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Abstract: Understanding the pharmacokinetics, safety and efficacy of candidate drugs is crucial
for their success. One key aspect is the characterization of absorption, distribution, metabolism,
excretion and toxicity (ADMET) properties, which require early assessment in the drug discovery
and development process. This study aims to present an innovative approach for predicting ADMET
properties using attention-based graph neural networks (GNNs). The model utilizes a graph-based
representation of molecules directly derived from Simplified Molecular Input Line Entry System
(SMILE) notation. Information is processed sequentially, from substructures to the whole molecule,
employing a bottom-up approach. The developed GNN is tested and compared with existing
approaches using six benchmark datasets and by encompassing regression (lipophilicity and aqueous
solubility) and classification (CYP2C9, CYP2C19, CYP2D6 and CYP3A4 inhibition) tasks. Results
show the effectiveness of our model, which bypasses the computationally expensive retrieval and
selection of molecular descriptors. This approach provides a valuable tool for high-throughput
screening, facilitating early assessment of ADMET properties and enhancing the likelihood of drug
success in the development pipeline.

Keywords: model-based drug development; ADMET prediction; graph neural network; attention-based
architecture

1. Introduction

Drug discovery and development is a difficult, time-consuming, intricate and costly
task that is plagued with a considerable amount of doubt as to whether a drug will actually
be successful. According to Wouters et al., who studied the data on new therapeutic
agents approved by the FDA between 2009 and 2018, the average cost of developing a
single new drug is estimated to easily exceed 2 billion dollars [1]. Despite the significant
investments in time, resources and money, there is no guarantee that a drug will be
approved, and failure can occur during many phases of drug development. Cook et al. [2]
comprehensively reviewed the results of AstraZeneca small-molecule drug projects from
2005 to 2010 and found that undesirable absorption, distribution, metabolism, excretion
and toxicity (ADMET) properties are a leading cause of failure in the clinical phase of drug
development. In response to these findings, there has been a growing trend in the use of
in vitro and in vivo ADMET prediction methods [3–5]. These methods aim to predict the
ADMET properties of a drug before it enters clinical trials, allowing researchers to identify
and address potential problems early on in the development process. This can save time
and resources as well as increase the chances of a drug being approved.

However, performing complex and expensive ADMET experiments on a large num-
ber of compounds is impractical [6,7]. Therefore, multiple in silico strategies have been
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proposed to predict ADMET properties without the need for in vitro and in vivo exper-
iments [8–10]. In silico approaches offer several advantages over experimental methods,
including lower costs and the ability to process a large number of compounds in a high-
throughput manner [11]. For decades, the development of quantitative structure–activity
relationship (QSAR) models has aimed to link chemical information with biological properties
and shed light on the interactions between ligands and biological targets. However, it is only
with recent advancements in powerful computational techniques that the application of QSAR
models has been able to expand and address more complex challenges, such as predicting
the ADMET properties of molecules [12]. In addition to the advancement in computational
power, another key step has been made with regard to instrumentation and quantification
methods that enable large numbers of molecules to be screened, resulting in the generation of
large datasets that have been used for artificial intelligence (AI)-based methods.

The application of AI in the ADMET field is rapidly advancing, and a wide variety of
models has been developed to predict various properties of drug candidates. These models
leverage different AI algorithms, including machine learning (ML) and deep learning (DL)
techniques, to analyze large amounts of data and identify promising drug candidates. Some
examples of ML algorithms used in ADMET research include random forest [13], support
vector machines [14], artificial neural networks [15,16] and k-nearest neighbors (k-NN) [17].
These algorithms are often used to predict important ADMET properties such as solubility,
permeability and toxicity, among others. DL algorithms are becoming increasingly popular
in ADMET research due to their ability to model intricate connections between molecular
attributes and these essential drug properties. Examples of DL algorithms used in ADMET
research include recurrent neural networks (RNNs) [18] and generative adversarial net-
works (GANs) [19]. These algorithms can model complex interactions between drugs and
biological systems, leading to more accurate predictions.

It is worth noting that the majority of AI algorithms used for predicting ADMET
properties rely on molecular descriptors as input [20]. While these descriptors provide
valuable information about the chemical and physical properties of drug candidates, they
may not capture the full complexity of ADMET processes. Molecular descriptors are
mathematical representations of molecular structures and properties such as size, shape
and charge [21]. They are widely used as input for machine learning (ML) models, as they
can be easily computed from molecular structures and processed by different types of
algorithms. The use of molecular descriptors as inputs to AI models for ADMET prediction
has several limitations. One limitation is that molecular descriptors provide a simplified
representation of the molecular structure and may not capture all relevant features that
affect ADMET properties [22]. Another limitation is that molecular descriptors are derived
from specific algorithms and calculations, which can differ among studies and may not
be consistent across different datasets [23]. This can lead to discrepancies in ADMET
predictions and make it difficult to compare results across sources. Recently, a deep learning
(DL) approach based on graph neural networks (GNNs) has been proposed to predict
molecular thermophysical properties [24] and has achieved very interesting performance.
This framework leverages the flexibility of graph theory to represent structural relationships
among the atoms in a molecule and, thus, to circumvent the use of molecular descriptors.
Other preliminary analyses showed that this methodology can reach good performance
when predicting some drug ADMET properties [25,26].

