QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Prototype Formula Composition
2.2.2. Preparation of Drug Extrudates by Hot-Melt Extrusion
2.2.3. Systematic Optimization of Formulation Variables
2.2.4. Optimization of Process Parameters/Variables
2.3. Characterization Studies and Stability Study of Final Prototype
2.3.1. Density and Particle Size Distribution of Milled Extrudates
2.3.2. Dissolution Testing under Sink Conditions
2.3.3. Moisture Uptake Study/Hygroscopicity Study
2.3.4. Hot-Stage Microscopy (HSM)
2.3.5. Powder X-ray Diffraction (PXRD)
2.3.6. Stability Studies
2.3.7. Pharmacokinetics Studies
2.3.8. Statistical Analysis
3. Result and Discussion
3.1. Outcome for Optimization of Formulation Variables
3.1.1. Effect of Polymer Type on Appearance of Extrudates and Processability (Torque)
3.1.2. Effect of Polymer Type and Plasticizer on Disintegration Time of Extrudates
3.1.3. Statistical Evaluation
Influence of Formulation Variables (Formula DoE) on Torque & DT
3.2. Characterization of Milled Extrudates by Density and Particle Size Distribution
3.3. Outcomes for Optimization of Process Parameters/Variables
3.3.1. Effect of Process Variables on Appearance of Extrudates
3.3.2. Effect of Process Variables on Torque of Extrudates and Statistical Evaluation
3.3.3. Effect of Process Variables on DT of Extrudates and Statistical Evaluation
3.3.4. Effect of Process Variables on Dissolution of Extrudates and Statistical Evaluation
Statistical Evaluation
3.4. Moisture Uptake Study/Hygroscopicity
3.5. Characterization of Optimized Drug–Polymer Extrudates by HSM
3.6. PXRD and Polymorphic Form Stability
3.7. Stability Studies
3.8. Pharmacokinetic and Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alkathiri, F.A.; Bukhari, S.I.; Imam, S.S.; Alshehri, S.; Mahdi, W.A. Formulation of silymarin binary and ternary solid dispersions: Characterization, simulation study and cell viability assessment against lung cancer cell line. Heliyon 2024, 10, e23221. [Google Scholar] [CrossRef]
- Müller, M.; Wiedey, R.; Hoheisel, W.; Serno, P.; Breitkreutz, J. Impact of co-administered stabilizers on the biopharmaceutical performance of regorafenib amorphous solid dispersions. Eur. J. Pharm. Biopharm. 2021, 169, 189–199. [Google Scholar] [CrossRef]
- Bhalani, D.V.; Nutan, B.; Kumar, A.; Singh Chandel, A.K. Bioavailability Enhancement Techniques for Poorly Aqueous Soluble Drugs and Therapeutics. Biomedicines 2022, 10, 2055. [Google Scholar] [CrossRef]
- Vasconcelos, T.; Sarmento, B.; Costa, P. Solid dispersions as strategy to improve oral bioavailability of poor water-soluble drugs. Drug Discov. Today 2007, 12, 1068–1075. [Google Scholar] [CrossRef]
- Nair, A.R.; Lakshman, Y.D.; Anand, V.S.K.; Sree, K.S.N.; Bhat, K.; Dengale, S.J. Overview of Extensively Employed Polymeric Carriers in Solid Dispersion Technology. AAPS PharmSciTech 2020, 21, 309. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bhujbal, S.V.; Mitra, B.; Jain, U.; Gong, Y.; Agrawal, A.; Karki, S.; Taylor, L.S.; Kumar, S.; Zhou, Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm. Sin. B 2021, 11, 2505–2536. [Google Scholar] [CrossRef]
- Kaushik, R.; Budhwar, V.; Kaushik, D. An Overview on Recent Patents and Technologies on Solid Dispersion. Recent Patents Drug Deliv. Formul. 2020, 14, 63–74. [Google Scholar] [CrossRef]
