Serum Concentration–Dose Relationship and Modulation Factors in Children and Adolescents Treated with Fluvoxamine
Abstract
:1. Introduction
2. Subjects and Methods
2.1. Setting and Study Population
2.2. Measurement of Fluvoxamine Serum Concentrations
2.3. Assessment of Therapeutic Outcomes
2.4. Data Analysis
3. Results
3.1. Study Population
3.2. Fluvoxamine Dose in Relation to Other Covariates
3.3. Fluvoxamine Concentration in Relation to Fluvoxamine Dose and Other Covariates
3.4. Clinical Positive and Negative Effects of Fluvoxamine Treatment
3.5. Estimation of a Preliminary Therapeutic Reference Range of the Fluvoxamine Concentration in Children and Adolescents
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Riddle, M.A.; Reeve, E.A.; Yaryura-Tobias, J.A.; Yang, H.M.; Claghorn, J.L.; Gaffney, G.; Greist, J.H.; Holland, D.; McConville, B.J.; Pigott, T.; et al. Fluvoxamine for children and adolescents with obsessive-compulsive disorder: A randomized, controlled, multicenter trial. J. Am. Acad. Child Adolesc. Psychiatry 2001, 40, 222–229. [Google Scholar] [CrossRef]
- Isaacs, E. Fluvoxamine for the treatment of anxiety disorders in children and adolescents. N. Engl. J. Med. 2001, 345, 466–467. [Google Scholar] [CrossRef]
- van Harten, J. Overview of the pharmacokinetics of fluvoxamine. Clin. Pharmacokinet. 1995, 29 (Suppl. S1), 1–9. [Google Scholar] [CrossRef]
- Jeppesen, U.; Gram, L.F.; Vistisen, K.; Loft, S.; Poulsen, H.E.; Brosen, K. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur. J. Clin. Pharmacol. 1996, 51, 73–78. [Google Scholar] [CrossRef]
- Miura, M.; Ohkubo, T. Identification of human cytochrome P450 enzymes involved in the major metabolic pathway of fluvoxamine. Xenobiotica 2007, 37, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Muscatello, M.R.; Spina, E.; Bandelow, B.; Baldwin, D.S. Clinically relevant drug interactions in anxiety disorders. Hum. Psychopharmacol. 2012, 27, 239–253. [Google Scholar] [CrossRef] [PubMed]
- Schoretsanitis, G.; Kane, J.M.; Correll, C.U.; Marder, S.R.; Citrome, L.; Newcomer, J.W.; Robinson, D.G.; Goff, D.C.; Kelly, D.L.; Freudenreich, O.; et al. Blood Levels to Optimize Antipsychotic Treatment in Clinical Practice: A Joint Consensus Statement of the American Society of Clinical Psychopharmacology and the Therapeutic Drug Monitoring Task Force of the Arbeitsgemeinschaft fur Neuropsychopharmakologie und Pharmakopsychiatrie. J. Clin. Psychiatry 2020, 81, 3649. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C.; Bergemann, N.; Clement, H.W.; Conca, A.; Deckert, J.; Domschke, K.; Eckermann, G.; Egberts, K.; Gerlach, M.; Greiner, C.; et al. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry 2018, 51, 9–62. [Google Scholar] [CrossRef]
- Strawn, J.R.; Poweleit, E.A.; Uppugunduri, C.R.S.; Ramsey, L.B. Pediatric Therapeutic Drug Monitoring for Selective Serotonin Reuptake Inhibitors. Front. Pharmacol. 2021, 12, 749692. [Google Scholar] [CrossRef]
