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Abstract: Many physical and chemical properties of solids, such as strength, plasticity, dispersibility,
solubility and dissolution are determined by defects in the crystal structure. The aim of this work
is to study in situ dynamic, dispersion, chemical, biological and surface properties of lacosamide
powder after a complete cycle of mechanical loading by laser scattering, electron microscopy, FR-
IR and biopharmaceutical approaches. The SLS method demonstrated the spontaneous tendency
toward surface-energy reduction due to aggregation during micronisation. DLS analysis showed
conformational changes of colloidal particles as supramolecular complexes depending on the loading
time on the solid. SEM analysis demonstrated the conglomeration of needle-like lacosamide particles
after 60 min of milling time and the transition to a glassy state with isotropy of properties by the end
of the tribochemistry cycle. The following dynamic properties of lacosamide were established: elastic
and plastic deformation boundaries, region of inhomogeneous deformation and fracture point. The
ratio of dissolution-rate constants in water of samples before and after a full cycle of loading was
2.4. The lacosamide sample, which underwent a full cycle of mechanical loading, showed improved
kinetics of API release via analysis of dissolution profiles in 0.1 M HCl medium. The observed
activation-energy values of the cell-death biosensor process in aqueous solutions of the lacosamide
samples before and after the complete tribochemical cycle were 207 kJmol−1 and 145 kJmol−1,
respectively. The equilibrium time of dissolution and activation of cell-biosensor death corresponding
to 20 min of mechanical loading on a solid was determined. The current study may have important
practical significance for the transformation and management of the properties of drug substances in
solid form and in solutions and for increasing the strength of drug matrices by pre-strain hardening
via structural rearrangements during mechanical loading.

Keywords: mechanical loading; antiepileptic drug; particle size; shape and morphology; stress field;
dispersity phenomenon; solubility/dissolution rate; Spirotox; comparative dissolution kinetics test

1. Introduction

This article considers the use of tribochemical technologies, the results of which can
form the basis for modifying the production process of pharmaceutical substances and
obtaining a product with desired properties.

Tribochemical technologies (from the Greek τρίβω—to rub) are based on the processes
of transferring the energy of high-intensity mechanical action to a solid body and studying
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the properties of substances that have undergone local, submicroscopic enrichment with
energy. In this case, centres with increased activity are formed on the newly formed
solid surfaces (microcomposites). The resulting stress fields relax through certain channels
(mechanisms) with the release of heat and excess energy. As a result, the activation energy
of the chemical transformation decreases, as follows [1]:

Eexc = Ea − ϕexc, (1)

where Eexc is the excess energy stored in structural defects of the solid; Ea is the activation
energy of chemical transformation in the absence of mechanical processing; ϕexc is the
fraction of Eexc that affects the activation energy of a chemical reaction.

According to [2], the accumulation rate of excess energy is determined based on the
following equation:

d∅
dτ

= κ −∅mexp
(
−

Ea(rel)

RT

)
− A

∝
dα

dτ
(2)

where κ is the accumulation rate constant Eexc; m is the pre-exponential factor; Ea(rel)

is the relaxation activation energy Eexc; A is the coefficient; d∝
dτ is the rate of chemical

transformation; α is a value indicating the ratio of the mass of the reaction product to the
mass of the entire mixture; R is the universal gas constant; T(K).

Tribochemistry is closely intertwined with another complex concept as a mechanochem-
istry. Mechanochemistry is a ‘chemical transformation caused by the direct absorption of
mechanical energy’ along with electrochemistry, photochemistry and reactions occurring in
solutions [3]. In the interpretation of the German researcher Heinicke G., “mechanochem-
istry is a branch of chemistry dealing with chemical and physicochemical transformations
of substances in all states of aggregation, occurring under the influence of mechanical
energy” [4]. In this regard, they distinguish among the following: chemistry of contact
surfaces (tribochemistry, TrbCh), grinding chemistry (triturachemistry, TrtCh) and sonic
chemistry (sonochemistry, SnCh) [5]. Thus, TrbCh, as the most important component of
mechanochemistry (McCh), is accompanied by chemical transformations between two solid
surfaces [6]. However, the principles of “green chemistry”—ecofriendly and sustainable
reactions in the absence of or with minimal use of solvents and with minimal generation
of unwanted by-products—give McnCh incomparable advantages over other reaction
approaches [7–9] (Figure 1).
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Interest in mechanochemical technologies in the pharmaceutical field began to be
shown only in the twentieth century, with the production of amorphous solid disper-
sions and the discovery of new crystal forms (cocrystals) [10]. At the same time, the
mechanochemical possibilities of biologically active substances were demonstrated. Such
substances were associated with increases in dispersity, specific surface area, solubiliza-
tion and viscosity of the resulting solutions, amorphization, and the bioavailability of the
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active pharmaceutical ingredient, as well as a decrease in crystallinity [11,12]. In the 21st
century, mechanochemistry has undergone a rebirth due to the development of technol-
ogy for creating mechanophores—structural fragments sensitive to applied mechanical
energy [13]. The introduction of mechanophores contributed to the control of reactivity
during mechanochemical modification or strengthening of the solid [14,15].

