H···A Distance D···A Distance Angle

N3-H3A···O7 0.89 2.26 3.004(5) 141.5
N3-H3B···O2 i 0.89 2.41 3.100(4) 134.7
N4-H4···O12 i 0.86 2.22 3.021(5) 154.7

N5-H5A···O2 ii 0.86 2.08 2.916(5) 164.3
N5-H5B···O12 i 0.86 2.38 3.152(6) 149.5
N8-H8A···O5 0.89 2.09 2.963(4) 165.6
N8-H8B···O10 0.89 2.18 3.013(4) 155.5
N9-H9A···O9 0.86 2.12 2.957(5) 163.3

N10-H10A···O5
iii 0.86 2.15 2.990(5) 164.4

N10-H10B···O9 0.86 2.42 3.174(6) 147.3

Symmetry operations: i = x, y, 1 + z; ii = −1 + x, y, 1 + z; iii = x, −1 + y, z.

3.2. Molecular Structure and Non-Covalent Interactions

Figure 5a,b show the optimized structures and the molecular electrostatic potential
(MEP) of complexes 1′ and 2′, respectively, if the hydrolysis of the polymers is considered.
In Figure 5a, in Complex 1′, the Cu1 atom is coordinated in the equatorial sites with the
citrulline molecule with distances of Cu1–O1 1.991 Å and Cu1–N1 2.049 Å, and with the
2,2-bipyridine molecule with distances of Cu1–N2 and Cu1–N3 2.008–2.040 Å. For Complex
2′, the distances of Cu1–O1 1.992 Å and Cu1–N1 2.043 Å with citrulline are very similar
and in the same form with the 1,10-phenanthroline molecule, with distances of Cu1–N2
and Cu1–N3 2.017–2.062 Å. These parameters at the equatorial positions coordinated with
Cu(II) are in accordance with those previously calculated: for D, L-Citrullinato-bipyridine
complex (Cu1–O1 2.021–2.024 Å, Cu1–N1 2.030–2.031 Å, Cu1–N2 2.007–2.012 Å, and
Cu1–N3 2.034–2.038 Å) [24] for bis-Citrullinato complex (Cu1–O1 1.964–1.980 Å, Cu1–N1
2.018–2.027 Å) [38]; for L-Glutamine and phenanthroline complex (Cu1–N2 1.989–2.006 Å,
and Cu1–N3 2.014–2.037 Å) [54]; and for Metformin and bipyridine complex (Cu1–N2
2.031 Å, and Cu1–N3 2.044 Å) [67]. On the other hand, in both complexes, the axial
position of the distorted square pyramidal center is occupied by one H2O molecule, which
is coordinated with Cu1 through O3, with Cu1–O3 distances of 2.278 and 2.280 Å for
complexes 1′ and 2′, respectively. Similar values of 3.019–3.030 Å for D, L-Citrullinato-
bipyridine complex [24]; 2.221–2.308 Å for L-Glutamine and phenanthroline complex [54];
and 2.756 Å for Metformin and bipyridine complex [67], have been calculated for complexes
with H2O molecule in the axial position coordinated with Cu(II). In Figure 5b, the molecular
electrostatic potential (MEP) was mapped on the total electronic density in a range of
−2.0 × 10−2 (red regions) to 2.0 × 10−2 (blue regions) of electronic density, with an isovalue
= 0.0004 a.u. For complexes 1′ and 2′, the negative charge density regions (nucleophilic
zones) are located on the carboxylate and ureide groups of citrulline. In contrast, the
deficient charge density regions (electrophilic zones) are located on the protons of the
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ureide, 2,2-bipyridine, and 1,10-phenanthroline. Intermediate electron density zones are
shown in yellow and green regions. These electrophilic and nucleophilic regions are
susceptible to interaction, including non-covalent interactions, with adjacent chains forming
the supramolecular structure.
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Figure 5. (a) Optimized Complex 1′ and Complex 2′ molecular structures. (b) Molecular electrostatic
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The non-covalent interactions were analyzed by topological parameters, such as
the electron density, ρ(r), the Laplacian of density, ∇2ρ(r), and the energy of interaction,
EH···Y. The results are shown in Table 4. Figure 5 shows Complex 1′ and 2′ molecu-
lar graphs, where the green dots indicate bond critical points (BCPs), and purple dots
indicate ring critical points (RCPs). The values of ρ(r) on the BCPs are at the similar
ranges 0.0747–0.0812 a.u. and 0.0747–0.0793 a.u., for Complex 1′ and 2′, respectively,
for the interactions in the equatorial positions coordinated with the Cu1 atom (Cu1···O1,
Cu1···N1, Cu1···N2, and Cu1···N3), see Table 4. In addition, the positive values of ∇2ρ(r)
in these interactions indicate the presence of metal-ligand non-covalent interactions in
the equatorial positions coordinated with the Cu1 atom in both compounds. The calcu-
lated interaction energy (EH···Y) is in the range of 35.23–41.08 and 33.85–39.69 kcal mol−1

