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Abstract: Kidney diseases are important diseases that affect human health worldwide. According to
the 2020 World Health Organization (WHO) report, kidney diseases have become the top 10 causes
of death. Strengthening the prevention, primary diagnosis, and action of kidney-related diseases is of
great significance in maintaining human health and improving the quality of life. It is increasingly
challenging to address clinical needs with the present technologies for diagnosing and treating renal
illness. Fortunately, metal-organic frameworks (MOFs) have shown great promise in the diagnosis
and treatment of kidney diseases. This review summarizes the research progress of MOFs in the
diagnosis and treatment of renal disease in recent years. Firstly, we introduce the basic structure and
properties of MOFs. Secondly, we focus on the utilization of MOFs in the diagnosis and treatment
of kidney diseases. In the diagnosis of kidney disease, MOFs are usually designed as biosensors to
detect biomarkers related to kidney disease. In the treatment of kidney disease, MOFs can not only be
used as an effective adsorbent for uremic toxins during hemodialysis but also as a precise treatment
of intelligent drug delivery carriers. They can also be combined with nano-chelation technology
to solve the problem of the imbalance of trace elements in kidney disease. Finally, we describe the
current challenges and prospects of MOFs in the diagnosis and treatment of kidney diseases.

Keywords: kidney diseases; MOF; diagnosis

1. Introduction

The kidney is a vital organ in the human body that is essential for eliminating metabo-
lites and preserving the stability of the internal environment. Owing to population aging
and increasing the number of patients with diabetes and hypertension, the incidence of
kidney diseases is rapidly increasing. Globally, the quantity of kidney disease patients
is estimated to be ~600 million. The quantity of patients globally is growing at a rate of
6–7% per year [1]. An extremely high incidence of renal disorders places a heavy burden
on global medical resources and poses a serious challenge to the prevention and control of
kidney diseases worldwide. Therefore, kidney disease has become a major disease affecting
the health of all human beings and a global public health problem [2].

Kidney diseases are diverse in type and cause. Acute kidney injury (AKI) is a serious
disease in which metabolites accumulate in the body due to dysregulation of the glomerular
filtration rate. It encompasses an unpredicted reduction in the glomerular filtration rate
(GFR), creatinine evolution, decreased urine production, electrolyte turbulence, and ure-
mia [3,4]. In real life, some kidney function recovery, a steady drop in glomerular filtration
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rate, and damage to the kidney tissue may lead to the start of chronic kidney disease
(CKD). Diabetic kidney disease (DN) is a form of CKD [4]. Either CKD or AKI can further
develop into end-stage renal disease (ESRD) or renal failure [5]. Overall, the etiology and
types of kidney disease are extremely complex, but the final results are consistent with
the disease status characterized by renal fibrosis and corresponding dysfunction [6]. Once
the renal tissue is destroyed, it is a challenging task to restore renal function to the state of
pre-disease [7]. When renal insufficiency occurs, the metabolic function of the kidneys is
impaired. They cannot fulfill their blood purification function, and the uremic retention
solutes are secreted by the kidneys [8]. High concentrations of uremic retention solutes
are known as uremic toxins. Uremic toxins may be classified into three main courses
based on their molecular weight and plasma protein binding characteristics [9,10]. The
first is water-soluble small molecule compounds (Mw < 500 Da), including urea, creatinine,
etc. The second is water-insoluble medium molecule compounds (Mw > 500 Da), such as
β2-microglobulin, peptides, etc. The third category is protein-bound uremic toxins (PBUTs),
which include hippuric acid (HA), indoxyl sulfate (IS), and p-cresol sulfate (pCS).

Currently, human therapeutic options for kidney diseases are nevertheless restricted.
Dialysis and kidney transplantation are still the available therapeutic choices for most kid-
ney disease patients [11,12]. Therefore, human beings need innovative approaches, drugs,
and policies to diagnose and handle renal illnesses precisely, conveniently, and effectively.
Nanotechnology, as a powerful driving force for biomedical progress, has revealed an
excessive capacity for applications in the areas of disease bioengineering, early detection,
therapy, and prevention [13–15]. The growing clinical applications of nanotechnology offer
new solutions for the treatment of renal diseases [16,17]. The MOFs are a representative
new version of porous and crystalline nanostructures, which are constructed with organic
ligand-derived nodes of cluster or strong metal ion coordination [18]. The MOFs have a
highly distinct surface area, tunable pore dimension and morphology, and unsaturated
metal locations for coordination [19,20]. Consequently, MOFs are used in many different
contexts, such as catalysis [21,22], chemical sensors [23], drug delivery [18], adsorbents [24],
etc. Numerous research scientists have studied the utilization of MOFs in the diagnosis
and treatment of kidney diseases.

In the diagnosis of kidney diseases, MOFs are commonly used as sensors to detect
biomarkers in human biological samples, and diseases are diagnosed based on the levels
of these biomarkers. The porous nature of MOFs is advantageous for the enrichment of
biomarkers by sensors, thereby improving the detection efficiency of sensors. In terms
of treatment for kidney diseases, MOFs not only serve as adsorbents for uremic toxins in
blood dialysis but also act as delivery carriers for therapeutic drugs. They can load a large
amount of drugs and target them to the kidneys. Additionally, MOFs can also be used to
supplement essential trace elements in the body to address certain kidney diseases caused
by deficiencies in trace elements. In conclusion, MOFs demonstrate great potential in both
the diagnosis and treatment of kidney diseases.

Therefore, the present review summarizes the research progress of MOFs in the diag-
nosis and treatment of renal diseases. We also discussed the existing problems, challenges,
and future development directions for the diagnosis and action of kidney disease. The
present review aims to provide a reference for further research and clinical application
of MOFs in the field of kidney disease. Through this review, we hope to emphasize the
potential application value of MOFs as an innovative material in the field of kidney dis-
ease and provide theoretical support and enlightenment for their future research and
clinical transformation.

2. Application of MOFs in the Kidney Diseases Diagnosis

The main approach to diagnosing kidney diseases based on MOFs is to utilize the
porous adsorption properties of MOFs to enrich biomarkers associated with kidney diseases.
Biomarkers are usually abnormal in the early stages of the disease, which helps with early
detection and improves the success rate of treatment. Different biomarkers can correspond
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to different types of diseases or different subtypes of the same disease, thus helping doctors
develop more precise treatment plans. In addition, biomarkers can also predict disease
progression, dynamically monitor changes in disease, and track treatment effects in real-
time. In conclusion, the detection of biomarkers is crucial for disease management. MOFs
are usually designed as biosensors for detecting various biomarkers related to kidney
diseases in human biological samples (Figure 1).
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2.1. Biomarkers in Urine

Urine plays an important role in the physiological and pathological circumstances
of the kidney. Urinalysis is a very attractive in vitro test with the advantages of being
completely noninvasive, easy to sample, and low cost, making it a perfect body fluid for
nursing kidney disease [25,26]. Urine is a waste product that can vary over time without
significantly breaking down proteins. It is a valuable tool for the sensitive and early
identification of kidney disease indicators [27]. Recently, urinary metabolite outlining was
used to disclose urinary metabolic evidence for sensing diseases [28,29].