The aim of this paper is to develop and evaluate an attention-based graph neural
network (GNN) approach for predicting the ADMET properties of molecules. The pro-
posed approach leverages only the molecular structure information that can be obtained
from the Simplified Molecular Input Line Entry System (SMILES) [27] and does not require
the calculation of molecular descriptors. This makes it computationally efficient and en-
ables the prediction of ADMET properties for large compound libraries in a time-effective
manner. The newly introduced model examines both the entire molecular structure and
its substructures with an attention-based approach; thus, both global and local features
are used to infer drug ADMET properties. The architecture is evaluated with five-fold
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cross validation (CV) on large (i.e., more than 4200 compounds) publicly available re-
gression/classification datasets of ADMET properties on which similar DL approaches
have been tested. Furthermore, to provide a more comprehensive assessment of the novel
features (i.e., the graph attention mechanism for both the entire molecule and its substruc-
tures), an ablation study of the newly proposed GNN architecture and the standard test
procedure of the Therapeutics Data Commons (TDC) platform [28] are performed.

2. Materials and Methods
2.1. Molecular Graph Representation

The pillar of the work presented here is that each molecular structure can be repre-
sented as a graph [29]. Formally, a graph, G = (V, E), is a data structure defined by a set of
nodes V linked by a set of edges E representing connections between nodes. In molecular
graphs, each node vi ∈ V represents an atom of the molecule, and each edge el ∈ E repre-
sents a bond between atoms. Within molecular graphs, edges are usually associated with
bidirectional characteristics. As a result, the graph under consideration is an undirected
graph, where the connections between nodes do not have specific directions.

The theoretical definition of a graph can be translated into a computer-processable
representation by leveraging linear algebra and matrices [29]. The connections between
atoms in a molecule are typically represented by an adjacency matrix A ∈ RN×N , where
N = |V| is the number of atoms in the molecule. Atomic bonds are defined in A by
setting aij = 1 if atoms/nodes vi and vj are linked; otherwise, the value is set to 0 [29].
Consequently, if the graph is undirected, A is a symmetric matrix [30]. In the adopted
graph representation, each node/atom is assumed to be connected to itself [30]. Therefore,
elements along the diagonal of A, aii are set to 1.

As discussed in Section 2.2, the implemented deep learning model focuses on both
the whole molecule and its substructures. As illustrated in Figure 1, it is necessary to
consider a set of adjacency matrices for each molecule. For evaluating the entire molecular
composition, a first adjacency matrix A1 is defined by considering bonds of all kinds.
In addition, four other adjacency matrices, A2, A3, A4 and A5, are derived for each molecule
in order to focus on substructures characterized only by single, double, triple and aromatic
bonds between atoms, respectively. In the proposed implementation, the dimensions of all
the adjacency matrices are taken to be N × N, independent of the number of atoms that
appear in the specific substructure.

Within the framework of molecular graphs, nodes are not only described by their
interconnections but also by considering their intrinsic characteristics. Therefore, each node
vi ∈ V is described by a feature vector, h ∈ RD, which contains information about the specific
atom of the molecule (e.g., type, formal charge, etc.) [29]. All the feature vectors can be stored
within a node feature matrix, H ∈ RN×D, whose rows, hi with i = 1, . . . , N, are the features
associated with each atom in the molecule [29,30]. Table 1 summarizes the atomic features
considered in our work. It is important to underline that all these atomic characteristics can be
derived from the chemical composition of a compound without using the predictions of other
models. Each feature is described with a one-hot encoded vector: the concatenation of these
vectorial representations defined the final feature vector associated with each atom.

In our approach, the molecular graph representation described above is obtained from
SMILES through a specific pre-processing pipeline. A detailed description of the entire
process is reported in Supplementary Materials S2.

Table 1. List of the features used for characterizing each atom in the molecule.

Atomic Feature List of Possible Values

Atom type identified by the atomic number 1–101
Formal charge −3, −2, −1, 0, 1, 2, 3, Extreme

Hybridization Type S, SP, SP2, SP3, SP3D, SP3D2, Other
Atom in a ring 0: No, 1: Yes

Is in an aromatic ring 0: No, 1: Yes
Chirality Unspecified, Clockwise, Counter-clockwise, Other
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Figure 1. Example of how adjacency matrices are extracted from molecular SMILE. For each type of
bond (i.e., single, double, triple or aromatic), a specific adjacency matrix is derived in order to focus
on molecular substructures.

2.2. Graph Neural Networks (GNNs)

A graph neural network (GNN) is a deep learning framework that processes graph
input data [31,32] for both classification and regression tasks, which can be performed at
different levels: on the entire graph, on single nodes, or on edges [30]. According to the
molecular graph representation described in Section 2.1, the proposed application of GNN
falls under graph-level classification and regression tasks. Figure 2 describes the GNN
architecture developed in this work.

Figure 2. Schematic representation of the GNN adopted. The architecture is organized as a stack of
three main modules, each with a specific function.

The GNN architecture can be subdivided into three modules:
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• Module 1: Layers 1–5 focus on molecular substructures. The first four layers are char-
acterized by four independent and parallel branches, each considering an adjacency
matrix Ak, with k = 2, 3, 4, 5, that represents a particular substructure of the molecule
as defined in Section 2.1. Each branch k uses its adjacency structure, Ak, to remap into
a different feature space the input node feature matrix H ∈ RN×D, which was built by
concatenating the one-hot representations of the atomic characteristics in Table 1. Thus,
after Layer 4, four new node feature matrices, H̃k ∈ RN×F, are obtained. Each H̃k
provides a latent representation of the original feature matrix by considering a specific
molecular substructure represented through the adjacency matrix Ak. The projection
of H into H̃k through Ak is performed by each branch combining two multi-head
attention layers (MHALs), located in both Layer 1 and 3, with the operations of con-
catenation (Layer 2) and averaging (Layer 3). A more detailed description of these
layers is reported in Section 2.2.1. The outputs of all four branches are then combined
into Layer 5 with a masked sum (Section 2.2.2) to obtain a new node feature matrix
Ĥ ∈ RN×F that merges the information H̃k coming from the different substructures.