for Complex 1′ and Complex 2′, respectively, with slightly higher values for Complex
1′ with 2,2-bipyridine, in the equatorial positions coordinated of the Cu1 atom. Similar
values of interaction energies have been calculated for D, L-Citrullinato-bipyridine com-
plex (33.95–40.73 kcal mol−1) [24], bis-Citrullinato complex (40.47–44.43 kcal mol−1) [38],
L-Glutamine and phenanthroline complex (31.31–50.29 kcal mol−1) [54], Metformin and
bipyridine complex (35.61–47.31 kcal mol−1), and Imidazol-pyridine and Glycine complex
(37.87–42.20 kcal mol−1) [67], all of them in the equatorial sites coordinated with Cu(II).
Concerning the axial position, the value of interaction energy for the interaction between
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Cu1 and the O3 of the H2O molecule, Cu1···O3, is 13.99 and 13.87 kcal mol−1 for Complex
1′ and 2′, respectively. Similar values have been found for L-Glutamine and phenanthroline
complex (13.02–16.44 kcal mol−1) [54], and for Imidazol-pyridine and Glycine complex
(17.23 kcal mol−1) [67], for the interaction between a H2O molecule coordinated with Cu(II)
in axial position. A weak interaction, H2···O1, is observed in both complexes with small
value interaction energy (2.73 and 1.98 kcal mol−1). Several RCPs are observed (purple
dots in Figure 6) forming stable ring structures of five atoms around Cu(II) coordinated in
Complexes 1′ and 2′.

Table 4. Topological parameters (in a.u.) and interaction energies E.H. ···Y (in kcal mol−1) of Complex
1′ and Complex 2′. Atom labels correspond to those shown in Figures 4 and 5.

Complex 1′

BCP ρ (r) ∇2ρ (r) EH···Y

Cu1···O1 0.0747 0.4718 38.00

Cu1···N1 0.0760 0.3964 35.23

Cu1···N2 0.0812 0.4601 41.04

Cu1···N3 0.0753 0.4257 36.68

Cu1···O3 0.0377 0.2307 13.99

H2···O1 0.0124 0.0598 2.73

Complex 2′

BCP ρ (r) ∇2ρ (r) EH···Y

Cu1···O1 0.0747 0.4711 37.90

Cu1···N1 0.0771 0.3997 35.85

Cu1···N2 0.0793 0.4500 39.69

Cu1···N3 0.0713 0.4035 33.85

Cu1···O3 0.0375 0.2289 13.87

H2···O1 0.0097 0.0472 1.98
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3.3. Molecular Docking

Table 5 displays the docked binding energies corresponding to the copper complexes’
top molecular pose (lowest energy) presented for the docked complexes with DNA. As
previously reported, these results can be compared with the Doxorubicin (DOX) refer-
ence ligand [54,55]. DOX is an anthracycline commonly employed as a chemotherapeutic
drug. DOX exhibits a binding energy of −11.3 kcal/mol with DNA. When examining the
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interactions with DNA, the copper complexes exhibit lower binding energies than DOX.
Nevertheless, both complexes interact well with the DNA molecule, occupying similar
positions in the minor groove of the 1BNA/DNA and intercalating in the 151D/DNA frag-
ment structures, as illustrated in Figure 7. Notably, Complex 2′ [Cu(L-Citr)(phen)(H2O)]+

exhibits the best binding energy among the two copper complexes. Interestingly, the copper
complexes studied interact with the same nucleotides as DOX in 151D/DNA, although
the nature of the interaction differs between them. This variation in interaction type could
explain why these copper complexes demonstrated lower binding energies than those
observed with DOX.

Table 5. Binding energies for the best molecular poses of the two complexes studied.

Compound
Binding Energy (Kcal/mol)

DNA/1BNA DNA/151D

Complex 1′ −9.3 −7.7

Complex 2′ −9.8 −9.1
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Figure 7. Docked structures of the top molecular poses of the two copper complexes under inves-
tigation: [Cu(L-Citr)(phen) (H2O)]+ in purple and [Cu(L-Citr)(bipy)(H2O)]+ in cyan, docked with
1BNA/DNA (A) and 151D/DNA (B).

3.4. In-Vitro Experiments
3.4.1. UV-Vis Experiments with CT-DNA

The electronic absorption spectra of complexes 1 and 2 (in water solution) are shown
in Figure 8, in the range 250–350 nm, with each colored line representing a point on the
titration curve. In Complex 1, the addition of CT-DNA causes a decrease in intensity in
the band at 310 nm (hypochromic effect) as the CT-DNA concentration increases and a
slight blue shift (hypsochromic shift) by about 2 nm. However, in the band at 300 nm,
although a decrease in intensity is experienced at the first points of the titration, the trend
changes again until an increase in intensity is perceived. This results in a hyperchromic
effect, followed by a shift and distortion of the band. The broad absorption band of DNA is
separated at 40 nm from the band of Complex 1, and the above effect can be rationalized as
a band overlap.
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Figure 8. Electronic absorption spectra of Complex 1 (A) and Complex 2 (B) when titrated with
CT-DNA. Every line represents a point in the titration, and the red arrows indicate the changes in the
intensity and position of the complex bands in the experiment.