Creatinine level is a reliable biomarker in urine for assessing renal function [30].
Surface Enhanced Raman Scattering (SERS) plays a crucial role in the field of biochemical
analysis due to its unique ability to identify molecular fingerprints and is a promising
technique for measuring urinary creatinine levels [31,32]. To improve the sensitivity of
SERS detection, researchers explored the preparation of composite SERS substrates with
strong affinity for target molecules. A MOF-SERS platform has been reported for trace
detection, which can selectively capture target molecules [33,34]. Jiang et al. prepared
Au@MIL-101(Fe) composites through the in-situ growing of Au nanomaterials using MIL-
101 (Fe) for monitoring creatinine (Figure 2) [35]. Using electrostatic forces, creatinine
molecules can be enriched into the porous structure of MIL-101(Fe) and in close proximity
to gold nanoparticles, which significantly improves the Raman scattering signal. The
limit of detection (LOD) of the composite for creatinine in human urine is measured to
be ~0.1 µmol·L−1. Therefore, Au@MIL-101(Fe) demonstrates the combined advantages
of high sensitivity, selectivity, stability, and strong immunity to interference in the field of
biomarker detection.
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In addition, protein in urine is also a biomarker closely related to kidney diseases [36,37].
Post-translational modifications (PTMs) of proteins, including phosphorylation, glycosyla-
tion, acetylation, and ubiquitination, have garnered a lot of attention in recent years [38–40].
However, the low concentration and extremely complex composition of glycoproteins in
urine samples make them problematic to analyze directly. It is worth drawing attention
to the fact that a series of hydrophilic hybrid materials based on magnetic MOF groups
have been well-developed in recent years. For example, Lu and colleagues developed a
maltose-modified magnetic MOF for efficient enrichment of N-chain glycopeptides [41].
Liu et al. prepared mMOF@Au@GSH by attaching glutathione on Au-immobilized MOF to
identify glycopeptides in human serum [42]. However, the intrinsic hydrophilicity of MOFs
with magnetic properties alone occasionally fails to encounter the necessities of protein
examination, particularly when dealing with complex examples.

Therefore, Hu et al. prepared glucose-6-phosphate (G6P)-based magnetic UiO-66-NH2
complexes (labeled Mag Zr-MOF@G6P) using a simple one-step modification strategy [43].
Through hydrophilic contact separation techniques, Mag Zr-MOF@G6P, a hydrophilic car-
bohydrate, can be used to capture and differentiate glycopeptides. The Mag ZrMOF@G6P
composite offers an ultra-low detection limit (down to 0.1 fmol/µL), good selectivity (mass
ratio of HRP enzymatic product to BSA enzymatic product up to 1:200), high binding
ability, and countless capacity for reuse for glycopeptide improvement. This is due to
the improved hydrophilicity, suitable porous structure, great precise surface area, high
stability, and fast magnetic retort of the Fe3O4 core. This study revealed that 13 primitive
glycoproteins derived from urinary glycopeptides of patients were significantly involved in
a variety of cancer-related events, such as the binding of collagen, immunoglobulin recep-
tors, antigens, and complement activation procedures. This Mag Zr-MOF@G6P composite
has been successfully applied to the comprehensive proteomic analysis of glycopeptide
sequences, sites of glycosylation, and original glycoproteins in the urine of fit humans and
patients with renal cancer.

In addition, Xiong et al. fabricated MOF@COF (COF: covalent organic framework)
hybrid material, Fe3O4@NH2-MIL-Ti@TTA-MA, which achieves a ‘super-merger’ by cova-
lently integrating two encouraging porous crystalline materials onto a magnetic core [44].
The Ti-O group in MOF (NH2-MIL-Ti) and the great hydrophilicity of COF (TTA-MA) give
the synthesized permeable hybrids excellent hydrophilicity. Therefore, Fe3O4@NH2-MIL-
Ti@TTA-MA may be used as a hydrophilic interaction chromatography (HILIC) adsorbent
for the enrichment of glycoproteins. The metal oxide affinity chromatography (MOAC)
adsorbent is used to enrich phosphoproteins by utilizing the adsorbing characteristics of
Ti-O with phosphate groups. More significantly, Fe3O4@NH2-MIL-Ti@TTA-MA allows the
efficient concurrent improvement of glyco- and phospho-proteins. Four phases make up
the enrichment protocol, including loading, washing, elution, and mass spectrometry (MS)
analysis (Figure 2). This porous hybridized material retains the structural characteristics of
both MOF and COF while exhibiting enhanced performance under the synergistic effect of
the two. This is superior to the effect of each when used alone. The excellent ability of the
porous hybridized material to enrich both glyco- and phospho-proteins which provides the
possibility for further enhancement of glyco- and phospho-proteins in practical complex
biological samples. The experimental data show that Fe3O4@NH2-MIL-Ti@TTA-MA has
a detection limit as low as 0.2 fmol for glycoproteins and 0.04 fmol for phosphoproteins,
both of which exhibit very high sensitivity. It is also highly selective, distinguishing HRP
or β-casein from BSA (bovine serum albumin) at a ratio of 1:1000. In addition, Fe3O4@NH2-
MIL-Ti@TTA-MA can be reused at least five times for good durability. In conclusion, the
synthesized magnetic MOF@COF can distinguish patients with renal disease syndrome
according to the number of enriched glyco- and phospho-proteins and has an extremely
low detection limit, good selectivity, and good reusability.
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Renal cancer is a common type of malignant tumor in adults, with a relatively high
proportion of renal cell carcinoma (RCC) [45]. Metabolic alterations are strongly related to
a diversity of diseases, including RCC [46,47]. Urine is considered to be the most capable
liquid to deliver molecular variants for RCC detection [48]. Hu et al. constructed metal
oxides (Ti-MOF-MO) with porous structures derived from MOFs to contribute to the laser
desorption ionization mass spectrometric (LDI-MS) method with high sensitivity, high
throughput, and rapidity for urinary metabolite analysis (Figure 3) [49]. This Ti-MOF-MO
cleverly inherited the surface structure and sponginess of MOFs, combined with the laser
adsorption ability of metal oxides and solved the cumbersome pre-processing problem
required by LDI-MS for analyzing urinary metabolites (such as Arg, His, Glu, etc.). This
technique effectively separated papillary RCC (pRCC), chromophobe RCC (chRCC), and
clear cell RCC from healthy controls (HCs). It had a strong recognition ability in stages I
and II of RCC, which contributed to the reduction of mortality. Overall, this is an analytical
method with the characteristics of fast analysis, minimal sample consumption (only 5 µL),
easy operation, and non-invasiveness, which not only successfully distinguished kidney
cancer but also achieved renal cancer typing, staging, and tumor size (threshold 3 cm)
identification. It is expected to provide an effective large-scale detection tool for cancers,
including RCCs.
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In summary, by optimizing and innovating the design of MOF materials, researchers
have greatly improved the accuracy and depth of urinalysis and provided a powerful tool
for the early diagnosis and monitoring of kidney diseases and other related diseases.