• Module 2: Layers 6–8 consider the whole molecular structure. The inputs of this
module are Ĥ and A1, the latter being the adjacency matrix built considering all bond
types simultaneously. Ĥ and A1 are fed into another MHAL (Layer 6) whose outputs
are then concatenated (Layer 7), leading to new node feature matrix H∗ ∈ RN×Q.
Finally, Layer 8 projects into a P-dimensional space the node feature matrix H∗ and
then squeezes it into a vector X ∈ RP representing the graph-level features.

• Module 3: Layer 9–Output leverage the layers of fully connected neural networks.
In this module, X is fed into a batch normalization layer [33] and then to a multi-layer
perceptron (MLP) [34] that yields the final prediction.

From this modular description of the GNN architecture, it follows that the model uses
a bottom-up approach for inferring molecular characteristics. Indeed, Module 1 focuses
on the internal structures (i.e., subgraphs) for extracting a new representation of the node
feature matrix Ĥ. Then, in Module 2, the whole molecule (i.e., full graph) is accounted for,
achieving a graph-level representation with vector X. Finally, Module 3 is used to predict
the molecular property of interest.

2.2.1. Multi-Head Attention Layer

The multi-head attention layer (MHAL) was first introduced for deep neural net-
work architectures to improve performance in sequence-based tasks related to the field of
computational linguistics, such as machine translation [35] and language modeling [36].
In particular, this mechanism allows the net to understand which subset of elements in a
sequence is more important for the final prediction. The introduction of the Transformer
model [36] made the attention mechanism a widely adopted solution for several tasks [37].
The strength of the Transformer model is the presence of multiple and independent at-
tention units (i.e., heads), each of which focuses on different aspects of the same input.
Analogous to [38], here, the multi-head attention mechanism is combined with the GNN
framework to obtain a new representation for each node/atom using different attention
scores based on the contributions coming from the neighborhood of the node/atom. This
approach represents an extension of the classical graph convolutional (GC) layers, for
which a description is reported in Supplementary Materials S3.

In our approach, each head takes as input a generic graph, G = (V, E), which is
represented with an adjacency matrix, A ∈ RN×N , describing the node connections and
a node feature matrix H. The j-th node, vj, is characterized by a set of neighbors U, also
including vj itself, and by a feature vector hj ∈ RD (i.e., the j-th row of H). This head
is characterized by a trainable matrix of weights, W ∈ RD×F, which is used to perform
an initial linear transformation of H. This procedure leads to a new node feature matrix
belonging to an F-dimensional feature space, with F representing a hyperparameter.
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Z = H · W (1)

Consequently, vj will be characterized by a new feature vector, zj ∈ RF. Then, the at-
tention coefficients, ejl , that quantify the importance given by vj to the features of each
vl ∈ U are computed as:

ejl = g((zj ⊕ zl) · aT). (2)

This operation is performed by concatenating (⊕ symbol) the transformed features of vj

and vl and then by performing the scalar product with vector a ∈ R2F. In particular, a
is a trainable parameter vector, while g is a non-linear function (i.e., activation function).
In the implemented model, g was set to be a LeakyReLU function [39] with slope α = 0.2,
as in [38].

Attention coefficients are then normalized as reported in Equation (3).

λjl =
exp(ejl)

∑vl∈U exp(ejl)
(3)

Values λjl are subsequently used in Equation (4) to compute the new feature vector,
h̃j ∈ RF, for the node vj and, in general, the new feature matrix H̃ ∈ RN×D.

h̃j = ϕ( ∑
vl∈U

λjlzl) (4)

More specifically, h̃j is obtained by applying a nonlinear function, ϕ (also in this case a
LeakyReLU with α = 0.2), to the weighted sum in the F-dimensional space between the fea-
tures of vj and the ones of its neighbors. Therefore, λjl gives an attention-based weight to the
neighborhood of vj and to vj itself, since the node’s self-attention was previously computed.

Equations (1)–(4) describe a single attention head; these are further combined to
create K attention heads (the K hyperparameter). While the input is shared, each head,
independently of the others, processes the same input and returns a new node feature
matrix H̃K. The final output of the MHAL is the average of the K matrices (Layer 4 of the
model in Figure 2) or a concatenation (Layers 2 and 8 in Figure 2). While the first solution
maintains an F-dimensional feature space accordingly to the output of each head, the latter
expands it to a K· F-dimensional representation.

2.2.2. Masked Sum Layer

This layer was introduced in the architecture (Layer 5 of Figure 2) to integrate the
contributions of the pre-processing coming from the four branches k = 2, 3, 4, 5, which
each focus on a molecular substructure. It takes as input the set of the adjacency matrices
Ak ∈ RN×N and those of the feature matrices H̃k ∈ RN×F. Given the set of nodes V, with
|V| = N, for each vj ∈ V, a new feature vector ĥj ∈ RF is computed with Equation (5).

ĥj =
5

∑
k=2

h̃k,j · ak,jj (5)

In particular, by multiplying h̃k,j with the j-th element on the diagonal of Ak, it
is possible to compute the features of node vj by considering the contributions of the
substructures to which it belongs.

2.2.3. Global Attention Pooling Layer

This layer was introduced in the architecture (Layer 7 of Figure 2) to obtain a single
feature vector X ∈ RP summarizing all graph features. As reported in [40], this layer takes



Pharmaceutics 2024, 16, 776 7 of 21

as input a feature matrix H∗. Following a linear transformation mapping H∗ from RN×Q to
RN×P, an attention-based sum of all the N feature vectors h∗

j is executed (Equation (6)).

X =
N

∑
j=1

(σ(h∗
j W1 + b1)⊙ (h∗

j W2 + b2)) (6)

In particular, W1 and W2 are two RQ×P matrices of learnable weights, b1 and b2 are two
RP vectors of other learnable parameters, and σ represents the sigmoid activation function.