In Complex 2, due to the band overlap between the absorption band of DNA (260 nm)
and the band of the complex (272 nm), the concentration of the CT-DNA solution had
to be decreased one-fold. However, the first thing to observe is a gradual decrease in
intensity over the band at 272 nm as the concentration of CT-DNA increases, resulting in a
moderate hypochromic effect on the band. The band near 290 nm also experiences the same
phenomenon but to a lesser extent. In both cases, there is no shift in the bands. According to
several authors [59,64,68–72], the hypochromic effect on the visible spectrum, accompanied
by a shift to both blue and red, indicates the binding of the molecule to DNA, implying that
the complex tends to bind to DNA. However, the absence of a shift in Complex 2 leaves
doubt about the interaction. Although it is possible to rationalize this absence as an effect
of titrant dilution, this argument needs further support.

According to the linearized model of the Wolfe-Schimer equation (Figure 9), the value
of the association constant (Kb) for Complex 2 is 8.32 × 105, and for Complex 1 is 3.76 × 104,
indicating a difference of one order of magnitude. Compared to other writers, the value is
in the expected range for the mixed amino acid family (See Section 4), and the data from
this experiment indicate that the complexes can bind DNA.
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3.4.2. Fluorometric Experiments with CT-DNA

Previously, the findings in the previous section showed a DNA binding affinity for the
complexes, but how the two molecules bind cannot be easily explained. The fluorescent
emission spectra from the titration experiment of the EB-DNA complex with metallic
complexes 1 and 2 are shown in Figure 10. If the complexes can intercalate and displace EB, a
decrease in intensity should be noted, which is observed in both cases. As the concentration
of the complexes in the experiment increases, the measured intensity gradually decreases.
This behavior in the experiments supports intercalation as a likely way for the synthesized
complexes to bind to DNA.
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Although both complexes show a reduction in intensity, Complex 2 shows more active
behavior. Using the Stern-Volmer model on the fluorescence data, the Ksv constant acquires
values of 5.57 × 103 and 2.37 × 104 for complexes 1 and 2, respectively, representing a
difference of one order of magnitude between both molecules (Figure 11). The variation in
the values shown is mainly due to the type of tertiary ligand in the molecules. It should be
noted that the theory states that the larger, bulkier, and more hydrophobic the functional
group, the more favorable the insertion into the grooves of the double-stranded DNA
molecule [64], and the analyzed complexes appear to be no exception.
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3.4.3. Interaction with pUC19

The electrophoresis bands of plasmid pUC19 treated with both complexes are shown
in Figure 12. In both cases, the first lane corresponds to the untreated plasmid. The
supercoiled form (Form II) is visible in the lower band, and the relaxed form (Form I) in the
upper band, both without abnormalities.
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Figure 12. Electrophoresis of pUC19 plasmid were treated with Complex 2 (A) and Complex 1 (B),
respectively. In both experiments, the complex concentration per lane equals 0, 5, 10, 15, 30, 50, and
100 µM, from left to right.

Linear DNA (form III) is seen in the experiment with Complex 2. This occurs as a
small splitting of the form II band from the lane at 5 µM, with a slight decrease in the
intensity of the same band and the disappearance of the form I band. The above suggests
that the complex can break the circular structure. Then, the same pattern is observed in
the three lanes corresponding to concentrations between 10 and 30 µM, with a gradual
increase in the intensity of Form III. However, when the concentration exceeds 50 µM, the
intensity of forms II and III decreases entirely in the last lanes. Thus, it indicates that most
of the DNA load cannot leave the well of the gel. From this concentration point, the DNA
condenses due to a change in electrophoretic mobility caused by the cations of the complex
neutralizing the negative charges of the molecule [73–75].

On the other hand, Complex 1 has similar behavior on the plasmid, but form III bands
can be seen up to the lane corresponding to 15 µM. Although the form I is discernible
in all bands, it is difficult to differentiate in the lowest concentration lane. Complex 2
produces the same condensed shape, unable to migrate on the gel at concentrations at or
above 30 µM. Complex 2 loses the band corresponding to the circular relaxed form at 5 µM,
whereas Complex 1 loses the band corresponding to the circular relaxed form at a threefold
higher concentration. This again supports the power of a bulkier, hydrophobic ligand on
DNA affinity.

3.4.4. Cytotoxic Assays

The IC50 values calculated for the two complexes compared to the four cell lines
studied are summarized in Table 6. The inhibition values agree with the DNA affinity
experiments: Complex 2 shows higher activity against cancer lines than Complex 1, which
shows inhibitory concentrations exceeding the 10 µM range. Activity against all four lines
is favorable in Complex 2, with HeLa cells being the most active (IC50 = 2.53 µM), followed
by MCF-7, HCT-15, and MDA-MB-231 lines in ascending order. All the lines studied in the
experiment correspond to different epithelial tissues, such as cervical (HeLa), breast (MDA
and MCF-7), and colorectal (HCT-15), indicating that the complex has a broad spectrum
of action.
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Table 6. IC50 values (µM) of the complexes against cell lines.

