
Supplementary Material S1

Evaluation of the proposed GNN architecture

following the standard of TDC platform

The results obtained with the architecture here presented are reported in Table S1.1-S1.6

and compared with the TDC leaderboard in terms of ranking and gap from leader/previous

model (Table S1.7). A detailed description of the evaluation procedure proposed by the

platform is reported in [68].

This study introduces a novel architecture that employs a bottom-up approach for estimating

ADMET properties, focusing on a broader range of tasks rather than a single task. Our

model demonstrates competitive performance, comparable to top-ranking approaches. While

itl may appear to have relatively lower rankings in certain tasks, it is worth noting that the

differences with the top-performing algorithms [69] are minimal.

Table S1.1: Results on the Lipophilicity task

Lipophilicity RMSE MAE R2

Split #1 0.644 0.475 0.705

Split #2 0.621 0.464 0.726

Split #3 0.594 0.44 0.749

Split #4 0.577 0.432 0.764

Split #5 0.615 0.47 0.731

Median 0.615 0.464 0.731

Mean 0.6102 0.4562 0.735

SD 0.025724 0.019058 0.02255

Table S1.2: Results on the AqSolDB task

AqSolDB RMSE MAE R2

Split #1 1.398 0.879 0.63

Split #2 1.329 0.89 0.664

Split #3 1.598 0.866 0.516

Split #4 1.204 0.86 0.725

Split #5 1.293 0.87 0.683

Median 1.329 0.87 0.664

Mean 1.3644 0.873 0.6436

SD 0.148136 0.011747 0.079154

Table S1.3: Results on the CYP-2C9 task

CYP-2C9 AUPRC AUROC

Split #1 0.761 0.881

Split #2 0.753 0.877

Split #3 0.746 0.882

Split #4 0.728 0.852

Split #5 0.762 0.883

Median 0.753 0.881

Mean 0.75 0.875

SD 0.01391 0.013058

Table S1.4: Results on the CYP-2C19 task

CYP-2C19 AUPRC AUROC

Split #1 0.744 0.866

Split #2 0.767 0.89

Split #3 0.747 0.879

Split #4 0.736 0.868

Split #5 0.751 0.878

Median 0.747 0.878

Mean 0.749 0.8762

SD 0.011467 0.009654

Table S1.5: Results on the CYP-2D6 task

CYP-2D6 AUPRC AUROC

Split #1 0.653 0.859

Split #2 0.652 0.869

Split #3 0.622 0.861

Split #4 0.656 0.87

Split #5 0.606 0.831

Median 0.652 0.861

Mean 0.6378 0.858

SD 0.022499 0.015843

Table S1.6: Results on the CYP-3A4 task

CYP-3A4 AUPRC AUROC

Split #1 0.84 0.868

Split #2 0.847 0.876

Split #3 0.845 0.879

Split #4 0.854 0.884

Split #5 0.847 0.879

Median 0.847 0.879

Mean 0.8466 0.8772

SD 0.00503 0.005891

Table S1.7: Comparison of the proposed approach with TDC benchmark models.

Dataset TDC Ranking Gap from leader/previous

Lipophilicity 1 -0.010 [MAE]

AqSolDB 6 +0.111 [MAE]

CYP2C9 6 -0.089 [AUPRC]

CYP2C19 1 - [AUPRC]

CYP2D6 7 -0.1012 [AUPRC]

CYP3A4 8 -0.0574 [AUPRC]

References

[68] TDC Leaderboard Guidelines. Online at https://tdcommons.ai/benchmark/overview

[69] TDC ADMET Benchmark Groups. Online at

https://tdcommons.ai/benchmark/admet_group/overview/.

Supplementary Material S2

Implementative details of the proposed GNN

Data Preprocessing

In the considered datasets, each molecule is represented through its relative SMILES, that

is a string data. Python package rdkit [27] was used to extract the atomic features from

SMILES. Then, the adjacency matrices of both the whole molecule and its sub-structures

were obtained converting SMILES to graph with rdkit and networkx [70] Python packages.

https://tdcommons.ai/benchmark/overview
https://tdcommons.ai/benchmark/admet_group/overview/

GNN hyperparameters

All GNN layers were implemented in Python using Tensorflow 2.4 library. Scikit-learn Python

package supported the implementation of the 5-folds Cross Validation pipeline and the

kernel density estimation of regression output. Table S2.1 contains the values of the

hyperparameters for the GNN in each task.

Table S2.1 List of the hyperparameters that were adopted in the different tasks.

Hyperparameter Value

Hyperparameters common to all tasks

Output Dimension of Attention Head - Layer 1 32

Output Dimension of Attention Head - Layer 3 64

Output Dimension of Attention Head - Layer 6 128

Output Size of Global Attention Pooling Layer 512

Optimizer Adam

Batch Size 16

Hyperparameters for regression task on Lipophilicity dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.2

𝛼 - weighting factor of WRMSE 0.55

Epochs 500

Learning Rate 0.001

MLP architecture 1 layer with 16 units

Hyperparameters for regression task on AcqSol dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.3

𝛼 - weighting factor of WRMSE 0.55

Epochs 750

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

Hyperparameters for all classification tasks on CYP datasets

Epochs 500

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

References

[27]David Weininger. SMILES, a chemical language and information system. 1. Introduction
to methodology and encoding rules. Journal of chemical information and computer sciences
1988 28(1) 31–36