2.3. Benchmark Datasets

This work utilizes six public datasets, consisting of two regression datasets and four
binary classification datasets, covering various ADMET properties. The two regression
datasets are the Lipophilicity AZ dataset and the AqSolDB dataset, which contain infor-
mation on lipophilicity and aqueous solubility. Lipophilicity, expressed in terms of LogD,
significantly impacts drug solubility and permeability, thereby affecting its potency and
selectivity. In the early stages of drug development, several candidate compounds are
characterized by high lipophilicity. However, such high lipophilicity often results in rapid
metabolism, leading to poor solubility and diminished absorption. Aqueous solubility
(LogS) evaluates the drug’s ability to dissolve in water, impacting mainly its absorption
kinetics and bioavailability. Compounds with low aqueous solubility may exhibit slower
absorption rates, potentially leading to inadequate therapeutic levels in the bloodstream
and reduced efficacy. This limitation is particularly impactful as about 70% of newly
developed medications demonstrate poor solubility [41].

Regarding the classification datasets, all of them concern the activity of different cy-
tochromes (CYP P450). This class of enzymes plays a key role in pharmacogenetics and
frequently showcases genetic variations that directly impact drug activity. This genetic
diversity influences both the pharmacokinetic and pharmacodynamic responses of individ-
uals to medications, affecting both therapeutic outcomes and adverse reactions [42]. There
are 57 active CYPs in the human genome, which are denominated using a sequence of a
digit, a letter, and a number that represent the gene family, the subfamily, and the gene
identifier, respectively. Among them, CYP P450 2C9 plays a significant part in oxidizing
both xenobiotic and endogenous compounds. Meanwhile, the CYP2C19 gene directs the
production of an enzyme crucial for endoplasmic reticulum function by facilitating protein
processing and transport. CYP2D6 is primarily active in the liver but is also prominently
present in key areas of the central nervous system such as the substantia nigra. Lastly,
CYP3A4, predominantly located in the liver and intestine, serves as a vital enzyme respon-
sible for oxidizing various foreign organic molecules, including toxins and drugs, aiding in
their elimination from the body [42].

Statistical information of these datasets is shown in Table 2.

Table 2. Statistics of the ADMET properties datasets. Compounds exhibiting an inhibitory action
on CYP enzymes were labeled with 1 (i.e., positive examples). Conversely, 0 encodes an absence of
inhibition (i.e., negative examples).

Property #Total #Positives (1) #Negatives (0) Task Type

Lipophilicity AZ 4200 - - Regression
AqSolDB 9982 - - Regression
CYP2C9 12,092 33.45% 66.54% Binary Classification
CYP2C19 12,665 45.94% 54.06% Binary Classification
CYP2D6 13,130 19.15% 80.85% Binary Classification
CYP3A4 12,328 41.45% 58.55% Binary Classification

2.4. Evaluation of GNN Framework

The architecture described in Section 2.2 was tested on both the classification and
regression tasks that are described in Section 2.3. In order to provide a robust evaluation
of the GNN framework, a five-fold cross validation (5-FCV) approach was conducted on
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the six tasks. As schematized in Figure 3, at each step of the 5-FCV, the 20% of the data
excluded from the test fold is randomly used as a validation set to avoid overfitting during
the training [43] phase and to maximize the model’s generalizability. The remaining 80%
constitutes the training set. In particular, at the end of each training iteration (i.e., epoch),
the model is evaluated on the validation set by using a specific metric. At the end of the
training, the final model is the one with the best score on the validation set. The metrics
adopted for the regression and classification tasks are reported in Section 2.6.

Figure 3. Schematic representation of the implemented five-fold cross validation. At each step, one
fold (orange) is used as an external test set; the remaining four are used for training and validation.
And 20% of the four folds are used as validation data.

Training, test and validation sets were defined in a stratified manner for classification
tasks due to the unbalanced distributions of the examples (Table 2).

2.5. Custom Training Loss Functions

Training a neural network consists of solving an optimization problem in which a set
of optimal parameters θ is found by minimizing a cost function (i.e., loss function) f (y, ŷ, θ).
More specifically, f is a function of the model parameters θ, the real value of the target
variable y and its prediction ŷ. The definition of f depends on the task for which the model
is applied (i.e., regression or classification). In particular, given the datasets presented in
Section 2.3, we used the root mean squared error (RMSE, Equation (7)) and the binary
cross-entropy (BCE, Equation (8)).

RMSE :=

√
∑N

i=1(yi − ŷi)
2

N
(7)

BCE := − 1
N

N

∑
i=1

yi · log(p(xi) + (1 − yi) · log(1 − p(xi)) (8)

In the classification task, examples are labeled with 0 or 1, and the term p(xi) in Equation (8)
represents the probability that example xi belongs to class 1. As detailed in Sections 2.5.1
and 2.5.2, the loss functions in Equations (7) and (8) were modified by introducing a
weighting strategy that addresses skewed or unbalanced distributions.

2.5.1. Weighted RMSE

Training a regression model on a skewed distribution of the target variable (i.e., LogD
and LogS, as illustrated in Figure 4) can lead to a biased model that accurately predicts only
common cases (i.e., those having a higher probability density) [44,45]. This issue can be
addressed by introducing a loss function (in this case, the RMSE) and a weight wi for the i-th
example according to the probability density of its target value p(yi) (Equation (9)) [46].
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WRMSE :=

√
∑N

i=1 wi(yi − ŷi)
2

N
(9)

In particular, wi is defined as ∝ 1/p(yi) according to the algorithm proposed in [46].
Given the set of target values, Y = {y1, y2, . . . , yN}, it is possible to estimate p(yi) with a
kernel density technique [46–48]. Then, p(yi) is normalized between 0 and 1 by applying
Equation (10).

p′(yi) =
p(yi)− min(p(Y))

max(p(Y))− min(p(Y))
(10)

The weight wi can be computed for each yi with Equation (11), which depends on a
design parameter α ∈ [0, 1].

wi = 1 − αp′(yi) (11)

Figure 4. Distributions of regression variables in two benchmark datasets. Histograms of Lipophilicity
AZ panel (A) and AqSolDB panel (B) data.