Complex
Cancer Cell Line

HeLa MCF-7 MDA MB 231 HCT-15

Complex 1 >10 11.77 ± 0.61
Complex 2 2.53 ± 0.04 4.67 ± 0.59 6.69 ± 0.60 5.20 ± 0.09

On the other hand, Complex 1 has a relatively mild action. Viability experiments show
a slight decrease in viability and mild activity against the HCT-15 line (IC50 = 11.77 µM).
It can be concluded that the lines studied with this complex are very resistant to the
molecule’s action. Complex 2 can alter the spindle-shaped morphology of HeLa and MDA
cells, forming smaller circular clusters with high dye penetration, characteristic of apoptotic
cell populations [76,77]. This can be seen with propidium iodide staining (Figure 13). This
suggests that the complex’s ability to induce cell death is the cause of the loss of viability.
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Figure 13. Fluorescent micrographs (10×) of HeLa and MDA-MB-231 cells treated with the Complex 2.
Micrographs (A,C) correspond to HeLa and MDA-MB-231 controls, respectively, while micrographs
(B,D) correspond to HeLa and MDA-MB-231 treatments with the complex (10 µM) at 24 h. Propidium
iodide staining was used.

4. Discussion

The main point to consider in the structures presented here is the formation of poly-
meric structures. In previous work, this was attributed to the ditopic nature of citrulline,
which can bind a metal center with both the amino acid moiety and the ureido moiety [38].
In contrast to the [Cu(bipy)(Citr)(H2O)(NO3)](H2O) complex [24], the two complexes in
this work maintain apical positions occupied by the ureido moiety. It should be recalled
that in the synthesis of the previous work, the complex was recrystallized in water, and
since this is the only difference in the synthesis of both complexes, it is most likely a ligand
displacement phenomenon. A feasible explanation indicates water as a stronger sigma
donor than the ureido group.

Performing a search in the CCDC database (Figure S1 and Table 7) for aminoacidic
Casiopeina analogs, there are more than 258 entries with phenanthroline and derivatives
as the primary ligand, of which only ten correspond to polymeric complexes [78–86]. A
common factor in all complexes, referred to as the main requirement for forming polymers,
is the presence of more than one electron donor group, the carbonyl group (CO) being
the most frequent. For this reason, ditopic ligands prefer to form polymeric structures.
However, this is not a general rule since bridging ligands, such as nitrate ions (NO3

−), can
also form polymeric structures without coordinating the other moiety of the secondary
ligand to another metal center [80,81,87]. A similar analysis of the 134 bipyridine analogs
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(Figure S2 and Table 8) shows similar patterns, but in these cases, the list is longer, with 11
molecules [87–96]. Similarly, most of the bonds are through an oxygen atom, present either
in carbonyl groups or coming from the counterions of the molecule, and bonding is also
observed through nitrogen atoms coming from both rings and amino groups.

Table 7. phenanthroline-Copper (II) analogs with polymeric structure reported in the CCDC database.

Complex Secondary
Ligand

Coordinating
Moiety

Crystallization
Solvent Ref.

[Cu(L-Trp) (1,10-phen)](ClO4)(H2O) L-Trp Trp α-CO (µ-O) Water/EtOH [78]

[Cu(Asn) (1,10-nphen)](ClO4) L-Asn Asn δ-CO (µ-O) Water/MeOH [79]

[Cu(Orn)(1,10-phen)](NO3)2(H2O) L-Orn CI (NO3) (µ-O) Water/EtOH [80]

[Cu(D/L-dhpg)(1,10-phen) (NO3)]x(H2O) D/L-dhpg CI (NO3) (µ-O) Water/EtOH (5:3) [81]

[Cu2(H2ttha)(1,10-phen)2] (H2ttha)−4 -NAc2 (µ4-N, O) Water/EtOH (4:1) [82]

[Cu(3-pysaa)(1,10-phen)]2(H2O) 3-pysaa Pyr (µ-N) Water/EtOH (2:3) [83]

[Cu(SMe-L-Cys)(dppz)(H2O)](NO3) SMe-L-Cys Cys α-CO (µ-O) Water/MeOH (1:2) [84]

[Cu(L-Asp)(1,10-phen)](H2O) L-Asp Asp δ-CO (µ-O) Water/EtOH (1:1) [85]

[Cu(sptc)(1,10-phen)] (sptc)−2 TC (µ2-N, O) MeCN/MeOH (5:4) [86]

CI = counterion; 1–10-nphen = nitro-1,10-phenanthroline; D/L-dhpg = D(−)/L(+)-4-hydroxyphenylglycine;
H2ttha = 1,3,5-triazine-2,4,6-triamine hexaacetic acid; 3-pysaa = N-3-pyridine sulfonyl amino acid; Sme-L-Cys
= S-methyl-L-cysteine; dppz= dipyrido [3,2-a:2′,3′-c]phenazine; sptc = 1,1′-[sulfonylbis(4,1-phenylene)]bis(1
H-1,2,3-triazole-4-carboxylate); TC = triazole-4-carboxylate moiety.

Table 8. bipyridine-Copper (II) analogs with polymeric structure reported in the CCDC database.

Complex Secondary
Ligand

Coordinating
Moiety

Crystallization
Solvent Ref.