2.2. Biomarkers of Respiratory Gases

An efficient and least invasive technique for diagnosing disease is emerging by an-
alyzing volatile organic compounds (VOCs) and gaseous inorganic molecules formed
endogenously in the human respiratory system [50]. Respiratory samples possess the
advantages of non-invasive, continuous availability, allowing simple and rapid sampling
and real-time monitoring [51]. Disease detection and monitoring through respiratory gases
has unique and untapped clinical potential. Ammonia is a recognized biomarker in the
known concentration range of healthy people and CKD patients [52,53]. Elevated quantities
of nitrogenous metabolic waste are produced in the body by the patients of CKD imbal-
anced equilibrium concentrations of urea and ammonia. Salivary urease breaks down urea
into ammonia, and salivary ammonia vaporizes into a gaseous medium that is expelled
through breathing [54–56]. It showed that respiratory ammonia altitudes are associated
with levels of blood urea nitrogen [57]. There is a high relationship between respiratory
ammonia levels and levels of blood urea nitrogen in hemodialysis patients before and after
dialysis [56,58,59]. The determination of exhaled ammonia levels represents a potential
noninvasive method for evaluating body ammonia levels [60]. Therefore, the detection
and monitoring of respiratory gases hold promise as a research approach for diagnosing
kidney diseases.

Typically, biomarker gases are present in exhaled gas only in trace amounts, and
their adsorption in MOFs follows Henry’s law. Day et al. designed a MOFs-based gas
sensor array (electronic nose) based on an improved Henry’s coefficient (CLAC) calcula-
tion method for the detection of ammonia biomarkers in kidney diseases [61]. This is a
method with low computational requirements while maintaining sufficient accuracy. The
researchers used this device to successfully quantify ammonia levels in fit and unfit breath
testers, demonstrating the potential of such devices in the detection of kidney disease. In
addition, Banga et al. established a gas sensor platform using an electrochemical strat-
egy (electrochemical nose system, ZENose) for real-time detection of ammonia levels in
respiratory gases to evaluate renal function. The system encapsulates the Faraday probe
(ferrocene, Fc, as redox medium) into ZIF-8 with excellent physical adsorption character-
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istics (Figure 4) [62]. The real-time electrochemical sensor possessed high sensitivity and
specificity for trace ammonia (up to 400 ppb). The anode current of the sensor increased
proportionally as the ammonia concentration increased from 400 ppb to 20 ppm, indicating
good responsiveness of the sensor. For a respiratory omics platform, this is an electrochemi-
cal microelectronic platform for the first time for quick, dynamic, and non-invasive sensing
of gaseous ammonia.
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Both Day’s team and Banga’s team’s research focus on the use of MOFs to develop
novel sensors that can noninvasively detect ammonia, a biomarker in exhaled gas [61,62].
These studies not only advance the early noninvasive diagnosis of kidney diseases but
also provide new ways to reduce mortality. Although the gas detection technology based
on MOFs still needs to be further improved, such as expanding the types of gases to be
detected, correcting for the effect of humidity, and optimizing the effect of force fields, it
has significantly improved the efficiency of detection and provided an innovative direction
for future non-invasive disease monitoring.

2.3. Biomarkers in Other Samples

The serum creatinine level is an important index to measure the health status of the
human kidney. Fluorescence sensing technology is a powerful technology for the detection
of creatinine. Owing to its good fluorescence characteristics and abundance of unsaturated
coordination metal active sites (Zr), UiO-66 is regarded as one of the most attractive
possibilities for fluorescent materials [63,64]. As a fluorescent probe, UiO-66 needs to
have its specificity and sensitivity improved. Post-synthesis modification (PSM) allows
the introduction of suitable recognition sites without altering the MOF topology [65,66].
Qu et al. successfully developed a fluorescence-enhanced MOF sensor for the detection
of creatinine [67]. This sensor was synthesized by post-synthetic modification (PSM)
of UiO-66-NH2 using 8-Hydroxy-2-quinolinecarboxaldehyde (HQCA) and Al3+, which
achieved a strong Lewis acid-base interaction between Al3+ and creatinine. In addition, the
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developed sensing system is based on a turn-on sensing mechanism to detect creatinine.
Specifically, the UiO-HQCA fluorescence quenched by Al3+ can be restored by creatinine
(Figure 5A). The sensor has high sensitivity (detection limit of 4.7 nM), a wide linear range
(0.05~200 µM), a fast response time (1 min), and high selectivity for creatinine (Figure 5B,C).
Its utility has been demonstrated by measuring creatinine in human serum samples, and it
has broad application prospects.
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Figure 5. (A) Fluorescence induction mechanism diagram of UiO-HQCA-Al for creatinine. (B) Fluo-
rescent emission spectra of (a) UiO-HQCA and UiO-HQCA-Al in the (b) absence and (c) presence of
150 µM Cre (incubation time of 1 min). Inset: photographs taken under 365 nm UV lamp. (C) Fluores-
cence spectrum of UiO-HQCA-Al after adding different concentrations of creatinine. Reproduced
from ref. [67] with permission from Elsevier, copyright 2020.

However, the determination of serum creatinine level not only requires a skilled tech-
nician to obtain a blood sample but also takes a long time to obtain the test result [68,69].
Fortunately, it has been reported that creatinine content in tears is positively correlated with
blood creatinine levels, and thus, tears can be a good biomarker for assessing kidney func-
tion [70]. In recent years, wearable sensors have been greatly developed, and a fiber-based
eyeglass sensing device for selective detection of tear creatinine has been invented [71].
The device combines copper-containing carboxylic acid (BDC) MOF with graphene ox-
ide (GO)-Cu (II) and integrates it on cuprous oxide nanoparticles (Cu2O NPs), and the
ternary complex of Cu-BDC MOF/GO-Cu(II)/Cu2O NPs was used for creatinine detection
(Figure 6A,B). This design skillfully facilitated the diffusion of creatinine molecules from
tear fluid into its porous structure and their permanent capture for noninvasive detection
of serum creatinine. The composite sensor demonstrated excellent specificity, maintaining
recognition efficiencies of up to 95.1% over the creatinine concentration range of 1.6 µM
to 2400 µM, even in the presence of interfering agents such as dopamine, urea, and uric
acid (Figure 6C). Through machine learning algorithms, the device was able to effectively
differentiate between normal and abnormal (low, medium, and high) serum creatinine
status based on tear creatinine levels with an accuracy of 83.3%. In practice, the eyewear
sensor showed a low mean deviation between tear creatinine and serum creatinine values
measured in clinical laboratories (Figure 6D), demonstrating its effectiveness in differentiat-
ing between patients with normal renal function and those with chronic kidney disease
(creatinine concentration > 1000 µM). This miniaturized and portable ophthalmic detector
greatly enhances the convenience of testing creatinine and follows the trend of telemedicine
services, making personal health monitoring more autonomous and convenient.
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The detection of biomarkers is a very effective way to monitor kidney health. The
advent of MOFs has greatly advanced this approach. Researchers have developed a variety
of MOF-based biosensors to detect biomarkers in biological samples, thereby improving
the ability to diagnose kidney diseases early. Table 1 shows the advantages and limitations
of various MOF-based agents for the diagnosis of kidney diseases. Although these agents
are now only at the laboratory stage, there has not been large-scale clinical validation, but
their potential application prospects are very good. It is believed that in the future, these
agents will play an important role in the clinical diagnosis of kidney diseases.