- Labellarte, M.; Biederman, J.; Emslie, G.; Ferguson, J.; Khan, A.; Ruckle, J.; Sallee, R.; Riddle, M. Multiple-dose pharmacokinetics of fluvoxamine in children and adolescents. J. Am. Acad. Child Adolesc. Psychiatry 2004, 43, 1497–1505. [Google Scholar] [CrossRef]
- Biener, E. Retrospektive Auswertung des Therapeutischen Drug-Monitoring von Fluvoxamin bei Kindern und Jugendlichen; Albert-Ludwigs-Universitä: Freiburg (Breisgau), Germany, 2014. [Google Scholar]
- Biener, E.; Hennighausen, K.; Fleischhaker, C.; Schulz, E.; Clement, H. Therapeutic drug monitoring of fluvoxamine in children and adolescents. Pharmacopsychiatry 2014, 47, A5. [Google Scholar] [CrossRef]
- Fung, R.; Elbe, D.; Stewart, S.E. Response to “Clomipramine in Combination with Fluvoxamine: A Potent Medication Combination for Severe or Refractory Pediatric OCD”. J. Can. Acad. Child Adolesc. Psychiatry 2021, 30, 278–279. [Google Scholar] [PubMed]
- Mehler-Wex, C.; Kolch, M.; Kirchheiner, J.; Antony, G.; Fegert, J.M.; Gerlach, M. Drug monitoring in child and adolescent psychiatry for improved efficacy and safety of psychopharmacotherapy. Child Adolesc. Psychiatry Ment. Health 2009, 3, 14. [Google Scholar] [CrossRef] [PubMed]
- Egberts, K.M.; Gerlach, M.; Correll, C.U.; Plener, P.L.; Malzahn, U.; Heuschmann, P.; Unterecker, S.; Scherf-Clavel, M.; Rock, H.; Antony, G.; et al. Serious Adverse Drug Reactions in Children and Adolescents Treated On- and Off-Label with Antidepressants and Antipsychotics in Clinical Practice. Pharmacopsychiatry 2022, 55, 255–265. [Google Scholar] [CrossRef] [PubMed]
- Perucca, E.; Gatti, G.; Spina, E. Clinical pharmacokinetics of fluvoxamine. Clin. Pharmacokinet. 1994, 27, 175–190. [Google Scholar] [CrossRef] [PubMed]
- Hartter, S.; Wetzel, H.; Hiemke, C. Automated determination of fluvoxamine in plasma by column-switching high-performance liquid chromatography. Clin. Chem. 1992, 38, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Guy, W. ECDEU Assessment Manual for Psychopharmacology; U.S. Department of Health, Education, and Welfare, Public Health Service, Alcohol, Drug Abuse, and Mental Health Administration, National Institute of Mental Health, Psychopharmacology Research Branch, Division of Extramural Research Programs: Rockville, MD, USA, 1976; Volume 603. [Google Scholar]
- Lingjaerde, O.; Ahlfors, U.G.; Bech, P.; Dencker, S.J.; Elgen, K. The UKU side effect rating scale. A new comprehensive rating scale for psychotropic drugs and a cross-sectional study of side effects in neuroleptic-treated patients. Acta Psychiatr. Scand. 1987, 334, 1–100. [Google Scholar] [CrossRef] [PubMed]
- Bengtsson, F. Therapeutic drug monitoring of psychotropic drugs. TDM “nouveau”. Ther. Drug Monit. 2004, 26, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Hiemke, C. Concentration-Effect Relationships of Psychoactive Drugs and the Problem to Calculate Therapeutic Reference Ranges. Ther. Drug Monit. 2019, 41, 174–179. [Google Scholar] [CrossRef]