[Cu(L-Glu)(2,2′-bipy)] L-Glu Glu ε-COO (µ-O) Water/MeOH (3:1) [88]

[Cu(L-Arg)(2,2′-bipy)(NO3)](NO3) L-Arg CI (NO3) (µ-O) Water/MeOH (2:1) [87]

[Cu(Hdta)(2,2′-bipy)] Htda−2 TA (µ-N) MeCN [89]

[Cu2(L-Arg)2(2,2′-
bipy)2(ClO4)2]2(ClO4)4(H2O) L-Arg CI (ClO4) (µ2-O) Water/EtOH [90]

[Cu4(L-Cys-Cys)(2,2′-
bipy)4]4(ClO4)1.5(H2O) L-Cys-Cys Cys α-COO(µ-O) MeOH [91]

[Cu(L-NH2Phe)(2,2′bipy)](NO3)(H2O) L-NH2-Phe -NH2 (µ-N) Water/MeOH [92]

[Cu(H2adip)2(2,2′-Bipy)] adip−2 MeCOO (µ-O) Water [93]

[Cu(D,L-Lys)(2,2′-bipy)]2(V4O10)7(H2O) D, L-Lys CI (V4O10) (µ-O) Water [94]

[Cu(L-Glu)(2,2′-bipy)(H2O)]
[Cu(L-Glu)(2,2′-bipy)(ClO4)](ClO4)2(H2O) L-Glu CI (ClO4) (µ-O) MeOH [95]

[Cu(L-Gln)(2,2′-bipy)(H2O)]
[Cu(L-Gln)(2,2′-bipy)](SO4)4(H2O) L-Gln L-Gln α-COO

(µ-O) Water/MeOH [96]

CI = counterion; Htda = 1,2,3-triazole-4,5-dicarboxylic acid; TA = Triazole moiety; L-Cys-Cys = L-Cystine;
L-NH2-Phe = 4-Aminophenylalanine; H2adip = 5-Aminodiacetic isophthalic acid.

As mentioned, recrystallization in water is attributed as the main reason for forming
a monomeric compound in the previous work. Therefore, when comparing the crystal-
lization solvents of the examples shown in the tables, it can be observed that almost all
of them are synthesized and crystallized in aqueous solutions of polar solvents. The pro-
portion of water in the medium seems to affect the formation of polymeric structures
significantly. Although, of course, the presence of water itself is not a mutually exclusive
condition for forming polymeric structures since there are hydrated structures in the ex-
amples [78,80,81,83,84,90–92,94–96]. What seems to be an exclusive tendency when more
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than two bidentate ligands are involved is the coordination of the metal center by a water
molecule. In octahedral geometries, chain formation can occur with one water molecule
coordinated in an apical position, leaving the other position free for chain coordination, as
observed in some instances. Nevertheless, if the geometry of the complex obeys a square-
based pyramid arrangement, the fact that a water molecule occupies the apical position
involves a blockage to chain formation. This is because water cannot coordinate to more
than two metal centers. In terms of geometry, there does not seem to be a general pattern
that covers all cases. In some cases, molecules with octahedral geometry and molecules
with square pyramid geometry can be observed in the same crystal. However, an important
observation is that octahedral geometries are observed when there are bridges with the
counterion of the complex or the ligand has a denticity greater than 3 [80–82,86,87,90,93–95].
Square-based pyramid geometries are mainly observed when the denticity of the ligands is
not greater than 3.

Regarding the “in vitro” highlights, there are some points to review. Spectrophotomet-
ric assays with CT-DNA show that both complexes have an affinity for the biomolecule,
with an order of magnitude difference between bipyridine and phenanthroline, which is
mainly attributed to the extra ring in the phenanthroline structure. The explanation of why
this happens has been widely discussed by many authors, being a phenomenon attributable
to the aromaticity and charge density of the ligand [59,64,69,97]. Fluorometric assays show
evidence of the ability of both complexes to intercalate between DNA bases; similarly,
experiments with plasmid DNA show that both complexes can cleave the structure. This
information confers the term “metallonuclease” to the molecules in this study, although the
exact mechanism by which this process occurs is not yet fully elucidated.