Table 1. Advantages and limitations of various agents for MOFs-based diagnosis of kidney disease.

Biological
Sample

MOF-Based
Agents

Biomarkers
Detected Advantages Limitations Ref.

Urine

Au@MIL-101(Fe) Creatinine
Non-invasive.
Low detection limit.
Wide linear response range.

Lack of long-term stability studies.
Lack of reusability studies.
Lack of adequate clinical validation.

[35]

Mag Zr-MOF@G6P Glyco-
proteins

Non-invasive.
Low detection limit.
Good selectivity.

Complex recovery process.
Limited enrichment capacity. [43]

Fe3O4@NH2-MIL-
Ti@TTA-MA

Glyco- and
phospho-
proteins

Non-invasive.
Low detection limit.
Good selectivity.
Good reusability.
Synergistic.

Inadequate sample representation.
Lack of long-term stability studies.
Lacks adequate clinical validation.

[44]

Ti-MOF-MO
Specific
metabolites
(Arg, His, Glu)

Non-invasive.
Low detection limit.
Low sample consumption.
High diagnostic accuracy.

Not portable.
High cost of synthesis.
Lack of metabolite database support.
Lack of adequate clinical validation.

[49]
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Table 1. Cont.

Biological
Sample

MOF-Based
Agents

Biomarkers
Detected Advantages Limitations Ref.

Breathe
gas

ZENose
(Fc@ZIF-8) Ammonia

Non-invasive.
Low detection limit.
Wide linear response range.
Remote Point of Care (POC).

Electrode regeneration is unknown.
Lack of long-term stability studies.
Lack of adequate clinical validation.

[62]

Blood UiO-HQCA-Al Creatinine

Low detection limit.
Wide linear response range.
Fast response.
High selectivity.

Environmentally sensitive.
Lack of adequate clinical validation. [67]

Tears
Cu-BDC
MOF/GO-
Cu(II)/Cu2O NPs

Creatinine

Non-invasive.
High selectivity and
sensitivity.
Precise predictive capability.
Remote Point of Care (POC).

High cost of synthesis.
Lack of adequate clinical validation.
Deficiencies in the generalization
ability of machine learning models.

[71]

3. Application of MOFs in Kidney Disease Treatment

In the field of treatment for kidney diseases, MOFs and their derivatives have shown
unprecedented potential due to their structural characteristics, selectivity, and biocompati-
bility advantages. This chapter will explore in depth the different types of MOFs, including
Zr-based, Fe-based, and other types of MOFs, and how they act as adsorbents for uremic
toxins in the treatment of kidney diseases. It will also explore their potential applications
in drug delivery and discuss nanoscale chelation technology solutions for addressing trace
element imbalance issues.

3.1. MOFs as a Uremic Toxin Adsorbent for the Kidney Disease Treatment

The growth of various uremic toxins in blood samples caused by renal metabolic
dysfunction is likely to lead to fatal renal failure in patients. Because of their insignificant
dimensions and water solubility, urea and creatinine are the hardest poisons to eliminate. In
addition, PBUTs bind to human serum albumin (HSA) via a variety of relationships, includ-
ing hydrophobic communication, electrostatic interface, and van der Waals force [72–74].
Such strong interactions result in the difficult removal of PBUTs from the blood. Therefore,
the effective elimination of excessive uremic toxins in the blood is essential. Presently, the
most frequently employed approach to remove uremic toxins from the body is hemodialy-
sis. Diffusion, convection, and adsorption are the fundamental concepts of hemodialysis
and the separation of uremic toxins from proteins. The blood cells are achieved by means
of a semipermeable membrane and the upkeep of electrolyte and acid-base equilibrium in
the human body [75].

With the development of technology, the selectivity of dialysis membranes has im-
proved, but convection and diffusion methods still have the drawbacks of inconvenience
and cost [76]. Consequently, researchers have focused more on eliminating uremic toxins
from patients’ blood by improving the adsorption ability of dialysis membranes. In a typical
hemodialysis device, uremic toxins need to be removed through a dialysate regeneration
process to use fresh dialysate [77]. Also, desorption of uremic toxins from dialysis mem-
branes and regenerative reuse of dialysis membranes are necessary. The system of dialysate
regeneration uses nanoporous adsorbents, which are typically necessary to achieve mobility
in hemodialysis [78,79]. Novel porous nanomaterials of MOFs and their derivatives and
complexes show great potential in uremic toxin adsorption. This means that the limitations
of zeolites, composite membranes, activated carbon, and other traditional dialysis materials
for adsorption have been overcome. The utilization of MOFs as uremic toxin adsorbents
for the treatment of kidney diseases is shown in Figure 7.
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3.1.1. Zr-Based MOFs

Zr-based MOFs have relatively superior chemical and thermal stability, which can be
used in different application fields. NU-1000 (NU: Northwestern University) is a representa-
tive of Zr-based MOFs composed of Zr6 clusters and 1,3,6,8-tetrakis (p-benzoic-acid)pyrene
(H4TBAPy) [80]. The pyrene-based MOF NU-1000 had the highest toxin elimination effec-
tiveness among the numerous Zr-based MOFs [81]. At 303 K, the maximum adsorption
capacities of NU-1000 for pCS and IS are 440 mg·g−1 and 193 mg·g−1, respectively. Further-
more, the removal efficiency of NU-1000 for pCS can reach up to 94%. The superior perfor-
mance of NU-1000 in uremic toxin adsorption can be attributed to the porous morphology
and customizable dimension screening of MOFs [82–84]. However, the tightly packed
structure and poor hemocompatibility of the small-sized NU-1000 affect its rapid clearance
of PBUTs, limiting its clinical application [85–87]. Chao et al. utilized the nanoporous
structure of pollen (Pol) in conjunction with polydopamine mediation (PP) to fabricate
a NU-1000 nanoparticle (PPNU) possessing a robust adsorption capacity for PBUTs [88].
Subsequently, the PPNU was functionalized with heparin (PPNUH), leading to a significant
enhancement in the blood compatibility of NU-1000. Meanwhile, PPNUH maintained the
high adsorption capacity of NU-1000 for PBUTs (282 mg·g−1 for pCS, 329 mg·g−1 for IS,
and 188 mg·g−1 for HA). Moreover, in duplicate blood perfusion, PPNUH can quickly
adsorb 85% of free PBUTs in 10 s and remove 70% of albumin-bound PBUTs within 1 min.
PPNUH’s delicate structure demonstrates safe, fast, and efficient PBUT removal.