- Hart, X.M.; Eichentopf, L.; Lense, X.; Riemer, T.; Wesner, K.; Hiemke, C.; Grunder, G. Therapeutic Reference Ranges for Psychotropic Drugs: A Protocol for Systematic Reviews. Front. Psychiatry 2021, 12, 787043. [Google Scholar] [CrossRef]
- Fekete, S.; Hiemke, C.; Gerlach, M. Dose-Related Concentrations of Neuroactive/Psychoactive Drugs Expected in Blood of Children and Adolescents. Ther. Drug Monit. 2020, 42, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez de la Torre, B.; Dreher, J.; Malevany, I.; Bagli, M.; Kolbinger, M.; Omran, H.; Luderitz, B.; Rao, M.L. Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients. Ther. Drug Monit. 2001, 23, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Kasper, S.; Dotsch, M.; Kick, H.; Vieira, A.; Moller, H.J. Plasma concentrations of fluvoxamine and maprotiline in major depression: Implications on therapeutic efficacy and side effects. Eur. Neuropsychopharmacol. 1993, 3, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenbach, F.; Netillard, C.; Demoly, P.; Bisschop, D.; Limat, S.; Bouquet, S.; Vandel, S.; Bel, A.M.; Woronoff-Lemsi, M.C. Antidepressant response and fluvoxamine plasma concentrations: A pilot study. Pharm. World Sci. 2003, 25, 27–29. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, J.E.; Doogan, D.P. Fluvoxamine and chlorimipramine in endogenous depression. J. Affect. Disord. 1982, 4, 249–259. [Google Scholar] [CrossRef]
- Hartter, S.; Wetzel, H.; Hammes, E.; Torkzadeh, M.; Hiemke, C. Nonlinear pharmacokinetics of fluvoxamine and gender differences. Ther. Drug Monit. 1998, 20, 446–449. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Chen, B.; Gao, N.; Kong, Q.; Hu, X.; Lu, Z.; Qian, J.; Hu, G.; Cai, J.; Wu, B. CYP2D6 gene polymorphism and apatinib affect the metabolic profile of fluvoxamine. Front. Pharmacol. 2022, 13, 985159. [Google Scholar] [CrossRef] [PubMed]
- Spigset, O.; Granberg, K.; Hagg, S.; Norstrom, A.; Dahlqvist, R. Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur. J. Clin. Pharmacol. 1997, 52, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, J.; Suzuki, Y.; Fukui, N.; Sugai, T.; Ono, S.; Inoue, Y.; Someya, T. Dose-dependent effect of the CYP2D6 genotype on the steady-state fluvoxamine concentration. Ther. Drug Monit. 2008, 30, 705–708. [Google Scholar] [CrossRef]
- Zastrozhin, M.; Skryabin, V.; Smirnov, V.; Zastrozhina, A.; Grishina, E.; Ryzhikova, K.; Bure, I.; Golovinskii, P.; Koporov, S.; Bryun, E.; et al. Effect of Genetic Polymorphism of the CYP2D6 Gene on the Efficacy and Safety of Fluvoxamine in Major Depressive Disorder. Am. J. Ther. 2021, 29, e26–e33. [Google Scholar] [CrossRef]
- Wilde, M.I.; Plosker, G.L.; Benfield, P. Fluvoxamine. An updated review of its pharmacology, and therapeutic use in depressive illness. Drugs 1993, 46, 895–924. [Google Scholar] [CrossRef]