To describe the above point in more detail, it is necessary to provide some context.
Copper (II) complexes have been known as potent nuclease-like compounds since the
late 1970s, with the Sigman pioneering work about the activity of the ([Cu(phen)2]2+)
complex on DNA [98,99]. This ability to cleave DNA strands occurs through the hydrol-
ysis of the phosphodiester backbone or by extracting hydrogen atoms from the pentose
ring, which is an oxygen-dependent process. The cleavage mechanism is related to the
reactive oxygen species (ROS) through the oxidation of Cu(II) to Cu(III) in the presence of
oxidizing agents such as hydrogen peroxide (H2O2) or molecular oxygen (O2). Likewise,
the reduction of Cu(II) to Cu(I) using reducing agents such as ascorbic acid (C6H8O6)
also produces ROS [100–108]. Most copper (II) complexes are known to cleave DNA
through this mechanism [106], and within this group of compounds, the Casiopeinas are
found. These compounds belong to a predominant family with several members known
for their anticancer properties against various types of tumor cells both in laboratory
settings (in vitro) and in living organisms (in vivo) [12,13,33,36]. Multiple hypotheses re-
garding the mechanism of action have been suggested, such as the excessive production of
ROS through Fenton-type reactions, toxicity to mitochondria, and direct interaction with
DNA [36,109–111]. Quantitative Structure-Activity Relationship (QSAR) investigations
have demonstrated that the substituents of the ligands can alter the cytotoxicity and an-
tiproliferative activity of Casiopeinas [36,109,110]. The complexes presented in this work
show biological activity, and it is likely that the mechanism of action is closely related
to the mentioned mechanisms. To support this idea, a comparison between the values
obtained with other authors (Table 9) indicates that the affinity of the complexes is paired
with values of Casiopeina with proven biological activity [69], while analogs similar to
the citrulline structure, such as the complexes of Arginine, Ornithine, Asparagine, and
Glutamine [79,111,112], show slightly lower values, but retain the same tendency of be-
ing the heterocyclic ligand with the highest charge density and the one with the highest
biological activity. Again, a comparison with the complexes in Complex 9, where assays
similar to this work were carried out [79,112,113], also shows the same pattern, where the
study complexes have the same ability to intercalate with DNA and cause cleavages to it.
Although the values differ, the difference between heterocyclic ligands predominates over
the difference between secondary ligands.
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Table 9. Affinity Constants (Kb) for several Casiopeina analogs.

Compound Kb (M−1) Reference

[Cu(L-Citr)(1,10-phen)(H2O)]NO3 (Complex 2′) 8.32 × 105

This work
[Cu(L-Citr)(2,2′-bipy)(H2O]NO3 (Complex 1′) 3.76 × 104

[Cu(2,2′ -bipy)(gly)(H2O)]NO3 (CasVII-gly) 3.23 × 105

[69]

[Cu(4,4-dimethyl-2,2′-bipy)(acac)(H2O)]NO3 (CasIII-ia) 3.31 × 105

[Cu(1,10-phen)(gly)(H2O)]NO3 (CasVII-gly) 7.15 × 105

[Cu(phen)(acac)(H2O)]NO3 (CasIII-Ba) 7.60 × 105

[Cu(4,7-dimethyl-1,10-phen)(acac)(H2O)]NO3 (CasIII-Ea) 7.90 × 105

[Cu(5,6-dimethyl-1,10-phen)(gly)(H2O)]NO3 (CasVI-gly) 7.89 × 105

[Cu(L-Arg)(2,2′-bipy)(Cl)](Cl) 1.70 × 103 [112]

[Cu(L-Orn)(1,10-phen)(Cl)](Cl) 2.70 × 104 [113]

[Cu(L-Asn)(1,10-nphen)](ClO4) 2.43 × 103

[79]
[Cu(L-Gln)(1,10-nphen)(H2O)](ClO4) 1.05 × 104

[Cu(L-Gln)(1,10-phen)(H2O)](NO3)(H2O) 3.62 × 103

[113]
[Cu(L-Gln)(dmphen)(H2O](ClO4) 7.33 × 103

In cytotoxicity experiments, the values become more discrete, although, in this case,
it is more difficult to compare results with those of other authors due to the cell lines and
the controls used. The choice criteria vary between studies, but those using the same
lines may be comparable. An example of the above is reported by Godínez-Loyola and
Bravo-Gómez [110,114] with IC50 values in the HeLa line for [Cu(1,10-phen)(indo)](NO3)
and [Cu(1,10-phen)(acac)](NO3) complexes of 2.30 and 10.7 µM respectively. Similarly, for
the bipyridine analogs of these two complexes, [Cu(2,2′-bipy)(indo)](NO3) and [Cu(2,2′-
bipy)(acac)](NO3), the authors report values of 25.2 and 42 µM respectively. Although the
change of the indomethacin ligand over the acetylacetonate ligand reduces the inhibitory
concentration by almost five times, the same pattern mentioned above is maintained.

The fact that the pattern is conserved in all the experiments carried out and is the
same as that observed in various studies is not a surprise; there is a justification in the
molecular structure of phenanthroline and bipyridine. It is interesting to highlight that,
despite using a wide range of secondary ligands, the pattern does not change, indicating
that the effects are additive concerning the secondary ligand. In the discussion of the
structure of the complexes in this study, mention is made of the ability of water to block
the formation of polymeric chains, which is evidence of the ability of this type of molecule.
This lability may also indicate the lability of the secondary ligand bonds, as these bonds
may break upon dissolution of the complexes in a physiological medium. This idea is
not new in metal complexes; authors such as Allsopp and Ciancetta study ligand changes
for carboplatin [115,116], while Costa-Pessoa and Correira do similar work in studying
possible transformations in vanadium complexes [117,118]. Within the domain of copper
compounds, the same approach was investigated. Ugone has suggested a predominant lig-
and replacement from reduced bioligands from cytosol and blood (e.g., glutathione (GSH),
NADH, and ascorbate molecules) onto four copper (II) Casiopeina-type complexes [119].
Similarly, Costa-Pessoa suggests a ligand replacement and separation of phenanthroline
from the copper atom [120]. Trends in “in vitro” assays, evidence about ligand lability
in copper complexes, and background on ligand exchange in metal complexes suggest
that Cassiopeia-type mixed copper complexes, in physiological media, should follow
equivalent behavior.