- Borde, S.; Paul, S.K.; Chauhan, H. Ternary solid dispersions: Classification and formulation considerations. Drug Dev. Ind. Pharm. 2021, 47, 1011–1028. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.; Dudhedia, M.; Deng, W.; Shepard, K.; Zhong, L.; Povilaitis, E.; Zimny, E. Development of Tablet Formulation of Amorphous Solid Dispersions Prepared by Hot Melt Extrusion Using Quality by Design Approach. AAPS PharmSciTech 2016, 17, 214–232. [Google Scholar] [CrossRef]
- Lee, S.K.; Ha, E.S.; Park, H.; Kang, K.T.; Jeong, J.S.; Kim, J.S.; Baek, I.H.; Kim, M.S. Preparation of Hot-Melt-Extruded Solid Dispersion Based on Pre-Formulation Strategies and Its Enhanced Therapeutic Efficacy. Pharmaceutics 2023, 15, 2704. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bandari, S.; Nyavanandi, D.; Kallakunta, V.R.; Janga, K.Y.; Sarabu, S.; Butreddy, A.; Repka, M.A. Continuous twin screw granulation—An advanced alternative granulation technology for use in the pharmaceutical industry. Int. J. Pharm. 2020, 580, 119215. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Censi, R.; Gigliobianco, M.R.; Casadidio, C.; Di Martino, P. Hot Melt Extrusion: Highlighting Physicochemical Factors to Be Investigated While Designing and Optimizing a Hot Melt Extrusion Process. Pharmaceutics 2018, 10, 89. [Google Scholar] [CrossRef]
- Rao, R.R.; Pandey, A.; Hegde, A.R.; Kulkarni, V.I.; Chincholi, C.; Rao, V.; Bhushan, I.; Mutalik, S. Metamorphosis of Twin Screw Extruder-Based Granulation Technology: Applications Focusing on Its Impact on Conventional Granulation Technology. AAPS PharmSciTech 2021, 23, 24. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Tiwari, R.; Patil, H.; Repka, M.A. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: Part I. Expert Opin. Drug Deliv. 2019, 16, 539–550. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarabu, S.; Bandari, S.; Kallakunta, V.R.; Tiwari, R.; Patil, H.; Repka, M.A. An update on the contribution of hot-melt extrusion technology to novel drug delivery in the twenty-first century: Part II. Expert Opin. Drug Deliv. 2019, 16, 567–582. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ren, Y.; Mei, L.; Zhou, L.; Guo, G. Recent Perspectives in Hot Melt Extrusion-Based Polymeric Formulations for Drug Delivery: Applications and Innovations. AAPS PharmSciTech 2019, 20, 92. [Google Scholar] [CrossRef] [PubMed]
- Repka, M.A.; Bandari, S.; Kallakunta, V.R.; Vo, A.Q.; McFall, H.; Pimparade, M.B.; Bhagurkar, A.M. Melt extrusion with poorly soluble drugs—An integrated review. Int. J. Pharm. 2017, 535, 68–85. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sarode, A.L.; Sandhu, H.; Shah, N.; Malick, W.; Zia, H. Hot melt extrusion (HME) for amorphous solid dispersions: Predictive tools for processing and impact of drug-polymer interactions on supersaturation. Eur. J. Pharm. Sci. 2013, 48, 371–384. [Google Scholar] [CrossRef]
- Sihorkar, V.; Dürig, T. The role of polymers and excipients in developing amorphous solid dispersions: An industrial perspective. In Drug Delivery Aspects; Shegokar, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 79–113. ISBN 9780128212226. [Google Scholar] [CrossRef]