- Jin, Y.; Pollock, B.G.; Frank, E.; Cassano, G.B.; Rucci, P.; Muller, D.J.; Kennedy, J.L.; Forgione, R.N.; Kirshner, M.; Kepple, G.; et al. Effect of age, weight, and CYP2C19 genotype on escitalopram exposure. J. Clin. Pharmacol. 2010, 50, 62–72. [Google Scholar] [CrossRef] [PubMed]
- Zaghlool, S.B.; Sharma, S.; Molnar, M.; Matias-Garcia, P.R.; Elhadad, M.A.; Waldenberger, M.; Peters, A.; Rathmann, W.; Graumann, J.; Gieger, C.; et al. Revealing the role of the human blood plasma proteome in obesity using genetic drivers. Nat. Commun. 2021, 12, 1279. [Google Scholar] [CrossRef] [PubMed]
- Spigset, O.; Carleborg, L.; Hedenmalm, K.; Dahlqvist, R. Effect of cigarette smoking on fluvoxamine pharmacokinetics in humans. Clin. Pharmacol. Ther. 1995, 58, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Katoh, Y.; Uchida, S.; Kawai, M.; Takei, N.; Mori, N.; Kawakami, J.; Kagawa, Y.; Yamada, S.; Namiki, N.; Hashimoto, H. Effects of cigarette smoking and cytochrome P450 2D6 genotype on fluvoxamine concentration in plasma of Japanese patients. Biol. Pharm. Bull. 2010, 33, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Gerstenberg, G.; Aoshima, T.; Fukasawa, T.; Yoshida, K.; Takahashi, H.; Higuchi, H.; Murata, Y.; Shimoyama, R.; Ohkubo, T.; Shimizu, T.; et al. Effects of the CYP 2D6 genotype and cigarette smoking on the steady-state plasma concentrations of fluvoxamine and its major metabolite fluvoxamino acid in Japanese depressed patients. Ther. Drug Monit. 2003, 25, 463–468. [Google Scholar] [CrossRef] [PubMed]
- De Wilde, J.E.; Mertens, C.; Wakelin, J.S. Clinical trials of fluvoxamine vs chlorimipramine with single and three times daily dosing. Br. J. Clin. Pharmacol. 1983, 15 (Suppl. S3), S427–S431. [Google Scholar] [CrossRef] [PubMed]
- Nathan, R.S.; Perel, J.M.; Pollock, B.G.; Kupfer, D.J. The role of neuropharmacologic selectivity in antidepressant action: Fluvoxamine versus desipramine. J. Clin. Psychiatry 1990, 51, 367–372. [Google Scholar] [PubMed]
- Edwards, J.G.; Inman, W.H.; Wilton, L.; Pearce, G.L. Prescription-event monitoring of 10,401 patients treated with fluvoxamine. Br. J. Psychiatry 1994, 164, 387–395. [Google Scholar] [CrossRef]
- Wagner, W.; Zaborny, B.A.; Gray, T.E. Fluvoxamine. A review of its safety profile in world-wide studies. Int. Clin. Psychopharmacol. 1994, 9, 223–227. [Google Scholar] [CrossRef]
- Suzuki, Y.; Fukui, N.; Sawamura, K.; Sugai, T.; Watanabe, J.; Ono, S.; Inoue, Y.; Ozdemir, V.; Someya, T. Concentration-response relationship for fluvoxamine using remission as an endpoint: A receiver operating characteristics curve analysis in major depression. J. Clin. Psychopharmacol. 2008, 28, 325–328. [Google Scholar] [CrossRef] [PubMed]
- Marazziti, D.; Baroni, S.; Giannaccini, G.; Piccinni, A.; Picchetti, M.; Massimetti, G.; Schiavi, E.; Palego, L.; Catena-Dell’Osso, M. Plasma fluvoxamine levels and OCD symptoms/response in adult patients. Hum. Psychopharmacol. 2012, 27, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Suhara, T.; Takano, A.; Sudo, Y.; Ichimiya, T.; Inoue, M.; Yasuno, F.; Ikoma, Y.; Okubo, Y. High levels of serotonin transporter occupancy with low-dose clomipramine in comparative occupancy study with fluvoxamine using positron emission tomography. Arch. Gen. Psychiatry 2003, 60, 386–391. [Google Scholar] [CrossRef] [PubMed]
