
Supplementary Material S1 

Evaluation of the proposed GNN architecture 

following the standard of TDC platform 

The results obtained with the architecture here presented are reported in Table S1.1-S1.6 

and compared with the TDC leaderboard in terms of ranking and gap from leader/previous 

model (Table S1.7). A detailed description of the evaluation procedure proposed by the 

platform is reported in [68]. 

 

This study introduces a novel architecture that employs a bottom-up approach for estimating 

ADMET properties, focusing on a broader range of tasks rather than a single task. Our 

model demonstrates competitive performance, comparable to top-ranking approaches. While 

itl may appear to have relatively lower rankings in certain tasks, it is worth noting that the 

differences with the top-performing algorithms [69] are minimal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S1.1: Results on the Lipophilicity task 

Lipophilicity RMSE MAE R2 

Split #1 0.644 0.475 0.705 

Split #2 0.621 0.464 0.726 

Split #3 0.594 0.44 0.749 

Split #4 0.577 0.432 0.764 

Split #5 0.615 0.47 0.731 

Median 0.615 0.464 0.731 

Mean 0.6102 0.4562 0.735 

SD 0.025724 0.019058 0.02255 

 

 

Table S1.2: Results on the AqSolDB task 

AqSolDB RMSE MAE R2 

Split #1 1.398 0.879 0.63 

Split #2 1.329 0.89 0.664 

Split #3 1.598 0.866 0.516 

Split #4 1.204 0.86 0.725 

Split #5 1.293 0.87 0.683 

Median 1.329 0.87 0.664 

Mean 1.3644 0.873 0.6436 



SD 0.148136 0.011747 0.079154 

 

Table S1.3: Results on the CYP-2C9 task 

CYP-2C9 AUPRC AUROC 

Split #1 0.761 0.881 

Split #2 0.753 0.877 

Split #3 0.746 0.882 

Split #4 0.728 0.852 

Split #5 0.762 0.883 

Median 0.753 0.881 

Mean 0.75 0.875 

SD 0.01391 0.013058 

 

 

Table S1.4: Results on the CYP-2C19 task 

CYP-2C19 AUPRC AUROC 

Split #1 0.744 0.866 

Split #2 0.767 0.89 

Split #3 0.747 0.879 

Split #4 0.736 0.868 

Split #5 0.751 0.878 

Median 0.747 0.878 



Mean 0.749 0.8762 

SD 0.011467 0.009654 

 

 

Table S1.5: Results on the CYP-2D6 task 

CYP-2D6 AUPRC AUROC 

Split #1 0.653 0.859 

Split #2 0.652 0.869 

Split #3 0.622 0.861 

Split #4 0.656 0.87 

Split #5 0.606 0.831 

Median 0.652 0.861 

Mean 0.6378 0.858 

SD 0.022499 0.015843 

 

 

Table S1.6: Results on the CYP-3A4 task 

CYP-3A4 AUPRC AUROC 

Split #1 0.84 0.868 

Split #2 0.847 0.876 

Split #3 0.845 0.879 

Split #4 0.854 0.884 

Split #5 0.847 0.879 



Median 0.847 0.879 

Mean 0.8466 0.8772 

SD 0.00503 0.005891 

Table S1.7: Comparison of the proposed approach with TDC benchmark models. 

Dataset TDC Ranking Gap from leader/previous 

Lipophilicity 1 -0.010 [MAE]

AqSolDB 6 +0.111 [MAE]

CYP2C9 6 -0.089 [AUPRC]

CYP2C19 1 - [AUPRC]

CYP2D6 7 -0.1012 [AUPRC]

CYP3A4 8 -0.0574 [AUPRC]
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Implementative details of the proposed GNN 

Data Preprocessing 

In the considered datasets, each molecule is represented through its relative SMILES, that 

is a string data.  Python package rdkit [27] was used to extract the atomic features from 

SMILES. Then, the adjacency matrices of both the whole molecule and its sub-structures 

were obtained converting SMILES to graph with rdkit and networkx [70] Python packages. 

https://tdcommons.ai/benchmark/overview
https://tdcommons.ai/benchmark/admet_group/overview/


GNN hyperparameters 

All GNN layers were implemented in Python using Tensorflow 2.4 library. Scikit-learn Python 

package supported the implementation of the 5-folds Cross Validation pipeline and the 

kernel density estimation of regression output. Table S2.1 contains the values of the 

hyperparameters for the GNN in each task. 

Table S2.1 List of the hyperparameters that were adopted in the different tasks. 