- Kallakunta, V.R.; Sarabu, S.; Bandari, S.; Batra, A.; Bi, V.; Durig, T.; Repka, M.A. Stable amorphous solid dispersions of fenofibrate using hot melt extrusion technology: Effect of formulation and process parameters for a low glass transition temperature drug. J. Drug Deliv. Sci. Technol. 2020, 58, 101395. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Wu, H.; Liu, Y.; Ci, T.; Ke, X. Application of HPMC HME polymer as hot melt extrusion carrier in carbamazepine solid dispersion. Drug Dev. Ind. Pharm. 2020, 46, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Simões, M.F.; Pinto, R.M.A.; Simões, S. Hot-Melt Extrusion: A Roadmap for Product Development. AAPS PharmSciTech 2021, 22, 184. [Google Scholar] [CrossRef] [PubMed]
- Rashid, R.; Kim, D.W.; Din, F.U.; Mustapha, O.; Yousaf, A.M.; Park, J.H.; Kim, J.O.; Yong, C.S.; Choi, H.G. Effect of hydroxypropylcellulose and Tween 80 on physicochemical properties and bioavailability of ezetimibe-loaded solid dispersion. Carbohydr. Polym. 2015, 130, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, O.; Kim, K.S.; Shafique, S.; Kim, D.S.; Jin, S.G.; Seo, Y.G.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; et al. Comparison of three different types of cilostazol-loaded solid dispersion: Physicochemical characterization and pharmacokinetics in rats. Colloids Surf. B Biointerfaces 2017, 154, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Fousteris, E.; Tarantili, P.A.; Karavas, E.; Bikiaris, D. Poly(vinyl pyrrolidone)–poloxamer-188 solid dispersions prepared by hot melt extrusion. J. Therm. Anal. Calorim. 2013, 113, 1037–1047. [Google Scholar] [CrossRef]
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2020 update. Pharmacol. Res. 2020, 152, 104609. [Google Scholar] [CrossRef] [PubMed]
- Roskoski, R., Jr. Properties of FDA-approved small molecule protein kinase inhibitors: A 2022 update. Pharmacol. Res. 2022, 175, 106037. [Google Scholar] [CrossRef] [PubMed]
- Herbrink, M.; Groenland, S.L.; Huitema, A.D.R.; Schellens, J.H.M.; Beijnen, J.H.; Steeghs, N.; Nuijen, B. Solubility and bioavailability improvement of pazopanib hydrochloride. Int. J. Pharm. 2018, 544, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Daste, A.; Grellety, T.; Gross-Goupil, M.; Ravaud, A. Protein kinase inhibitors in renal cell carcinoma. Expert Opin. Pharmacother. 2014, 15, 337–351. [Google Scholar] [CrossRef]
- Wen, T.; Niu, B.; Wu, Q.; Zhou, Y.; Pan, X.; Quan, G.; Wu, C. Fenofibrate Solid Dispersion Processed by Hot-Melt Extrusion: Elevated Bioavailability and Its Cell Transport Mechanism. Curr. Drug Deliv. 2019, 16, 538–547. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, P.; Nanda, A. Hot stage microscopy and its applications in pharmaceutical characterization. Appl. Microsc. 2020, 50, 12. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Penumetcha, S.S.; Gutta, L.N.; Dhanala, H.; Yamili, S.; Challa, S.; Rudraraju, S.; Rudraraju, S.; Rudraraju, V. Hot melt extruded Aprepitant-Soluplus solid dispersion: Preformulation considerations, stability and in vitro study. Drug Dev. Ind. Pharm. 2016, 42, 1609–1620. [Google Scholar] [CrossRef] [PubMed]
- Horita, S.; Watanabe, M.; Katagiri, M.; Nakamura, H.; Haniuda, H.; Nakazato, T.; Kagawa, Y. Species differences in ocular pharmacokinetics and pharmacological activities of regorafenib and pazopanib eye-drops among rats, rabbits and monkeys. Pharmacol. Res. Perspect. 2019, 7, e00545. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gupta, A.; Singh, G.D.; Gautam, A.; Tripathi, T.; Taneja, A.K.; Singh, B.N.; Bhatt, A. Unraveling Compositional Study, Chemometric Analysis, and Cell-Based Antioxidant Potential of Selective High Nutraceutical Value Amaranth Cultivars Using a GC-MS and NMR-Based Metabolomics Approach. ACS Omega 2023, 8, 47573–47584. [Google Scholar] [CrossRef]