This idea helps to explain the pattern mentioned above. Based on the fact that any
casiopeina analog will decompose in physiological media by ligand substitutions, it is
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to be expected that the only ligand to remain attached to the metal center will be the
heterocyclic ligand due to its strong field nature and reported stability constants [121].
Therefore, in any reaction with any analog, the copper-diimine moiety will be a common
factor. Most of the observable biological activity is likely caused by the reaction product
retaining the heterocyclic ligand. The secondary ligand, on the other hand, can be expected
to be substituted relatively easily, considering that the above is not likely to be involved
in a biologically active process, such as DNA damage. However, hydrogen bonds or
hydrophobic interactions with side chains of the secondary ligands and DNA cannot be
discarded. Although it is true that the biological activity values are different between
analogs with different ligands, they all exert almost the same effects.

Several hypotheses can be formulated, but based on the data reviewed, it is possible to
suggest that the function of the secondary ligand is to confer greater solubility to the final
assembly. This hypothesis makes sense, considering the poor solubility of binary copper-
diimine complexes, especially when bulky, hydrophobic substituents are present in the
structure. Although it is less straightforward to speak of the solubility of the complex as a
function of the secondary ligand, this idea reconciles the observed patterns. The secondary
ligand may also exert an effect on activity, but under the perspective described, the effect
would be expected to be additive to the effect of the heterocyclic product. However, this is
an open question for further research in the near future.

5. Conclusions

Two catena complexes of copper based on bipyridine and phenanthroline with the
amino acid citrulline were obtained and crystallized from a methanolic solution. Also,
considering that the catena complexes suffer hydrolysis in an aqueous solution, the resulting
aqua-complexes were studied with the DFT methodology (Complexes 1′ and 2′). Docking
studies using 1BNA and 151D small DNA fragments were performed. The interaction
with CT-DNA was carried out by UV-Vis spectroscopic studies. The intercalation of the
complexes was analyzed using Ethidium Bromide displacement. The nuclease activity was
performed by electrophoresis using the plasmid pUC19. Cytotoxic activity was performed
on HeLa, MDA-MB-231, HCT-15, and MCF-7 cancer cell lines.

Complex 1, [Cu(L-Citr)(bipy)(NO3)]n, and Complex 2, [Cu(L-Citr)(phen)(NO3)]n are
catena complexes due to the coordination of ureido groups. However, if recrystallized
in water, monomeric aqua-complexes result. DFT calculations have indicated similar
behavior of monomeric aqua-complexes with Bipyridine and Phenanthroline, even in
different complexes containing bis-Citrullinato, L-Glutamine, Metformin, or Glycine, when
they have been analyzed by their distribution of electronic density and non-covalent
interactions coordinated with the Cu(II) in a square pyramidal arrangement. Thus, the
monomeric complexes 1′ and 2′ were studied theoretically to understand their interaction
with DNA through docking calculations. Both compounds have good affinity with the
DNA test molecules, indicating that they can interact with the minor groove of DNA and
intercalate with it. The phenanthroline derivative has better affinity due to hydrophobic,
π-π interactions, and hydrogen bonds with the ureido group of citrulline. This suggests a
better anticancer activity than the bipyridine compound. CT-DNA, pUC19, and cytotoxic
studies confirmed these findings. Actually, the difference between the two complexes is one
order of magnitude. The values of IC50 are in the range of many Casiopeinas and analogs.

Preclinical and clinical research have collected promising evidence to support the
medicinal potential of copper complexes. The primary advantage of copper complexes
is their ability to selectively reduce Cu(II) to Cu(I) compounds within cancerous cells
that trigger cell death. The potential of copper complexes in therapeutic applications is
significant due to their high efficacy and low systemic toxicity. While Cu complexes have
shown significant promise as anticancer drugs, there is still a need for a more methodical
and focused approach for a copper (Cu) complex to transition from academic research
to the therapeutic setting. These complexes show interesting biochemical and molecular
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pathways, which have helped move several potential copper-based cancer treatments into
early clinical trials.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/pharmaceutics16060747/s1, CheckCIF proof of Complex 1. Check-
CIF proof of Complex 2; Table S1: Media used for the maintenance of the cell lines in this study;
Figure S1: ConQuest query to phenanthroline Casiopeina-type analogs; Figure S2: ConQuest query
to bipyridine Casiopeina-type analogs.
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76. Srdić-Rajić, T.; Zec, M.; Todorović, T.; Anelković, K.; Radulović, S. Non-Substituted N-Heteroaromatic Selenosemicarbazone Metal

Complexes Induce Apoptosis in Cancer Cells via Activation of Mitochondrial Pathway. Eur. J. Med. Chem. 2011, 46, 3734–3747.
[CrossRef] [PubMed]