Hyperparameter Value 

Hyperparameters common to all tasks 

Output Dimension of Attention Head - Layer 1 32 

Output Dimension of Attention Head - Layer 3 64 

Output Dimension of Attention Head - Layer 6 128 

Output Size of Global Attention Pooling Layer 512 

Optimizer Adam 

Batch Size 16 

Hyperparameters for regression task on Lipophilicity dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.2 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 500 

Learning Rate 0.001 

MLP architecture 1 layer with 16 units 

Hyperparameters for regression task on AcqSol dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.3 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 750 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 



Hyperparameters for all classification tasks on CYP datasets 

Epochs 500 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 
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Supplementary Material S3 

Graph Convolutional Layer 

Graph Convolutional Layer 

Graph convolutional (GC) layer represents the most simple and common neural network 

substructure processing  graph data [30]. The inputs of GC layers are graph adjacency 

matrix, A ∈ RN×N, and nodes features matrix, H ∈ RN×M, with N representing the number of 



graph nodes and M the number of features for each node. For the sake of simplicity, let us 

assume that the elements on the diagonal of A are equal to 0 (i.e., each node is not 

considered linked to itself in the graph).  Therefore, each node u is characterized by a set of 

features hu ∈ R1×M and by a set of neighbors, Vu, with v ≠  u ∀ v ∈ Vu  . The GC layer

projects each hu to a D-dimensional latent space by merging the information (i.e., features) 

on its neighbors v ∈ Vu. To this end, for each u, the steps of aggregation and updates are 

performed. In particular, the aggregation step consists in merging the features of all  v ∈

Vu. In the GC layer, the aggregation operation with respect to the node u is the sum of the 

features vectors of v ∈ Vu (Eq. S3.1). 

𝑚𝑢 = ∑ ℎ𝑣

𝑣∈𝑉𝑢

 

Eq. S3. 1 

In the update step (Eq. S3.2) a new features vector, h′u ∈ R1×D, is obtained for each u. In

particular, the new D-dimensional representation of u is based on a linear combination 

between the old representation of the node (hu ) and the information of its neighbors (mu). 

These two terms are weighted by the coefficients matrices W1 ∈ RM×D and W2 ∈ RM×D

which represent the learnable parameters of a GC layer. A bias vector b ∈ R1×D is added to 

the result of the linear combination and, finally, a nonlinear function, g , (i.e., the activation 

function of the GC layer) is applied to each feature. 

ℎ𝑢
′ = 𝑔(ℎ𝑢 ⋅ 𝑊1 + 𝑚𝑢 ⋅ 𝑊2 + 𝑏). 

Eq. S3. 2 

Eq. S3.1-2 can be rewritten in a more compact form by using the tensorial form: 

𝐻′ = 𝑔(𝐻 ⋅ 𝑊1 + 𝐴 ⋅ 𝐻 ⋅ 𝑊2 + 𝑏).

Eq. S3. 3 

In particular, a common design choice to reduce the number of trainable parameters is to 

consider W1 = W2 [30]. Thus, Eq. S3.3 can be further simplified as reported in Eq. S3.4: 

𝐻′ = 𝑔((𝐴 + 𝐼) ⋅ 𝐻 ⋅ 𝑊1 + 𝑏)

with 𝐼 ∈ 𝑅𝑁×𝑁  being the identity matrix and H′ ∈ RN×D the matrix containing the D-

dimensional features vectors for each of the N nodes. 
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Hyperparameters of the models implemented in 

the ablation study 

Table S3.1 List of the hyperparameters that were adopted in the different tasks for the Whole 

Molecule GNN. 

Hyperparameter Value 

Hyperparameters common to all tasks 

Output Dimension of Attention Head - Layer 1 32 

Output Dimension of Attention Head - Layer 3 64 

Output Dimension of Attention Head - Layer 5 128 

Output Size of Global Attention Pooling Layer 512 

Optimizer Adam 

Batch Size 16 

Hyperparameters for regression task on Lipophilicity dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.2 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 500 

Learning Rate 0.001 

MLP architecture 1 layer with 16 units 

Hyperparameters for regression task on AcqSol dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.3 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 750 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 

Hyperparameters for all classification tasks on CYP datasets 



Epochs 500 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 

 

Table S3.2 List of the hyperparameters that were adopted in the different tasks for the 

Convolutional GNN. 

Hyperparameter Value 

Hyperparameters common to all tasks 

Output Dimension of Attention Head - Layer 1 32 

Output Dimension of Attention Head - Layer 3 64 

Output Dimension of Graph Convolutional Layer - Layer 6 512 

Output Size of Global Attention Pooling Layer 512 

Optimizer Adam 

Batch Size 16 

Hyperparameters for regression task on Lipophilicity dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.2 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 500 

Learning Rate 0.001 

MLP architecture 1 layer with 16 units 

Hyperparameters for regression task on AcqSol dataset 

Type of Kernel Density Estimator Gaussian 

Bandwidth of the KDE 0.3 

𝛼 - weighting factor of WRMSE 0.55 

Epochs 750 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 



Hyperparameters for all classification tasks on CYP datasets 

Epochs 500 

Learning Rate 0.0001 

MLP architecture 4 layers with 128,64,32 
and 16 units respectively 

 