- Verheijen, R.B.; Beijnen, J.H.; Schellens, J.H.M.; Huitema, A.D.R.; Steeghs, N. Clinical pharmacokinetics and pharmacodynamics of pazopanib: Towards optimized dosing. Clin. Pharmacokinet. 2017, 56, 987–997. [Google Scholar] [CrossRef]
- Choi, S.A.; Park, E.J.; Lee, J.H.; Min, K.A.; Kim, S.T.; Jang, D.J.; Maeng, H.J.; Jin, S.G.; Cho, K.H. Preparation and Characterization of Pazopanib Hydrochloride-Loaded Four-Component Self-Nanoemulsifying Drug Delivery Systems Preconcentrate for Enhanced Solubility and Dissolution. Pharmaceutics 2022, 14, 1875. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Herbrink, M.; Schellens, J.; Beijnen, J.; Nuijen, B. Thermal study of pazopanib hydrochloride. J. Therm. Anal. Calorim. 2017, 130, 1491–1499. [Google Scholar] [CrossRef]
- Kumar, B.; Meher, J.G.; Gupta, A.; Pawar, V.K.; Singh, Y.; Chourasia, M.K. Delivery of methotrexate executed by engineered polymeric micelles intended to improve chemotherapy. J. Biomater. Tissue Eng. 2014, 4, 700–709. [Google Scholar] [CrossRef]
- Maddineni, S.; Battu, S.K.; Morott, J.; Majumdar, S.; Murthy, S.N.; Repka, M.A. Influence of process and formulation parameters on dissolution and stability characteristics of Kollidon® VA 64 hot-melt extrudates. AAPS PharmSciTech 2015, 16, 444–454. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nyamba, I.; Jennotte, O.; Sombié, C.B.; Lechanteur, A.; Sacre, P.Y.; Djandé, A.; Semdé, R.; Evrard, B. Preformulation study for the selection of a suitable polymer for the development of ellagic acid-based solid dispersion using hot-melt extrusion. Int. J. Pharm. 2023, 641, 123088. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; O’Donnell, K.P.; Keen, J.M.; Rickard, M.A.; McGinity, J.W.; Williams, R.O., 3rd. A New Extrudable Form of Hypromellose: AFFINISOL™ HPMC HME. AAPS PharmSciTech 2016, 17, 106–119. [Google Scholar] [CrossRef] [PubMed]
- LaFountaine, J.S.; Prasad, L.K.; Brough, C.; Miller, D.A.; McGinity, J.W.; Williams, R.O., 3rd. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions. AAPS PharmSciTech 2016, 17, 120–132. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bennett, R.; Keen, J.; Bi, Y.; Porter, S.; Dürig, T.; Mcginity, J. Investigation of the interactions of enteric and hydrophilic polymers to enhance dissolution of griseofulvin following hot melt extrusion processing. J. Pharma Pharma 2015, 67, 918–938. [Google Scholar] [CrossRef]
- Lauer, M.E.; Maurer, R.; Paepe, A.T.; Stillhart, C.; Jacob, L.; James, R.; Kojima, Y.; Rietmann, R.; Kissling, T.; van den Ende, J.A.; et al. A Miniaturized Extruder to Prototype Amorphous Solid Dispersions: Selection of Plasticizers for Hot Melt Extrusion. Pharmaceutics 2018, 10, 58. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zhang, J.; Guo, M.; Luo, M.; Cai, T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J. Pharm. Sci. 2023, 18, 100834. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Karekar, P.; Vyas, V.; Shah, M.; Sancheti, P.; Pore, Y. Physicochemical investigation of the solid dispersion systems of etoricoxib with poloxamer 188. Pharm. Dev. Technol. 