- Bloch, M.H.; McGuire, J.; Landeros-Weisenberger, A.; Leckman, J.F.; Pittenger, C. Meta-analysis of the dose-response relationship of SSRI in obsessive-compulsive disorder. Mol. Psychiatry 2010, 15, 850–855. [Google Scholar] [CrossRef]
- Tini, E.; Smigielski, L.; Romanos, M.; Wewetzer, C.; Karwautz, A.; Reitzle, K.; Correll, C.U.; Plener, P.L.; Malzahn, U.; Heuschmann, P.; et al. Therapeutic drug monitoring of sertraline in children and adolescents: A naturalistic study with insights into the clinical response and treatment of obsessive-compulsive disorder. Compr. Psychiatry 2022, 115, 152301. [Google Scholar] [CrossRef]
Clinical Center, N (%) | |||
Ulm | 25 | (35.7) | |
Wuerzburg | 24 | (34.3) | |
Cologne | 10 | (14.3) | |
Berlin | 4 | (5.7) | |
Bad Neuenahr | 3 | (4.3) | |
Ravensburg | 2 | (2.9) | |
Tuebingen | 1 | (1.4) | |
Bad Wildungen | 1 | (1.4) | |
Sex, N (%) | |||
Female | 38 | (54.3) | |
Male | 32 | (45.7) | |
Age (years), mean ± SD, median | 14.8 ± 2.4, 15 | ||
Children < 14 years, N (%) | 20 | (28.6) | |
Adolescents ≥ 14 years, N (%) | 50 | (71.4) | |
Weight (kg), N = 60, mean ± SD, median | 52.0 ± 16.9, 50.5 | ||
Height (cm), N = 61, mean ± SD, median | 159.6 ± 13.3, 162.0 | ||
BMI (kg/m2), N = 60, mean ± SD, median | 20.0 ± 4.1, 19.2 | ||
Smoking, N = 57, N (%) | 1 | (1.43) | |
Most common ICD diagnosis, N = 68, N (%), multiple entries | |||
F 42 | Obsessive compulsive disorder | 53 | (77.9) |
F 50 | Eating disorders | 8 | (11.8) |
F 32 | Depressive episode | 6 | (8.8) |
F 90 | Hyperkinetic disorders | 6 | (8.8) |
Severity of illness (CGI-S), N = 57, N (%) | |||
Not assessable | 3 | (5.3) | |
Not at all ill | 1 | (1.8) | |
Mildly ill | 6 | (10.5) | |
Moderately ill | 10 | (17.5) | |
Markedly ill | 23 | (40.4) | |
Severely ill | 11 | (19.3) | |
Extremely ill | 3 | (5.3) | |
Fluvoxamine monotherapy, N = 66, N (%) | 43 | (65.2) | |
Psychiatric co-medication, N = 66, N (%), multiple entries | |||
Antipsychotics | 23 | (34.8) | |
(aripiprazole, haloperidol, olanzapine, melperone, pipamperone, chlorprothixene, quetiapine, and risperidone) | |||
Tranquilizer | 1 | (1.5) | |
Antidepressants | 4 | (6.1) | |
(clomipramine, fluoxetine, and sertraline) | |||
Stimulants | 1 | (1.5) | |
Clinical outcome (CGI-I), total N = 50, N = 44 with assessable score, N (%) | |||
(Not assessable 6) | |||
Very much improved (1*) | 9 | (20.5) | |
Much improved (2*) | 14 | (31.8) | |
Minimally improved (3*) | 14 | (31.8) | |
Unchanged (4*) | 6 | (13.6) | |
Minimally worse (5*) | 1 | (2.3) | |
Much worse (6*) | - | ||
‘Responder’ (1+2*) | 23 | (52.3) | |
‘Non-responder’ (3+4+5+6*) | 21 | (47.7) | |
Adverse Drug reactions (UKU), N = 56, N (%) | |||
Number of patients with ADRs | 21 | (37.5) | |