Many of the listed approaches in tribochemistry and mechanochemistry contribute to
the creation of low-dose therapeutics with higher pharmacological activity [16]. Mechanical
activation leads to a change in the structural and physicochemical properties of the solid.
Surface changes lead to an increase in the surface area of particles and improved condi-
tions for diffusion along interphase surfaces, as well as to a violation of the translational
symmetry of the crystal and the accumulation of defects, based on dimensionality: [17–20]
(Figure 2).
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The defects listed above, one way or another, affect the structure-sensitive properties
of solids (electrical, optical, photoemission, magnetic) as a result of the occurrence, in
particular, of vibrationally and electronically excited states of interatomic bonds. Many of
the structure-sensitive properties of solid materials are exceptional and non-trivial, arising
only as a result of defects in the crystal. For such systems with a developed defect structure
and accumulated excess free energy, the state of thermodynamic equilibrium is disrupted,
which provides them with increased reactivity [21].

This fact is especially attractive for achieving the goals of medical McnCh: numerous
examples have demonstrated an increase in therapeutic efficiency, the width of the thera-
peutic window, etc. for therapeutic agents after high-intensity mechanical impact [22–27].

According to the World Health Organization (WHO), epilepsy is one of the most
common neurological diseases in the world. It affects about 50 million people, although up
to 70% of people with epilepsy can live without seizures if properly diagnosed. According to
the European Medicines Agency (EMA), an effective therapeutic agent used to treat partial-
onset seizures is lacosamide (Vimpat), which belongs to the group of functionalized amino
acids. Lacosamide is an antiepileptic drug used to treat seizures. As a chiral functionalized
amino acid, it works by blocking slowly inactivating components of voltage-gated sodium
currents. Lacosamide exhibits a stereoselective mode of interaction with sodium channels.
Lacosamide was first approved by the European Commission (in August 2008) and was
later approved by the FDA (in October 2008). It was granted approval by Health Canada (in
September 2010) [28,29]. The mechanism of lacosamide action is suggested to be selective
enhancement of the slow inactivation of voltage-gated Na+ channels, which stabilises
excitable neuronal membranes. It has also been shown that lacosamide binds to CRMP-2, a
phosphoprotein that is mainly expressed in the nervous system and is involved in neuronal
differentiation and control of axonal outgrowth. The biopharmaceutical properties of
lacosamide are presented in Table 1.
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Table 1. Pharmacokinetic properties of lacosamide [30,31].

Absorption
*, %

per os

Time, h
for Cmax in

Plasma

Volume of
Distribution,

L/kg

Bound to
Plasma

Proteins,
%

Half-Life,
h

Metabolism,
%

in the Urine

Reaction Type,
the Major Compound

Toxicity **,
per os in Rats,

mg/kg

100 0.5–4 0.6 15 13 95

O-demethylation
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* for doses up to 800 mg. ** dizziness, nausea, seizures.

Despite the advances made in epileptology, drug-resistant epilepsy (DRE) accounts
for about 30% of all cases of epilepsy. Pharmacological treatment for DRE often consists
of polytherapy. However, treatment for DRE should optimize efficacy while anticipating
the risks of side effects associated with polypharmacy [32]. As lacosamide treatment has
demonstrated fewer side effects on systems compared to established treatments, there is a
need for future larger and higher quality clinical trials to investigate the safety and efficacy
of lacosamide in the treatment of comorbidities associated with epilepsy.

The purpose of the research was to study the in situ properties (surface, dynamic,
dispersion, chemical, biological) of a modified lacosamide powder after a tribochemi-
cal cycle under mechanical loading, using a set of analytical approaches to control the
pharmaceutical properties of a therapeutic substance.