UiO-66 (UiO: University of Oslo) is another illustration of Zr-derived MOF materials
prepared with Zr6O4(OH)4 clusters and terephthalate linkers [89]. Among a series of
MOF materials, UiO-66 is promising because of its high thermal stability and chemical
stability [90]. On the original UiO-66, the maximum removal efficiency of 1.5 mg UiO-66
adsorbed in 0.1 mM p-cresol potassium sulfate, potassium sulfate, and hippuric acid was
2.1%, 21%, and 90%, respectively [81]. However, the morphology of UiO-66 materials has
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almost no defects, which may significantly reduce the adsorption capacity [91]. Based
on this, Dymek et al. focused on optimizing the preparation of imperfect UiO-66 to
attain an effectual uremic toxin adsorbent [90]. Through the functionalization of 1,4-
benzenedicarboxylic acid connectors with NH2 moieties to increase structural defects and
electronic properties. They acquired a series of UiO-66 with adjusted structures. The
prepared UiO-66-NH2 (75%) and UiO-66-NH3 (75%) 12.5% HCl have the largest adsorption
capacity for 3-indoleacetic acid and hippuric acid. Moreover, both UiO-66-NH3 (75%) and
UiO-66-NH2 (75%) 12.5% HCl had good renewable utilization properties, with UiO-66-NH3
(75%) retaining about 80% of 3-indoleacetic acid removal efficiency after three adsorption
cycles; and UiO-66-NH2 (75%) 12.5% HCl, with the second and third cycles. The maximum
adsorption was ~76% and ~70%, respectively. Therefore, UiO-66 is a potential candidate
for adsorption of uremic toxins [90].

UiO-66-(COOH)2 contains a huge quantity of oxygen-containing organic moieties
such as -COOH and -OH moieties. The structure is stable and is expected to adsorb cre-
atinine [92,93]. However, because of their crystal nature, MOFs appear in powder form,
thus preventing their practical application in the adsorption process [94]. To improve the
practicability of MOFs, scientists combined MOFs with a polymer matrix as an adsorbent,
showing good adsorption and reusability [95,96]. Abdelhameed and his colleagues di-
rectly grew UiO-66-(COOH)2 in cotton fabric. The synthesized UiO-66-(COOH)2@cotton
composite showed high creatinine adsorption capacity and recyclability [95]. The high-
est probable adsorption levels of the original fabric, non-in-situ composites, and in-situ
composites were 113.6, 192.3, and 212.8 mg·g−1, respectively. The study suggested that
the regeneration of the creatinine adsorption composite was effectively achieved using
the methanol ultrasonic cleaning technique. During the evaluation of the regeneration
performance, it was discovered that the initial maximum adsorption ability of the material
for creatinine was ~261.3 mg·g−1. After undergoing the first regeneration cycle, the capacity
of adsorption was decreased to 242.7 mg·g−1, which maintained about 91% of the initial
adsorption efficacy. In the third regeneration cycle, the adsorption capacity was decreased
to 218.7 mg·g−1, which still maintained about 82% of the original adsorption efficiency.
This indicates that even after three repeated regenerations, the ability of the composite
to remove creatinine decreased only slightly, by only about 16%. Also, Li et al. attached
UiO-66-(COOH)2/PAN to build a nanofiber membrane (Figure 8A) [97]. The anchoring
content was 54.99 wt%. The UAPNFM was positioned in the space between two dialysis
chambers to create crossflow during the procedure by mimicking the opposing blood and
dialysate flow directions. Owing to the composite nanofiber membrane’s porous shape and
the osmotic pressure produced by the crossflow, some creatinine molecules were adsorbed
on the UAPNFM while others migrated from the simulated blood into the dialysate flow
(Figure 8C). The UAPNFM facilitated the adsorption of creatinine by bonding hydrogen,
electrostatic approaches, and interactions of π-π. The maximal creatinine adsorption ca-
pacity of UAPNFM was 168.63 mg·g−1. The creatinine clearance was 226 mL·min−1 at a
simulated blood flow rate of 200 mL·min−1, 1.24 times greater than that of the commercially
available FX60 dialyzer (182 mL·min−1). Following four hours of simulated dialysis, 82.48%
of the UAPNFM for creatinine was cleared, while 93.09% of the protein in the bovine serum
albumin (BSA) was retained. Moreover, following four cycles, the creatinine elimination
efficiency held steady at 82.31%. In conclusion, these UAPNFM nanocomposites exhibited
good blood compatibility, effective uremic toxin removal, excellent protein retention, and
good regeneration ability.
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from Elsevier, copyright 2022.

Furthermore, Ding et al. prepared reticulated nanofibrous affinity membranes for the
adsorption of creatinine by stringing synthesized UiO-66-(COOH)2 nanostructures onto
polyacrylonitrile nanofibers using the colloidal electrostatic spinning procedure [98]. The
prepared PAN/UiO-66-(COOH)2 nanofiber membranes had an optimal UiO-66-(COOH)2
loading (60 wt%). PAN-U-60 had a worthy ability for creatinine adsorption, with a max-
imum capacity of adsorption up to 54 mg·g−1. The creatinine adsorption on PAN-U-60
nanofiber membranes could be achieved by UiO-66-(COOH)2 oxygen-present functional
moieties, such as -OH and -COOH, and hydrogen bonds formed by the interaction between
amino and carbonyl functional groups contained in creatinine (Figure 9A). On this basis,
the researchers prepared new dialysis and adsorption processes for nanofiber composite
membranes comprising a PAN-U-60 nanofiber adsorbent layer and a polyvinyl alcohol
(PVA) hydrogel separator layer by using an encapsulation reaction method (Figure 9B).
Precisely, the top cover was a PVA hydrogel thin coating, which enabled rapid dialysis
of toxins through the cortex and prevented leakage of melanin. In the meantime, the
bottom layer consisted of a PAN nanofiber matrix encapsulated with UiO-66-(COOH)2
nanostructures, which represented an adsorbent and sustenance for the dialyzed toxin,
allowing it to be trapped in the dialysate. Toxins from blood and dialysate can be removed
and adsorbed using this PVA/PAN-U TFNC composite membrane, which combines the
benefits of both adsorption and dialysis. During simulated dialysis, the PVA/PAN-U-60
TFNC membrane provides substantial toxins removal from the blood (creatinine removal of
62.8%) while maintaining ultra-high protein retention (up to 98%). In addition, the volume
of dialysate used for dialysis with PVA/PAN-U-60 TFNC membranes is merely a tenth that
of PVA/PAN TFNC membranes at analogous dialysis enactment, significantly reducing the
volume of dialysate. This is fully attributed to the creatinine adsorption by the PAN-U-60
nanofiber membrane, permitting the dialysate to be sanitized.
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Zr-based MOFs are proven to demonstrate virtuous request prospects in the adsorption
of uremic toxins. However, metal zirconium may be biologically toxic, which limits its
commercial application [99].

3.1.2. Fe-Based MOFs

Metal iron is a necessary ingredient for human health and possesses very little bi-
ological harm [100]. Water-stable MOFs that are offered commercially. Fe-based MOFs
have good biocompatibility and are of countless importance for clinical applications. MIL-
100 (Fe) (MIL = Materials of Institut Lavoisier) is a crystalline three-dimensional trimeric
acid Fe3+ consisting of metal junction Fe3+ and organic linker 1,3,5-triphenyl tricarboxylic
acid [101]. MIL-100 (Fe) as an adsorbent has the advantages of non-toxicity [102], stability
under physiological conditions [103], and unique nanochannels that only molecules with
low molecular weight can enter [104]. Moreover, the bulky specific surface area of MIL-100
(Fe) creates MIL-100 (Fe) have great prospects for creatinine adsorption [101,105].