Examples of this weighting strategy are reported in Figure 5 for regression tasks
for both LogD and LogS. Further implementation details on this weighting strategy are
reported in Supplementary Materials S2.

Figure 5. Example of the weighting strategy adopted for both regression tasks. Panel (A) shows the
weights introduced for training the GNN on LogD prediction. Panel (B) focuses on LogS. For both
tasks, α was set to 0.55.

2.5.2. Weighted Binary Cross Entropy

One of the potential pitfalls of machine learning (ML) methods is highly imbalanced
datasets. Indeed, these techniques often do not perform well in classifying minority classes,
which could be very relevant for the task at hand [49,50]. Classification tasks reported in
Section 2.3 fall into such an imbalanced condition since the target class, i.e., the presence of
an inhibitory action by a compound on CYP enzymes (encoded with 1), is underrepresented
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in the dataset (Table 2). Thus, the BCE loss (Equation (8)) was weighted in order to give
a higher importance to the examples of the minority class. To this end, for each class
c ∈ C = {0, 1}, a weight wc was assigned by considering the log ratio between the size of
the majority class N∗

c = max
c∈C

Nh and that of c (Equation (12)) [51].

wc = ln
(

N∗
c

Nc

)
+ 1 (12)

Therefore, the parameters of the GNN were trained by minimizing the weighted BCE
(WBCE) loss function in Equation (13), with wi ∈ {w0, w1} depending on the class c ∈ C
of yi.

WBCE := − 1
N

N

∑
i=1

wi · (yi · log(p(xi) + (1 − yi) · log(1 − p(xi))) (13)

2.6. Validation Set Metrics

The validation set has a crucial role during the training stage to avoid overfitting [43].
At the end of each training epoch, in fact, the model is evaluated on the validation set
to detect, as early as possible, the worsening of loss values. Then, at the end of training,
the best model parameters are those that achieve the best score on the validation set.

RMSE (Equation (7)) was used as a validation metric for regression tasks (Table 2).
This function was preferred to MAE (Equation (14)) as it gives a higher weight to larger
model errors.

MAE :=
∑N

i=1 |yi − ŷi|
N

(14)

However, as will be discussed in the Results section, MAE was also used to assess the
performances of the model on the test set in order to allow comparisons with the other
approaches in the literature (Tables 3 and 4). The goal of the classification tasks presented
in Section 2.3 is to accurately detect those molecules inhibiting CYP enzimes (labeled as
‘Positive’ or 1). However, such molecules represent the minority class in the available
datasets (Table 2). These aspects lead us to consider the area under the precision–recall
curve (AUPRC) as a validation metric rather than the area under the receiving–operating
characteristic curve (AUROC) [52,53].

Precision :=
True Positives

True Positives + False Positives
(15)

Recall :=
True Positives

True Positives + False Negatives
(16)

In particular, the precision–recall (PR) curve focuses on the trade-off between the values
attained by each of the two metrics (Equations (15) and (16)) by considering different deci-
sion thresholds (i.e., probability threshold for assigning an example to a given class) [54].
Unlike the ROC curve, the PR curve is not influenced by the true negatives, and this is
an advantage in the presence of unbalanced datasets. Therefore, the AUPRC represents
an evaluation metric targeted to how the model performs on positive cases [54]. Analo-
gously to the AUROC, there is a baseline value for the AUPRC that is the proportion of
positive examples in the dataset (i.e., a naive classifier assigning the positive class to all the
examples) [54,55].



Pharmaceutics 2024, 16, 776 11 of 21

Table 3. Summary of evaluation strategies for references.

Reference Model Metrics Evaluation Strategy

Lipophilicity

Zhang et al. [56] BERT transformer adapted to molecular graph structures
(MG-BERT) R2

The model was trained 10 times using random dataset splits,
and the final performance was reported as the average with
standard deviation.

Wang et al. [57] Convolutional GNN integrated with feed-forward neural
networks (FNNs) processing molecular fingerprints MAE Holdout (70%:30%)

Peng et al. [26] Convolutional GNN based on graph isomorphism [58] RMSE
5-fold CV on 85% of samples, with the remaining used as an
external test set. Each comparison was conducted 20 times,
and the final result was the average.

Tang et al. [59] Graph-based encoder integrated with FNN RMSE 10-fold CV (80%:10%:10%). All experiments were repeated
three times with different random seeds.

Li et al. [60] Adaptation of LSTM-based model originally developed for
natural language processing tasks RMSE All the models were evaluated on the test sets using 10

randomly seeded 80:10:10 data splits.

AcqSol

Xiong et al. [61] Graph attention neural network processing the entire
molecular structure MAE TDC-style.

Francoeur et al. [62] Molecular attention transformer presented in [63] RMSE 3-fold clustered cross-validation split of the data

Yang et al. [64] Graph neural networks MAE TDC-style.

Venkatraman et al. [65] Random forests using molecular fingerprints to represent
compounds and SMOTE data augmentation RMSE

Training–test (80/20). On the training test, 5-fold CV to
identify the best performing model. Each comparison was run
3 times, and its final experiment result was the average.