77. Qin, J.L.; Shen, W.Y.; Chen, Z.F.; Zhao, L.F.; Qin, Q.P.; Yu, Y.C.; Liang, H. Oxoaporphine Metal Complexes (CoII, NiII, ZnII) with
High Antitumor Activity by Inducing Mitochondria- Mediated Apoptosis and S-Phase Arrest in HepG2. Sci. Rep. 2017, 7, 46056.
[CrossRef]

78. Masuda, H.; Odani, A.; Yamauchi, O. Structural Evidence for the Intramolecular Charge-Transfer Interaction Involving an Indole
Ring in Ternary Copper(II) Complexes with L-Tryptophan and Aromatic Diamines. Inorganica Chim. Acta 1991, 180, 73. [CrossRef]

79. Inci, D.; Aydin, R.; Sevgi, T.; Zorlu, Y.; Demirkan, E. Synthesis, Crystal Structure, Stability Studies, DNA/Albumin Interactions,
and Antimicrobial Activities of Two Cu(II) Complexes with Amino Acids and 5-Nitro-1,10-Phenanthroline. J. Coord. Chem. 2017,
70, 512–543. [CrossRef]

80. Baskaran, S.; Murali Krishnan, M.; Arumugham, M.N. Synthesis, Crystal Structure, DNA Binding, Cleavage and Cytotxicity,
Antimicrobial Activity of New Copper(II) Complex with L-Ornithine and 1,10-Phenanthroline. Inorg. Nano-Metal. Chem. 2017, 47,
269–277. [CrossRef]

81. Man-Yu, L.; Ya-Jing, S.; Lan-Zhi, W.; Hui-Hua, S. Syntheses, Crystal Structures and Electrochemical Properties of Two Chiral Cu
Complexes Based on D (−)/L (+)-4-Hydroxyphenylglycine. Chin. J. Inorg. Chem. 2019, 35, 1065–1075. [CrossRef]

82. Jiang, X.; Lin, L.; Zhu, Y.F.; Xia, H. Auxiliary Ligand Effects on the Structural Dimensionality of Copper(II) Coordination
Complexes: From 3D Networks to 1D Chains. Transit. Metal. Chem. 2011, 36, 901–906. [CrossRef]

83. Wang, C.; Yang, G.; Mao, C.; Liang, Y.; Li, S.; Zheng, Y.; Li, H.; Jiang, Y. Synthesis, Crystal Structure, and Magnetic Properties of
Cu(II) Coordination Polymer with N-3-Pyridine Sulfonyl Amino Acid and 1,10-Phen. Synth. React. Inorg. Met. Org. Nano-Metal.
Chem. 2015, 45, 993–996. [CrossRef]

84. Patra, A.K.; Nethaji, M.; Chakravarty, A.R. Synthesis, Crystal Structure, DNA Binding and Photo-Induced DNA Cleavage Activity
of (S-Methyl-l-Cysteine)Copper(II) Complexes of Heterocyclic Bases. J. Inorg. Biochem. 2007, 101, 233–244. [CrossRef] [PubMed]

85. Baggio, R.F.; Calvo, R.; Brondino, C.; Garland, M.T.; Atria, A.M.; Spodine, E. A Novel Structure of (L-Aspartato)(1,10-
Phenanthroline)Copper(II) Hydrate. Acta Crystallogr. C 1995, 51, 382–385. [CrossRef]

86. Batalha, P.N.; Mocanu, T.; Calancea, S.; Vaz, M.G.F.; Andruh, M. Zinc(II) and Copper(II) Complexes Constructed from New
Bis(1H-1,2,3-Triazole-4-Carboxylate)-Based Ligands. J. Mol. Struct. 2022, 1259, 132703. [CrossRef]
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121. Türkel, N.; Şahın, Ç. Stability of binary and ternary copper (II) complexes with 1,10-phenanthroline, 2,2′-bipyridyl and some
α-amino acids in aqueous medium. Chem. Pharm. Bull. 2009, 57, 694–699. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/inorganics9020017
https://doi.org/10.1016/j.jinorgbio.2017.07.025
https://doi.org/10.1016/j.jinorgbio.2021.111566
https://doi.org/10.1021/acs.inorgchem.0c00925
https://doi.org/10.1248/cpb.57.694

	Introduction 
	Materials and Methods 
	Materials 
	Equipment 
	Software Crystallography 
	Synthesis of Complexes 
	Synthesis of [Cu(L-Citr)(bipy)(NO3)]n (Complex 1) 
	Synthesis of [Cu(L-Citr)(phen)(NO3)]n (Complex 2) 

	Quantum Mechanical Calculations 
	Docking Studies with AutoDock 4.2 
	In-Vitro Assays 
	Affinity for CT-DNA 
	Fluorometric Assays 
	Interaction with pUC19 Plasmid 
	Cytotoxic Assays 


	Results 
	Molecular Structures 
	Molecular Structure and Non-Covalent Interactions 
	Molecular Docking 
	In-Vitro Experiments 
	UV-Vis Experiments with CT-DNA 
	Fluorometric Experiments with CT-DNA 
	Interaction with pUC19 
	Cytotoxic Assays 


	Discussion 
	Conclusions 
	References