Cuchiaro et al. produced MOF-808 (Zr) and MIL-100 (Fe) with identical BTC molecules
but distinct metal centers in the Fe node and the Zr node, respectively (Figure 10A) [106].
In MOF-808, Zr(IV) centers produced Zr6O8 clusters linked by -OH and BTC anions, while
the centers of Fe2+/3+ exhibited an octahedral shape and formed oxocentered trimers
covered by BTC anions. It is possible that distinct metal centers in comparable MOFs
led to varying adsorptive tendencies toward PBUTs, even though their connectivity was
similar. The quantity of adsorption that MIL-100 (Fe) showed in the absorption of pCS was
68.6 nmol·mg−1, significantly greater than that of MOF-808 (23.6 nmol·mg−1) (Figure 10B).
It was hypothesized that Fe2+/3+ variable valence d-orbitals would take electrons from
pCS’s sulfate more readily than Zr(IV), leading to a stronger combination. They speculated
that the greater adsorption capacity of MIL-100 (Fe) than that of MOF-808 might have
originated from the more favorable straight synchronization of pCS to empty sites of metal
in MIL-100 (Fe).

Furthermore, regarding the absorption of urea and creatinine at 1 bar and 310 K,
MIL-100 (Fe) performed better than traditional dialysis adsorbents, including activated
carbon, zeolites, and polymeric materials [107]. Horcajada et al. synthesized two types of
MILs, MIL-100 (Fe) and MIL-53 (Fe), and examined their adsorption of urea and found
that these urea uptakes in MOFs, which could be higher than 692 mg·g−1 and 635 mg·g−1,
respectively [103]. Also, MIL-100 (Fe) is a very promising adsorbent for the removal of
creatinine and the adsorption isotherm of creatinine on MIL-100 (Fe) (Figure 10C) [108].
The creatinine adsorption on MIL-100 (Fe) increased gradually with the upsurge of primary
creatinine concentration, indicating that MIL-100 (Fe) possessed respectable adsorption
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properties for high concentrations of creatinine. The adsorption capacity of MIL-100
(Fe) for creatinine was up to 190.5 mg·g−1 at physiological temperature (37 ◦C). The
adsorption of creatinine on MIL-100 (Fe) was extemporaneous and heat-absorbing, which
was mainly achieved by weak ligand interactions. The MIL-100 (Fe) adsorption capacity
was decreased in the presence of HSA, which may be due to the presence of HSA on
the MIL-100 (Fe) surface due to competitive adsorption [108]. When HSA (40 mg·mL−1)
was present, the equilibrium adsorption capacity of creatinine on MIL-100 (Fe) decreased
to 13.6 mg·g−1, although it was still more than the highest adsorption capacity of many
previously published adsorbents when HSA was not present. MIL-100 (Fe) also offers
good reusability and facile desorption in addition to its high adsorption capacity. About
1 mL of methanol can desorb 80% of the adsorbed creatinine from MIL-100 (Fe) under
sonication for 5 min (Figure 10D(a)). Repeating this regeneration step three times resulted
in the desorption of 97.6% of creatinine (Figure 10D(b)). The renewed MIL-100 (Fe) may
be repeatedly employed for creatinine adsorption without significant loss of adsorption
capacity, and the MIL-100 (Fe) skeleton did not collapse during repeated adsorption of
creatinine and regeneration of methanol. In conclusion, MIL-100 (Fe) has a great perspective
for the adsorption and removal of uremic toxins and deserves further examination.
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3.1.3. Other Types of MOFs

Bio-MOFs are composed of metal ions and biomolecular ligands (sugars, peptides,
amino acids, nucleobases, and proteins) [109]. As a sustainable framework for development,
bio-MOFs have shown many applications in the biomedical field and have attracted exten-
sive attention [110–114]. Previous studies have shown that MOF membranes containing
amino acids and zinc on uremic toxin are highly selective [115]. In order to accurately screen
the optimal MOF structure that can efficiently remove PBUTs, the researchers used the Giant
Classical Monte Carlo (GCMC) simulation and calculation method [116–118]. Yıldız et al.
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evaluated the adsorption behavior of 315 bio-MOF for urea, creatinine, water, and their
mixtures by this method [107]. The results showed that adenine-based bio-MOF, includ-
ing Bio-MOF-11 (YUVSUE) and Bio-MOF-12 (BEYSEF), and dicyandiamide-based MOF
(KEXDIB) are potential adsorbents for the removal of urea/water and creatinine/water
mixtures, respectively. In addition, bio-MOF can be used as an alternative to dialysis
membranes in dialysis devices with the potential to separate uremic toxins. Palabıyık et al.
combined GCMC and equilibrium molecular dynamics (EMD) simulations to predict the
separation performance of 60 bio-MOF membranes for urea/water and creatinine/water
mixtures [115]. The results showed that carboxylate-based MOF (OREZES) and amine-
based MOF (BEPPIX) were the most selective membrane materials for the separation of
urea/water and creatinine/water, respectively. The structures of five common bio-MOFs,
BEPNIV, BEPPIX, KEXDIB, OREZES, and YUVSUE, were identified as promising candi-
dates for urea/water and creatinine/water infinite dilution separations [115]. In addition,
Li et al. conducted a comprehensive screening of bio-MOFs with high efficiency in adsorb-
ing IS and utilized the GCMC model to calculate the adsorption capacity of the selected
MOFs for IS [119]. The results showed that aromatically coordinated MOFs with both car-
boxylic acid groups and metal clusters performed best on IS adsorption (>2100 mg/g). This
high adsorption is attributed to the combined effect of the negatively charged carboxylic
acid group, the lone pair of electron-containing pyrrolidine nitrogen atoms, and the open
metal active site.

Uremic toxins exist as a kind of salt. Cationic MOFs with exchangeable anions exhibit
excellent adsorption performance in eliminating inorganic anions [120–124]. Based on this,
Zhang et al. constructed cationic MOFs of ZJU-X6 and ZJU-X7 (Zhejiang University, Xiao’s
group) by using tetra (4-ethylphenyl) ethylene as the ligand skeleton, the pyridyl unit as
the functional group, and nickel/silver nitrate as the metal node [125]. These two cationic
MOFs have a high adsorption capacity and good adsorption kinetics. They can efficiently
capture PBUTs by anion exchange with the help of hydrogen bonding and hydrophobic
contact between the guest toxin molecules and MOF materials. The adsorption capacities
of ZJU-X6 for pCS and IS were about 197.2 mg·g−1 and 230.4 mg·g−1, respectively. The
capacity for the adsorption of ZJU-X7 for pCS and IS were 57.0 mg·g−1 and 118.6 mg·g−1,
respectively. The adsorption ability and adsorption kinetics of ZJU-X6 were faster than
most of the reported materials.