CYP

Plonka et al. [66] Random forest and molecular fingerprints to represent
compounds AUROC 10-fold CV on 80% of data and data augmentation. 20% of

data used as test set.

Xiang et al. [67] FNN processing molecular fingerprint descriptors of a
compound. AUROC Holdout with different datasets.

Table 4. Comparative performances of the proposed and the literature models on the ADMET
properties datasets.

Metric Reference Median Standard Deviation
Lipophilicity

MAE
This work 0.422 0.019

Wang et al. [57] 0.440 -

RMSE

This work 0.576 0.031
Wang et al. [57] 0.738 - -
Peng et al. [26] 0.586 0.015
Tang et al. [59] 0.571 0.032

Li et al. [60] 0.625 0.032

R2
This work 0.774 0.031

Zhang et al. [56] 0.765 0.026
Wang et al. [57] 0.766 -

AqSol

MAE

This work 0.749 0.020
Xiong et al. [61] 0.776 0.008
Yang et al. [64] 0.762 0.020

Venkatraman et al. [65] 0.780 -

RMSE
This work 1.14 0.050

Francoeur et al. [62] 1.459 -
Venkatraman et al. [65] 1.12 -

R2
This work 0.767 0.023

Venkatraman et al. [65] 0.78 -
CYP P450 2C9

AUROC
This work 0.894 0.009

Plonka et al. [66] 0.91 -
Xiang et al. [67] 0.799 -

AUPRC This work 0.01
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Table 4. Cont.

Metrics Reference Median Standard Deviation
CYP P450 2C19

AUROC
This work 0.882 0.006

Plonka et al. [66] 0.89 -
Xiang et al. [67] 0.832 -

AUPRC This work 0.859 0.008
CYP P450 2D6

AUROC
This work 0.862 0.008

Plonka et al. [66] 0.92 -
Xiang et al. [67] 0.878 -

AUPRC This work 0.676 0.014
CYP P450 3A4

AUROC
This work 0.887 0.011

Plonka et al. [66] 0.92 -
Xiang et al. [67] 0.929 -

AUPRC This work 0.842 0.014

2.7. Benchmarking Methods

Evaluation of AI models is not a straightforward task because of the wide range of
different methods used in different studies. Examples of these variations include the use of
additional proprietary data and the adoption of different validation techniques.

Amid these challenges, another aspect contributing to variability is the selection of
evaluation metrics. Commonly employed metrics like RMSE, MAE and R-squared (R2)
values are frequently adopted to gauge the performance of regression models. Yet using
distinct metrics can yield differing outcomes and interpretations of model effectiveness.
This divergence complicates direct comparisons among diverse AI models devised for
predicting ADMET properties.

To tackle this intricacy, we meticulously reviewed the existing literature to identify
prior studies that evaluated AI models on similar datasets and under analogous evaluation
methodologies whenever possible. For each specific prediction task, the most promising
results were gleaned from the literature (Table 4) and reported with the optimized metrics
and the evaluation approach employed in Table 3.

Furthermore, a comprehensive juxtaposition of the performances of the model pro-
posed here against the results documented in the TDC (Therapeutics Data Commons)
database was conducted, as expounded upon in Supplementary Materials S1.

2.8. Implementation and Code Availability

The GNN framework presented here was developed using Python version 3.7. In par-
ticular, the layers of the network were implemented with the TensorFlow 2.4 library
(https://www.tensorflow.org, accesssed on 29 May 2024). Scikit-learn utilities were lever-
aged for the 5-FCV evaluation, and rdkit and networkx were adopted to obtain the molecular
graph representation described in Section 2.1. All codes are fully available on the GitHub
repository at the following link: https://github.com/AlessandroDeCarlo27/GNN (ac-
cesssed on 29 May 2024).

3. Results

The results are summarized in Table 4, while details about the robustness of the
inferences, assessed via the five-fold method, are reported in Appendix A. The GNN
hyperparameters used for the different tasks are reported in Supplementary Materials S2.

Due to the previously discussed differences in optimized metrics and evaluation method-
ologies, conducting a systematic comparison of the results is indeed a challenging endeavor.

However, some points can be discussed. Considering the lipophilicity task, the pro-
posed algorithm showed better performances compared to the majority of the benchmarked
methodologies. Only the study by Tang et al. [59] exhibits a minor advantage over our
results. A more relevant comparison can be done with the work of Wang et al. [57]. Differ-
ently from the algorithm proposed here that considered the RMSE as the primary metric of

https://www.tensorflow.org
https://github.com/AlessandroDeCarlo27/GNN
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interest, the study conducted by Wang et al. placed its primary emphasis on minimizing
the MAE. Then, as expected, the proposed algorithm showed better performance than
Wang’s in terms of RMSE (0.576 vs. 0.738). Conversely, when turning attention to MAE,
the values are quite close. This favorable outcome can be due the weight we included into
the RMSE metric in the loss function.

Considering the AcqSol task, the obtained results are in agreement with the state-of-
the-art. When comparing our algorithm with the two available methods that focus on
minimizing the MAE, it becomes evident that our algorithm’s performance is marginally
better than that of the top-ranking algorithm [61]. Again, it is worth noting that the
MAE is not the pivotal metric chosen in this work for optimizing the regression tasks.
From the comparison with the work by Venkatraman et al. [65], which specifically aimed
to minimize the RMSE, a parallel observation akin to that in the lipophilicity task comes
to the fore. Upon comparing the RMSE, the focal metric of interest for both algorithms, it
becomes apparent that the algorithm from the literature yields a marginal improvement
(∆ < 2%) over our own. In contrast, a closer examination of the MAE values demonstrates
that Venkatraman’s algorithm yields slightly less favorable results in comparison to ours,
underlining once again the generalizability of our method across evaluation metrics.