[70]Greg Landrum,Paolo Tosco, Brian Kelley,sriniker, gedeck, Nadine Schneider, Riccardo
Vianello,Ric,Andrew Dalke, Brian Cole, Alexander Savelyev, Matt Swain, Samo Turk, Dan N,
Alain Vaucher, Eisuke Kawashima, Maciej Wójcikowski, Daniel Probst, Guillaume Godin,
David Cosgrove, Axel Pahl, JP, Francois Berenger, strets123, JL Varjo, Noel O’Boyle,
Patrick Fuller, Jan Holst, Jensen Gianluca Sforna, Doliath Gavid. rdkit/rdkit: 2020_03_1 (Q1
2020) Release. 2020. https://doi.org/10.5281/zenodo.3732262 544

Supplementary Material S3

Graph Convolutional Layer

Graph Convolutional Layer

Graph convolutional (GC) layer represents the most simple and common neural network

substructure processing graph data [30]. The inputs of GC layers are graph adjacency

matrix, A ∈ RN×N, and nodes features matrix, H ∈ RN×M, with N representing the number of

graph nodes and M the number of features for each node. For the sake of simplicity, let us

assume that the elements on the diagonal of A are equal to 0 (i.e., each node is not

considered linked to itself in the graph). Therefore, each node u is characterized by a set of

features hu ∈ R1×M and by a set of neighbors, Vu, with v ≠ u ∀ v ∈ Vu . The GC layer

projects each hu to a D-dimensional latent space by merging the information (i.e., features)

on its neighbors v ∈ Vu. To this end, for each u, the steps of aggregation and updates are

performed. In particular, the aggregation step consists in merging the features of all v ∈

Vu. In the GC layer, the aggregation operation with respect to the node u is the sum of the

features vectors of v ∈ Vu (Eq. S3.1).

𝑚𝑢 = ∑ ℎ𝑣

𝑣∈𝑉𝑢

Eq. S3. 1

In the update step (Eq. S3.2) a new features vector, h′u ∈ R1×D, is obtained for each u. In

particular, the new D-dimensional representation of u is based on a linear combination

between the old representation of the node (hu) and the information of its neighbors (mu).

These two terms are weighted by the coefficients matrices W1 ∈ RM×D and W2 ∈ RM×D

which represent the learnable parameters of a GC layer. A bias vector b ∈ R1×D is added to

the result of the linear combination and, finally, a nonlinear function, g , (i.e., the activation

function of the GC layer) is applied to each feature.

ℎ𝑢
′ = 𝑔(ℎ𝑢 ⋅ 𝑊1 + 𝑚𝑢 ⋅ 𝑊2 + 𝑏).

Eq. S3. 2

Eq. S3.1-2 can be rewritten in a more compact form by using the tensorial form:

𝐻′ = 𝑔(𝐻 ⋅ 𝑊1 + 𝐴 ⋅ 𝐻 ⋅ 𝑊2 + 𝑏).

Eq. S3. 3

In particular, a common design choice to reduce the number of trainable parameters is to

consider W1 = W2 [30]. Thus, Eq. S3.3 can be further simplified as reported in Eq. S3.4:

𝐻′ = 𝑔((𝐴 + 𝐼) ⋅ 𝐻 ⋅ 𝑊1 + 𝑏)

with 𝐼 ∈ 𝑅𝑁×𝑁 being the identity matrix and H′ ∈ RN×D the matrix containing the D-

dimensional features vectors for each of the N nodes.

References

[30] William L. Hamilton. Graph Representation Learning; Springer Cham, 2020.

Hyperparameters of the models implemented in

the ablation study

Table S3.1 List of the hyperparameters that were adopted in the different tasks for the Whole

Molecule GNN.

Hyperparameter Value

Hyperparameters common to all tasks

Output Dimension of Attention Head - Layer 1 32

Output Dimension of Attention Head - Layer 3 64

Output Dimension of Attention Head - Layer 5 128

Output Size of Global Attention Pooling Layer 512

Optimizer Adam

Batch Size 16

Hyperparameters for regression task on Lipophilicity dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.2

𝛼 - weighting factor of WRMSE 0.55

Epochs 500

Learning Rate 0.001

MLP architecture 1 layer with 16 units

Hyperparameters for regression task on AcqSol dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.3

𝛼 - weighting factor of WRMSE 0.55

Epochs 750

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

Hyperparameters for all classification tasks on CYP datasets

Epochs 500

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

Table S3.2 List of the hyperparameters that were adopted in the different tasks for the

Convolutional GNN.

Hyperparameter Value

Hyperparameters common to all tasks

Output Dimension of Attention Head - Layer 1 32

Output Dimension of Attention Head - Layer 3 64

Output Dimension of Graph Convolutional Layer - Layer 6 512

Output Size of Global Attention Pooling Layer 512

Optimizer Adam

Batch Size 16

Hyperparameters for regression task on Lipophilicity dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.2

𝛼 - weighting factor of WRMSE 0.55

Epochs 500

Learning Rate 0.001

MLP architecture 1 layer with 16 units

Hyperparameters for regression task on AcqSol dataset

Type of Kernel Density Estimator Gaussian

Bandwidth of the KDE 0.3

𝛼 - weighting factor of WRMSE 0.55

Epochs 750

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

Hyperparameters for all classification tasks on CYP datasets

Epochs 500

Learning Rate 0.0001

MLP architecture 4 layers with 128,64,32
and 16 units respectively