Isoreticular MOFs (IRMOFs) or IRMOF-1, also denoted as MOF-5, is a metal-organic
network composed of Zn4O clusters with different carboxylate linkers, which has a strong
ability to adsorb organic materials [126,127]. IRMOF-1 is known for its outstanding strength,
flexibility, extremely porous and ordered structure, good thermal solidity, and flexibility
of functional moieties [128]. To remove some small toxin molecules, including creatinine
and urea, which are difficult to remove during hemodialysis, Hossein et al. developed
an efficient adsorbent, amino-functionalized A(0.2)-IRMOF-1@SiO2 fixed-bed chromato-
graphic column [129], as shown in Figure 11. The adsorption capacity of the adsorbent was
seen to be 1325.73 mg·g−1 for urea and 625.00 mg·g−1 for creatinine, indicating a strong
adsorption impact on these two substances. The urea and creatinine separation coefficients
were 2.40%, 92.57%, and 80.47%, respectively, eliminated using A(0.2)-IRMOF-1@SiO2 fixed
bed column. When choosing an adsorbent with the highest adsorption capacity, one of the
most crucial factors is whether or not it has amino groups on its surface.
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ref. [129] with permission from American Chemical Society, copyright 2023.

It has been reported that the adsorption capacity of urea on dry Cu-based MOF
(Cu3(BTC)2, BTC: 1,3,5-phenyltricarboxylate) may reach 250 mg·g−1 [130]. Li et al. pre-
pared a unique nanofiber membrane hybrid with a double-layer assembly for use as a
hemodialysis membrane by merging electrospun nanofibers with self-assembled MOF
components, as shown in Figure 12 [131]. The surface of the first layer contains poly-
dopamine/polyacrylonitrile (PDA/PAN) composite nanofibers specially prepared by Cu-
BTC self-assembly modification. The modification of Cu-BTC increases the specific surface
area of the nanofiber membrane by nearly two times. The second layer is a chitosan/sericin
composite nanofiber biopolymer. The double-layer composite nanofiber membrane ef-
fectively adsorbs urea and creatinine. In simulated dialysis experiments, the maximum
adsorption was up to 152.44 mg·g−1 for urea and 100.50 mg·g−1 for creatinine. It is encour-
aging to note that this dual-layered composite nanofiber membrane not only demonstrated
high efficiency in toxin removal but was also equally good at keeping blood components
stable. It has good protein retention (83.9% for BSA) and excellent blood compatibility. This
means that important proteins in the blood are retained while uremic toxins (e.g., creatinine
and urea) are effectively removed. In conclusion, this hemodialysis membrane material has
a promising application in artificial kidneys.
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Numerous studies have demonstrated the effectiveness of MOFs as uremic toxin
adsorbents in dialysis treatment. Table 2 summarizes various MOFs as uremic toxin
adsorbents for dialysis treatment of renal diseases, including MOF-based agents, types of
adsorbed uremic toxins, adsorption capacity, and their clearance efficiency.

Table 2. Application of MOFs as uremic toxin adsorbent in the treatment of kidney disease.

MOFs
Classification

MOFs and
Their Composites

Uremic
Toxins

Adsorption Capacity
(mg·g−1 MOF)

Removal
Efficiency (%) Ref.

Zr-based
MOFs

NU-1000
pCS 294.9 94 [81]
IS Not available 98 [81]

UiO-66 HA Not available 2.1 [81]

PPNUH
pCS 282.0 85 [88]
IS 329.0 85 [88]

UiO-66-NH3 (75%)
IS Not available 80 [90]
HA Not available 83 [90]
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Table 2. Cont.

MOFs
Classification

MOFs and
Their Composites

Uremic
Toxins

Adsorption Capacity
(mg·g−1 MOF)

Removal
Efficiency (%) Ref.

Zr-based
MOFs

UiO-66-NH2 (75%)
12.5% HCl

IS Not available 80 [90]
HA Not available 77 [90]

UiO-66-(COOH)2@
cotton fabric Creatinine 212.8 98 [95]

UiO-66-(COOH)2@PAN
(UAPNFM) Creatinine 168.6 82 [97]

UiO-66-(COOH)2@
PVA/PAN TFNC Creatinine 54.0 Not available [98]

Fe-based
MOFs

MIL-53(Fe) Urea 635.0 96 [103]

MIL-100(Fe)
Urea 692.0 97 [103]
pCS 12.9 65 [106]
Creatinine 190.5 89 [108]

Bio-MOFs

Bio-MOF-11 (YUVSUE) Urea 38.7 Not available [107]
Bio-MOF-12 (BEYSEF) Urea 63.6 Not available [107]

Methionine-derived MOF
(OREZES)

IS 2100.0 98 [115]
Urea 347.9 Not available [115]

Cationic
MOFs

ZJU-X6
pCS 197.2 98 [125]
IS 230.4 94 [125]

ZJU-X7
pCS 57.0 78 [125]
IS 118.6 97 [125]

Isoreticular MOFs
(IRMOFs)

A(0.2)-IRMOF-1@SiO2
Urea 1325.7 92 [129]
Creatinine 625.0 80 [129]

Cu-based MOFs
Cu3(BTC)2 Urea 250.0 Not available [130]

Cu-BTC@PDA/PAN nanofiber
Urea 152.4 92 [131]
Creatinine 100.50 82 [131]

3.2. MOFs as a Drug Carrier for the Treatment of Kidney Disease

Compared with other porous-structured nanomaterials, MOFs possess the following
many merits [110]: (a) High specific surface area and porosity, which can be used for high-
loading therapeutic drugs. (b) It is easy to modify the physical and chemical characteristics
of MOFs by the existence of organic ligands or inorganic clusters. (c) Through the open
window and pore of MOFs, the diffusion matrix can interact with the binding molecules.
(d) Finally, a clear structure is conducive to the study of host-guest interaction. Due to these
unique properties, MOFs are excellent carriers for drug delivery.