Severity of ADRs (UKU), N = 15, N (%) | |||
Mild | 12 | (80.0) | |
Moderate | 3 | (20.0) | |
Severe | 0 | (0.0) |
Patients (N) | Fluvoxamine Daily Dose Mean ± SD Median (Range) (mg/day) | Fluvoxamine Concentration Mean ± SD Median (IQR) (ng/mL) | Correlation Daily Dose–Fluvoxamine Concentration (rs, p) | Group Differences in Fluvoxamine Concentrations (p) |
All (70) | 140.4 ± 61.4 150 (25–300) | 186.0 ± 159.4 137 (76.5–243.5) | 0.34 <0.004 | |
Children (20) | 125 ± 60.2 150 (25–200) | 169.4 ± 169.8 83.0 (56.5–248.0) | 0.75 <0.001 | 0.23 |
Adolescents (50) | 146.5 ± 61.4 150 (25–300) | 192.6 ± 156.4 145.0 (88.0–243.5) | 0.13 0.381 | |
Boys (32) | 144.5 ± 69.5 150 (25–300) | 193.0 ± 186.6 135.5 (78.3–243.3) | 0.63 <0.001 | 0.91 |
Girls (38) | 136.8 ± 54.4 150 (25–200) | 180.0 ± 134.6 137.0 (73.3–243.5) | 0.03 0.862 | |
Monotherapy (43) | 130.2 ± 64.0 150 (25–300) | 171.0 ± 157.2 123 (68.0–239.0) | 0.26 0.093 | 0.45 |
Co-medication (23) | 157.6 ± 54.6 150 (50–250) | 205.6 ± 172.9 140 (78.0–333.0) | 0.43 0.041 | |
Responders transdiagnostic (23) | 139.1± 69.4 150 (25–300) | 171.4 ± 186.0 84 (38.0–239.0) | 0.39 <0.066 | 0.50 |
Non-Responders transdiagnostic (21) | 153.6 ± 57.6. 150 (50–250) | 214.4 ± 158.6 145 (123.0–257.0) | 0.06 0.29 | |
Responders OCD (18) | 143.1 ± 74.7 150 (25–300) | 193.3 ± 202.3 (55.3–370.5) | 0.39 0.111 | 0.41 |
Non-Responders OCD (17) | 166.2 ± 53.0 175 (75–250) | 226.5 ± 167.4 145.0 (122.5–324.0) | 0.01 0.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taurines, R.; Kunkel, G.; Fekete, S.; Fegert, J.M.; Wewetzer, C.; Correll, C.U.; Holtkamp, K.; Böge, I.; Renner, T.J.; Imgart, H.; et al. Serum Concentration–Dose Relationship and Modulation Factors in Children and Adolescents Treated with Fluvoxamine. Pharmaceutics 2024, 16, 772. https://doi.org/10.3390/pharmaceutics16060772
Taurines R, Kunkel G, Fekete S, Fegert JM, Wewetzer C, Correll CU, Holtkamp K, Böge I, Renner TJ, Imgart H, et al. Serum Concentration–Dose Relationship and Modulation Factors in Children and Adolescents Treated with Fluvoxamine. Pharmaceutics. 2024; 16(6):772. https://doi.org/10.3390/pharmaceutics16060772
Chicago/Turabian StyleTaurines, Regina, Gesa Kunkel, Stefanie Fekete, Jörg M. Fegert, Christoph Wewetzer, Christoph U. Correll, Kristian Holtkamp, Isabel Böge, Tobias Johann Renner, Hartmut Imgart, and et al. 2024. "Serum Concentration–Dose Relationship and Modulation Factors in Children and Adolescents Treated with Fluvoxamine" Pharmaceutics 16, no. 6: 772. https://doi.org/10.3390/pharmaceutics16060772
APA StyleTaurines, R., Kunkel, G., Fekete, S., Fegert, J. M., Wewetzer, C., Correll, C. U., Holtkamp, K., Böge, I., Renner, T. J., Imgart, H., Scherf-Clavel, M., Heuschmann, P., Gerlach, M., Romanos, M., & Egberts, K. (2024). Serum Concentration–Dose Relationship and Modulation Factors in Children and Adolescents Treated with Fluvoxamine. Pharmaceutics, 16(6), 772. https://doi.org/10.3390/pharmaceutics16060772