Moving to the analysis of the classification tasks, a similar observation can be extended
across all of the CYP activity tasks. In this context, the performance of our algorithm
demonstrates minimal lag behind the leading approach documented in the literature,
particularly in terms of AUROC. However, this difference can be attributed to the optimized
metric. In this regard, our preference leans towards utilizing the AUPRC as our primary
evaluation metric, with AUROC being a consequential derivative metric as discussed in
Section 2.6. The distinction between AUPRC and AUROC becomes more pronounced in
cases of imbalanced datasets, a characteristic that our results effectively reflect (i.e., CYP
P450 2D6). By prioritizing the AUPRC, we align our methodology with the idea that, in this
case, maximizing the number of true positives is more important than maximizing the
number of true negatives.

Ablation Study

To demonstrate the validity of the proposed model, an ablation study was conducted
on the presented GNN architecture (Figure 2). The main purpose of this study was a
comprehensive analysis of the main specific features that are included in the proposed
GNN architecture. This study was performed by comparing the performances of the
Complete GNN architecture against modified variants in which a few crucial features
were simplified.

In particular, two variants of the Complete GNN were considered, as illustrated
in Figure 6. The Whole Molecule variant (Figure 6, Panel A) was introduced to assess
the possible advantages of explicit processing of molecular substructures. This variant,
in fact, focuses on the entire molecule structure, as it takes as input the complete adjacency
matrix, A1. In addition, the Convolutional GNN variant (Figure 6, Panel B) was introduced to
evaluate the role of the attention mechanisms that act on the complex of substructures in the
Complete GNN version. The Convolutional GNN differs from the Complete architecture
(Figure 2) in layer 6, in which a graph convolutional (GC) layer replaces the four-head
graph attention layer. As detailed in Supplementary Materials S3, the GC layer is the
simplest type of layer processing a graph input, and it is characterized by a lower number
of parameters than a multi-head attention layer [30].

Both variants, the Whole Molecule GNN and the Convolutional GNN, were tested with
the five-fold CV approach described in Section 2.4 on the same regression/classification
tasks on which the Complete architecture was challenged. Further details on the hy-
perparameters used for the Whole Molecule and Convolutional GNNs are reported in
Tables S3.1 and S3.2 of Supplementary Materials S3. Figures 7 and 8 summarize the results
of the ablation study. In particular, the Complete GNN architecture always achieved bet-
ter RMSE/MAE and AUPRC values than the Whole Molecule model on regression and
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classification tasks, respectively. This result confirms that differentiating the analysis of
the molecular substructures in the GNN improves the prediction of ADMET properties.
The Complete model outperformed the Convolutional variant in almost all tasks, thus
confirming the relevance of attention mechanisms applied to the complexes of molecular
substructures. Nonetheless, on two classification problems (i.e., inhibition of CYP2C19 and
CYP2D6), the Convolutional variant achieved better AUPRC values than the Complete
GNN. This seems to suggest that, at least for some cases, further tuning of hyperparameters
in the attention layer (e.g., number of attention heads and/or the dimension of the output
latent space) may be required.

Figure 6. Models used in the ablation study to benchmark the implemented GNN architecture.
Panel (A) illustrates the ‘Whole Molecule’ GNN, which does not consider molecular substructures.
Panel (B) represents the ‘Convolutional’ GNN, in which the attention mechanism for the entire
molecule is replaced by a graph convolutional (GC) layer.

Figure 7. Results of the ablation study on the regression tasks.



Pharmaceutics 2024, 16, 776 15 of 21

Figure 8. Results of the ablation study on the classification tasks.

4. Discussion

The realm of ADMET prediction has witnessed transformative advancements with
the advent of artificial intelligence models. These models hold the promise of revolution-
izing drug discovery and development by enabling the precise characterization of vital
drug properties. However, the journey towards harnessing the full potential of AI-driven
ADMET prediction is interleaved by challenges in evaluating the performance of these
models. The need for standardized evaluation procedures renders the identification of
superior models a difficult task. Discerning whether performance differences stem from
genuine model enhancements or disparate evaluation techniques becomes a critical consid-
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eration. The quest for robust model comparison necessitates the alignment of evaluation
methodologies across studies.

In the study presented here, these challenges were addressed. We identified studies
with similar datasets and evaluation methods through an exhaustive literature review. Most
top-performing works used graph representations of molecules for regression tasks. Con-
versely, models for CYP classification primarily relied on processing fingerprint descriptors.

Across tasks like molecular lipophilicity and aqueous solubility, our method con-
sistently outperforms or performs very closely to benchmarked approaches. Moreover,
when compared with state-of-the-art algorithms, our model consistently achieves strong
results across diverse evaluation metrics. In classification tasks, our strategy of prioritizing
AUPRC underscores our dedication to maximizing true positives: a critical aspect for
datasets with imbalances. Nonetheless, it is noteworthy that our commitment to AUPRC
does not hinder our competitiveness, as we continue to contend with top algorithms even
in terms of AUROC.