Studies have found that some PBUTs can be desorbed reversibly from HSA-PBUTs com-
plexes. They represent that free toxins can be competitively adsorbed by adsorbents [132].
The non-steroidal analgesic ibuprofen (IBU) has the same serum albumin binding location
as pCS, and the binding site affinity is greater between IBU and HSA. IBU can effectively re-
place PBUTs [133,134]. Chen et al. used an in-situ one-step method to encapsulate magnetic
Fe3O4 nanoparticles on the porous MOF MIL-100(Fe) shell [98]. Then, the IBU was filled up
into the pores to aquire a Fe3O4/MOF/IBU nano-removal agent with a core-shell structure
with rich pores and good biocompatibility (Figure 13A). The IBU in the Fe3O4/MOF/IBU
nano-remover is released after entering the blood flow and can be competitively adsorbed.
Afterward, MOFs bind to free pCS via hydrophobic and classical interactions. Finally,
the nano-remover containing pCS was magnetically separated from the blood to achieve
efficient removal of PBUTs (Figure 13B). The removal rate of the Fe3O4/MOF/IBU nano-
removal agent was around 26.7% when the initial concentration of pCS in the blood was
100 ppm. PBUTs in the blood can be eliminated using the displacement technology-based
magnetic nano-remover, which also offers a dependable method of doing so.
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Natural antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT)
can be used as active oxygen scavengers [135,136], which may reduce excessive oxidative
stress. The excessive oxidative stress is caused by excessive reactive oxygen species (ROS) in
the serum of patients with acute kidney injury (AKI) [137]. It plays a therapeutic role in AKI.
Hou et al. used the biomimetic mineralization approach to compress CAT and SOD in ZIF-8
and then fixed with MPEG2000-COOH to obtain a more stable and biocompatible MPEG2000-
SOD@CAT@ZIF-8 (PSCZ) composite [138]. The transport of intracellular enzymes and the
antioxidant effect were greatly enhanced when the composite material was employed as
a stabilizing agent with antioxidant qualities for the cascade-based AKI comprehensive
treatment. This MOF with dual-enzyme embedding allows for the co-delivery of SOD and
CAT enzymes, which are efficient scavengers of reactive oxygen species (Figure 14). When
it came to protecting mice from akik-related oxidative renal tissue damage, the integrated
MPEG2000SOD@CAT@ZIF-8 (PSCZ) platform outperformed free CAT and SOD in terms
of SOD and CAT enzymatic efficiency in vitro and improved ROS scavenging capabilities
in vivo. To summarize, ‘plating’ based on ZIF-8 is an efficient enzyme protection technique
that has a higher therapeutic efficacy and can help determine the exact medical treatment
for AKI.
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cortisone and glycyrrhizic acid are released when GCH gradually breaks down in an in-
flammatory milieu. When used to treat steroid-resistant nephrotic syndrome (SRNS), 
glycyrrhizic acid inhibits the inactivation of hydrocortisone, blocks the creation of in-
flammatory factors, inhibits the activity of phospholipase A2 (PLA2), and complements 
C2 classical activation trail, and increases the effectiveness of hydrocortisone. Treating 
SRNS with Pm-GCH is a potentially effective approach. 

Figure 14. MPEG2000SOD@CAT@ZIF-8 (PSCZ) platform clear ROS schematic diagram. Reproduced
from ref. [138] with permission from Authors, copyright 2022.

Li et al. developed a new core-shell nanoparticle drug system (Pm-GCH) for the
action of steroid-resistant nephrotic syndrome (SRNS) by using the MOF (GC). This MOF
was prepared by glycyrrhizic acid (G) and Ca2+-filled hydrocortisone (H) as the core of
nanostructures and platelet membrane vesicles as the shell [139], as shown in Figure 15.
Pm-GCH can target renal inflammatory areas non-specifically because of its design, which
also confers superior biocompatibility and immune escape capabilities. Hydrocortisone
and glycyrrhizic acid are released when GCH gradually breaks down in an inflammatory
milieu. When used to treat steroid-resistant nephrotic syndrome (SRNS), glycyrrhizic acid
inhibits the inactivation of hydrocortisone, blocks the creation of inflammatory factors,
inhibits the activity of phospholipase A2 (PLA2), and complements C2 classical activation
trail, and increases the effectiveness of hydrocortisone. Treating SRNS with Pm-GCH is a
potentially effective approach.
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3.3. Other Treatment Methods

Studies have shown that the metabolism of trace elements (Zn, Se, and Fe) in pa-
tients with CKD is unbalanced [140–145]. By chelating or supplementing appropriate
changes in the metabolism of these elements, it can improve the condition and benefi-
cial for CKD [146–149]. Nano-chelation technology provides a unique way to synthesize
nanostructures containing trace elements, which has the potential to improve the multiple
dysfunctions of chronic diseases [150–153].

A chromium-containing MOF (DIFc) prepared using nano-chelation technology demon-
strated satisfactory efficacy in evaluating its impact on the biochemical indicators of diabetic
rats and parameters related to CKD [154]. In urine samples, DIFc treatment can decrease
albumin, malondialdehyde, and 8-iso-prostaglandin while raising the creatinine clearance
rate. In plasma samples, DIFc treatment can decrease the HOMA-IR index, blood urea
nitrogen, uric acid, and malondialdehyde. Related studies have shown that chromium
supplements such as DIFc may have a protective effect on the kidney through antioxidant
and anti-inflammatory effects [149,155,156]. In addition, Fakharzadeh et al. synthesized
another MOF (DIBc) containing selenium, zinc, and chromium using nano-chelation tech-
nology [157]. DIBc has iron-chelating properties, and its anti-diabetic effect has been
evaluated [158]. Through a study involving rats administered a high-fat diet and induced
with streptozotocin to mimic Diabetic nephropathy (DN), the research team meticulously
evaluated the efficacy of DIBc in ameliorating crucial biochemical and structural markers
associated with CKD [157]. The findings highlighted the potential of DIBc in enhancing
a range of CKD indicators. The CKD indicators encompassed blood glucose regulation,
reduction in urea nitrogen and uric acid concentrations, decrease in malondialdehyde
levels indicative of oxidative stress, enhancement in the Homeostatic Model Assessment
for Insulin Resistance (HOMA-IR) index, attenuation of the urinary albumin excretion rate,
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and mitigation of glomerular basement membrane alterations. These results collectively
underscore the promise of DIBc as a therapeutic intervention for addressing multifaceted
aspects of CKD pathology.

4. Conclusions, Challenges, and Prospects

The continuous development of MOF-related research delivers new options for the
diagnosis and treatment of kidney diseases, showing significant advantages and potential.
However, its application still faces a series of problems and challenges: (a) The detection of
biomarkers requires sensors with high specificity and sensitivity. Urine, blood, tears, and
other biological samples contain a variety of components, which may interfere with the
accurate detection of the sensor. Therefore, it is necessary to develop more advanced sensor
design and surface modification strategies to improve anti-interference ability. (b) MOF-
based sensors typically detect only a single biomarker. Therefore, it is a promising research
direction to integrate the characteristics of various biomarkers and develop multifunctional
MOF sensors capable of simultaneously detecting multiple biomarkers, thus enhancing
the accuracy and comprehensiveness of diagnosis. (c) Currently, research on MOFs and
their compounds for the diagnosis and treatment of kidney disease is still in the laboratory
stage. It should be validated through large-scale clinical trials and practical application to
evaluate potential biological toxicity, immune response, and long-term exposure in vivo,
providing stronger support for widespread application. (d) The adsorption process is a
dynamic equilibrium process, which requires the dialysis membrane with high stability
and durability. Furthermore, prolonged use may lead to membrane contamination by
substances such as blood and proteins. Therefore, in practical applications, ensuring the
stability and durability of its performance and effectively cleaning and preventing pollution
are problems that need to be solved. (e) While MOFs have shown potential in hemodialysis,
further investigation is required to evaluate the impact of different types of MOFs on
dialysis efficiency and to develop optimal strategies for their application in this context.

Although the emerging MOF-based diagnosis and treatment of kidney diseases face a
series of problems and challenges, there are still many opportunities for its application to
grow. With the continuous growth and innovation of science and technology, the current
limitations and challenges of developing more efficient, safe, and multifunctional MOF
nano-diagnostic materials are expected to be overcome in the future. In general, the
diagnosis and treatment of kidney diseases based on MOFs is an area full of opportunities
and challenges. In the future, with the continuous development and improvement of
related technologies, this field is expected to make more breakthroughs and progress.
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