2009, 14, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Strojewski, D.; Krupa, A. Kollidon® VA 64 and Soluplus® as modern polymeric carriers for amorphous solid dispersions. Polim. Med. 2022, 52, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.S.; Solanki, N.; Serajuddin, A.T. Investigation of Thermal and Viscoelastic Properties of Polymers Relevant to Hot Melt Extrusion, IV: Affinisol™ HPMC HME Polymers. AAPS PharmSciTech 2016, 17, 148–157. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mendes, C.; Andrzejewski, R.G.; Pinto, J.M.O.; de Novais, L.M.R.; Barison, A.; Silva, M.A.S.; Parize, A.L. Impact of Drug-Polymer Interaction in Amorphous Solid Dispersion Aiming for the Supersaturation of Poorly Soluble Drug in Biorelevant Medium. AAPS PharmSciTech 2020, 21, 189. [Google Scholar] [CrossRef] [PubMed]
- Mansuroglu, Y.; Dressman, J. Factors That Influence Sustained Release from Hot-Melt Extrudates. Pharmaceutics 2023, 15, 1996. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Singh, S.; Chauhan, S.B.; Gupta, C.; Singh, I.; Gupta, A.; Sharma, S.; Kawish, S.M.; Rahman, S.; Iqbal, M. Design and Characterization of Citronella Oil-Loaded Micro-Emulgel for the Treatment of Candida Albicans Infection. Gels 2023, 9, 799. [Google Scholar] [CrossRef]
- Shah, U.V.; Karde, V.; Ghoroi, C.; Heng, J.Y.Y. Influence of particle properties on powder bulk behaviour and processability. Int. J. Pharm. 2017, 518, 138–154. [Google Scholar] [CrossRef] [PubMed]
- Panna, W.; Wyszomirski, P.; Kohut, P. Application of hot-stage microscopy to evaluating sample morphology changes on heating. J. Therm. Anal. Calorim. 2016, 125, 1053–1059. [Google Scholar] [CrossRef]
- Solanki, N.G.; Kathawala, M.; Serajuddin, A.T.M. Effects of Surfactants on Itraconazole-Hydroxypropyl Methylcellulose Acetate Succinate Solid Dispersion Prepared by Hot Melt Extrusion III: Tableting of Extrudates and Drug Release from Tablets. J. Pharm. Sci. 2019, 108, 3859–3869. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.M.; Dudhedia, M.S.; Zimny, E. Hot Melt Extrusion: Development of an Amorphous Solid Dispersion for an Insoluble Drug from Mini-scale to Clinical Scale. AAPS PharmSciTech 2016, 17, 133–147. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
S. No. | Ingredients | Function | Qty. (mg/Unit) |
---|---|---|---|
1. | Pazopanib HCl | API | 200,000 |
2. | Kollidon VA64/HPMC/ Eudragit EPO/Affinisol 15LV | Polymer | 400,000 |
3. | Poloxamer 188 | Plasticizer | 40,000 |
Input (Independent) Variables | Levels | ||||
---|---|---|---|---|---|
A. Formulation variables | |||||
i | Type of Polymer | Kollidon VA64 | HPMC | Eudragit EPO | Affinisol 15LV |
ii | Plasticizer (Poloxamer 188) | Yes (10%) | No (0%) | ||
B. Process variables | |||||
i | Type of Polymer | Kollidon VA64 | Affinisol 15LV | ||
ii | Screw RPM | 100 | 300 | ||
iii | Barrel Temperature | Low | High | ||
Output (Dependent) variables | Target range | ||||
Y1 | Extrudates Appearance | Yes or No | |||
Y2 | Torque | Minimum | |||
Y3 | Disintegration Time of extrudates | Minimum | |||
Y4 | Dissolution (30 min) # | Maximum |
Trial No. | Polymer | Plasticizer | Plasticizer Level (% w/w) | API | Torque (Nm) | Appearance | DT |
---|---|---|---|---|---|---|---|
HME-1 | HPMC | Poloxamer 188 | 10 | PZB | 7.4 | Brownish in color | 15 min 32 s |
HME-2 | Eudragit EPO | Poloxamer 188 | 10 | PZB | 8.7 | White and opaque | 23 min 06 s |
HME-3 | Affinisol 15LV | Poloxamer 188 | 10 | PZB | 5.7 | Clear and transparent | 11 min 45 s |
HME-4 | Kollidon VA64 | Poloxamer 188 | 10 | PZB | 4.9 | Clear and transparent | 18 min 11 s |