Furthermore, we conducted an ablation study with two alternative GNN variants to
evaluate the design choices made for the Complete GNN architecture. The first variant
processed the whole molecule directly, while the second replaced the attention layer with
a simpler graph convolutional layer. This analysis confirmed the importance of substruc-
ture processing, as the proposed model consistently outperformed the model without it.
Additionally, the Complete GNN model also achieved generally better results than the
variant using graph convolution, particularly for regression tasks. Nevertheless, our results
suggest that for some functions, particularly CYP2C19 and CYP2D6 inhibition prediction,
optimizing the attention layer could improve performance. As a final validation procedure,
we extended our comparison to the Therapeutics Data Commons. TDC is a platform for
systematically accessing and evaluating machine learning across the entire range of thera-
peutics. TDC provides AI-ready datasets and learning tasks together with an ecosystem
of tools, libraries, leaderboards and community resources. Since TDC includes works
presented in preprint format, which may not have undergone formal publication, we chose
to present the comparison of algorithms and model performance with those featured on
the TDC platform within the supplementary section. This evaluation framework allowed
us to be as objective as possible in evaluating the performance of the proposed model.
Also, for the sake of clarity, the model code is made available on GitHub, and the dataset
is downloadable from the TDC platform so that all the analyses reported in this paper
can be reproduced exactly. An additional consideration we would like to underscore is
that the performances accomplished across diverse tasks were attained by employing a
uniform network architecture for all layers, with the exception of the output layer. This
strategic decision sets the stage for a promising avenue of future exploration: namely, the
potential integration of multi-task network architectures. By harnessing such an approach,
we could unlock enhanced capabilities by simultaneously addressing multiple ADMET
prediction tasks, thereby pushing the boundaries of predictive accuracy and versatility
in our model. However, it is essential to acknowledge the limitations of the proposed
approach. Despite its advancements, the model may still encounter challenges in accu-
rately predicting ADMET properties in scenarios with a limited availability of training
data. The complexity of the developed model, comprising more than 750,000 parameters,
underscores the necessity for a substantial volume of training data. In the real world,
the pool of drug-like chemical compounds is inherently limited. Continual refinement and
validation of the methodology against diverse datasets and experimental findings will be
pivotal for overcoming these limitations and strengthening the reliability and applicability
of this ADMET prediction framework. Furthermore, while we have conducted testing on
publicly available datasets, it is crucial to consider broader validation efforts encompassing
a wider spectrum of drug-like molecules. This could involve tapping into internal company
datasets, which would offer valuable insights into the practical utility of our methodology
in real-world settings.
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5. Conclusions

In conclusion, the accurate prediction of ADMET properties is fundamental in the field
of drug discovery and development. These properties play a pivotal role in understanding
the pharmacokinetics, safety and efficacy of potential drug candidates, thereby enhancing
the probability of achieving successful outcomes. The early and precise characterization of
ADMET properties is essential to streamline a reliable and cost-effective drug discovery
process and allows informed decision-making and fosters resource optimization. In this
work, we introduce an innovative approach to ADMET prediction by leveraging the power
of attention-based graph neural networks. The proposed model offers a novel methodology
that combines the strengths of graph-based molecular representation and sophisticated
neural network architectures. Central to this approach is the utilization of a graph-based
representation of molecules derived directly from SMILE (Simplified Molecular Input Line
Entry) notation. This step captures the intricate structural information of molecules coher-
ently, facilitating the subsequent processing stages. The model employs an attention-based
sequential information processing strategy, wherein it systematically analyzes substruc-
tures before aggregating them into a holistic representation of the entire molecule. As
demonstrated with the ablation study, this approach can improve the prediction of ADMET
properties, resulting also in a more biologically relevant prediction paradigm. Overall, our
work offers a promising avenue for enhancing ADMET prediction accuracy and emphasizes
the importance of leveraging innovative computational approaches to drive advancements
in drug discovery and development. Moving forward, continuous refinement and valida-
tion of our methodology against diverse datasets and experimental data will be crucial for
further enhancing the reliability and applicability of ADMET prediction frameworks.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pharmaceutics16060776/s1. References [27,30,68–70] are cited in
the Supplementary Materials.
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Appendix A

Table A1. Model’s performances on the lipophilicity dataset. Details of the 5-fold cross validation.

Fold RMSE MAE R2

1 0.557 0.391 0.782
2 0.558 0.404 0.791
3 0.608 0.436 0.733
4 0.626 0.433 0.732
5 0.577 0.422 0.774

Mean 0.585 0.417 0.762
Median 0.576 0.422 0.774

SD 0.031 0.019 0.028

https://www.mdpi.com/article/10.3390/pharmaceutics16060776/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16060776/s1
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Table A2. Model’s performances on the AqSolDB dataset. Details of the 5-fold cross validation.

Fold RMSE MAE R2

1 1.097 0.725 0.790
2 1.140 0.749 0.767
3 1.169 0.770 0.750
4 1.116 0.721 0.780
5 1.225 0.751 0.732

Mean 1.149 0.743 0.764
Median 1.140 0.749 0.767

SD 0.050 0.020 0.023

Table A3. Model’s performances on the CYP P450 2C9 dataset. Details of the 5-fold cross validation.

Fold AUPRC AUROC

1 0.799 0.895
2 0.797 0.894
3 0.790 0.894
4 0.772 0.870
5 0.787 0.886

Mean 0.789 0.888
Median 0.790 0.894

SD 0.010 0.009

Table A4. Model’s performances on the CYP P450 2C19 dataset. Details of the 5-fold cross validation.

Fold AUPRC AUROC

1 0.859 0.882
2 0.863 0.891
3 0.855 0.879
4 0.866 0.891
5 0.846 0.882

Mean 0.858 0.885
Median 0.859 0.882

SD 0.008 0.006

Table A5. Model’s performances on the CYP P450 2D6 dataset. Details of the 5-fold cross validation.

Fold AUPRC AUROC

1 0.708 0.871
2 0.674 0.865
3 0.676 0.850
4 0.686 0.862
5 0.676 0.858

Mean 0.684 0.861
Median 0.676 0.862

SD 0.014 0.008

Table A6. Model’s performances on the CYP P450 3A4 dataset. Details of the 5-fold cross validation.

Fold AUPRC AUROC

1 0.849 0.889
2 0.840 0.881
3 0.831 0.886
4 0.842 0.880
5 0.869 0.907

Mean 0.846 0.889
Median 0.842 0.886

SD 0.014 0.011
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