HME-5 | HPMC | - | 0 | PZB | 7.9 | Brownish in color | 19 min 18 s |
HME-6 | Eudragit EPO | - | 0 | PZB | 9.8 | White and opaque | 27 min 16 s |
HME-7 | Affinisol 15LV | - | 0 | PZB | 6.8 | Clear and transparent | 13 min 46 s |
HME-8 | Kollidon VA64 | - | 0 | PZB | 5.6 | Clear and transparent | 22 min 54 s |
Trial No. | Input Variables | Output Variables/Responses | ||||||
---|---|---|---|---|---|---|---|---|
Polymer | Screw Speed | Barrel Temperature | Torque (Nm) | Appearance | DT | Dissolution in 30 min | % Moisture Uptake | |
HME-9 | Affinisol 15LV | 100 | 100/130/130/130/130 (Low) | 6.5 | Clear transparent | 14 min 02 s (842 s) | 87 | 0.54 |
HME-10 | Affinisol 15LV | 100 | 100/180/180/180/180 (High) | 6.2 | Clear transparent | 12 min 35 s (755 s) | 95 | 0.91 |
HME-11 | Affinisol 15LV | 300 | 100/130/130/130/130 (Low) | 6.9 | Clear transparent | 11 min 34 s (694 s) | 92 | 0.61 |
HME-12 | Affinisol 15LV | 300 | 100/180/180/180/180 (High) | 6.7 | Clear transparent | 09 min 57 s (597 s) | 98 | 0.98 |
HME-13 | Kollidon VA64 | 100 | 100/130/130/130/130 (Low) | 5.3 | Less transparent | 21 min 36 s (1296 s) | 78 | 5.11 |
HME-14 | Kollidon VA64 | 100 | 100/180/180/180/180 (High) | 4.9 | Clear transparent | 19 min 44 s (1184 s) | 84 | 6.25 |
HME-15 | Kollidon VA64 | 300 | 100/130/130/130/130 (Low) | 5.8 | Clear transparent | 18 min 29 s (1109 s) | 89 | 5.58 |
HME-16 | Kollidon VA64 | 300 | 100/180/180/180/180 (High) | 5.5 | Clear transparent | 17 min 22 s (1042 s) | 90 | 6.49 |
Sample | Stability Condition | Period | Appearance | Assay | Dissolution in 30 min |
---|---|---|---|---|---|
Affinisol Extrudates | 40 ± 2 °C and 75 ± 5% relative humidity (ACC) | Initial | Free-flowing powder | 98.7 | 99 |
1 M | Free-flowing powder | 98.1 | 98 | ||
3 M | Free-flowing powder | 98.2 | 97 | ||
25 ± 2 °C and 60 ± 5% relative humidity (Long-term storage) | Initial | Free-flowing powder | 98.7 | 99 | |
1 M | Free-flowing powder | 98.4 | 97 | ||
3 M | Free-flowing powder | 98.0 | 96 |
Formulations | Tmax (h) | Cmax (µg/mL) | C Last (µg/mL) | AUC Last (µg.h/mL) | T lag (h) |
---|---|---|---|---|---|
PZB-Drug/API | 2 | 44.7 | 7.6 | 308.675 | 0 |
Reference/ (Marketed Formulation) | 4 | 98.5 | 16.8 | 890.875 | 0 |
Test A-Extrudates | 6 | 124.2 | 32 | 1479.875 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, A.; Dahima, R.; Panda, S.K.; Gupta, A.; Singh, G.D.; Wani, T.A.; Hussain, A.; Rathore, D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics 2024, 16, 764. https://doi.org/10.3390/pharmaceutics16060764
Gupta A, Dahima R, Panda SK, Gupta A, Singh GD, Wani TA, Hussain A, Rathore D. QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics. 2024; 16(6):764. https://doi.org/10.3390/pharmaceutics16060764
Chicago/Turabian StyleGupta, Amit, Rashmi Dahima, Sunil K. Panda, Annie Gupta, Gaurav Deep Singh, Tanveer A. Wani, Afzal Hussain, and Devashish Rathore. 2024. "QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation" Pharmaceutics 16, no. 6: 764. https://doi.org/10.3390/pharmaceutics16060764
APA StyleGupta, A., Dahima, R., Panda, S. K., Gupta, A., Singh, G. D., Wani, T. A., Hussain, A., & Rathore, D. (2024). QbD-Based Development and Evaluation of Pazopanib Hydrochloride Extrudates Prepared by Hot-Melt Extrusion Technique: In Vitro and In Vivo Evaluation. Pharmaceutics, 16(6), 764. https://doi.org/10.3390/pharmaceutics16060764