2. Materials and Methods

This section describes in sufficient detail the objects of study and the methods and
techniques (tribochemical, optical biopharmaceutical, chemical) that were used to obtain
and discuss the results.

2.1. Powdery Material

The study was carried out on the high-purity (≥99, 9%) pharmaceutical substance
lacosamide (Lcs), band names Motpoly and Vimpat) produced by the Jiangsu Aimi Tech
Co., Ltd. (Changzhou, China) series number LM0010322, expiry date 1 February 2025
(Figure 3).
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Appearance: white or almost white, or light yellow powder. Solubility: sparingly
soluble in water, freely soluble in methanol, practically insoluble in heptane (Table 2).
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Table 2. Physicochemical properties of lacosamide.

Molecular
Weight

Chemical
Formula

Water
Solubility, mg/mL * log Po/w pKa pKBH+ T, melting

(◦C)
T, Boiling

(◦C)

250.3 C13H18N2O3 0.465 * 0.728 ** 12.5 * −2 * 140–146 ** 536.5 **

* Predicted properties. ** Experimental properties.

2.2. Tribochemical Equipment

High-intensity mechanical loading (ML) on the Lcs substance was carried out using a
laboratory knife mill with a Stegler LM-250 rotor-type brush motor (Shenzhen Bestman
Instrument CO., Ltd., Shenzhen, China). The intensity of mechanical impact forces is
ensured by the following equipment characteristics: rotation speed 28,000 rpm and power
13 kW (Figure 4).
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Study Design

The stages of tribochemical influence on Lcs powder included the following: loading
a mass of substance in the native state into a grinding container by ½ of its volume, con-
tinuous high-intensity mechanical impact—loading for 90 min with discharge of samples
of substances every 10 min and measuring the temperature of the grinding container of
the knife mill using a non-contact pyrometer; further study of dispersion, spectral and
biopharmaceutical properties of samples in situ.

2.3. Optical Microscopy (OM) Method

Size and shape of Lcs samples before and after ML was carried out using a micro-
scope with a special binocular attachment (Altami BIO 2, St. Petersburg, Russia) with
magnification 10x (linear field of view 20 mm). The sample was applied to a glass slide
and spread evenly over the entire surface. The preliminary calibration was carried out
using a micrometre object with a scale of 1DIV = 0.01 mm. The particles were observed in
separate fields of view. The length was measured on microscopic images, and the shape of
the particles was determined using the Altami Studio 3.3 software system. Particles were
observed in separate fields of view.

2.4. Scanning Electron Microscopy (SEM)

To analyse the morphology of Lcs samples before and after mechanical loading in
terms of size, shape and surface texture, a fourth-generation scanning electron microscope
(SEM) (LYRA3, Tescan, Brno-Kohoutovice, Czech Republic) with a Schottky cathode was
used, with a maximum resolution of 1.2 nm and a maximum magnification of 1,000,000.
Lcs samples were vacuum-treated and mounted on the stage in the SEM chamber on
double-sided conductive carbon tape. To remove the charge leading to deterioration in the
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quality of micrographs, a thin amorphous carbon layer was deposited on the surface of the
sample [33].

2.5. Fourier-Transform IR Spectroscopy

To study intramolecular changes associated with high-intensity tribochemical impact,
vibrational spectra of Lcs and its loaded samples were recorded on a Cary 660 FT-IR
spectrometer (Agilent Technologies, Santa Clara, CA, USA) with an ATR attachment with
a diamond prism in the scanning range of 500–4000 cm−1 with a resolution of 4 cm−1. A
small amount of the powder sample was placed on the surface of the diamond crystal, then
pressed against the crystal to ensure uniform distribution and contact of the sensor with
the surface.

2.6. Dynamic Light Scattering (DLS)

The size distribution of Lcs particles from 0.1 nm to 1000 nm, their electrokinetic poten-
tial and dispersion control in aqueous solutions before and after high-intensity mechanical
loading were determined using a ZetasizerNano ZS dynamic light-scattering (DLS) spec-
trometer (MALVERN Instruments, Malvern, UK). The dynamic light-scattering method is
based on the analysis of fluctuations in the intensity of light scattered by particles in a state
of chaotic Brownian motion. As a result of fluctuation analysis, the diffusion coefficient
was determined and the hydrodynamic radius of particles was calculated on the basis of
the Stokes-Einstein equation: the Stokes–Einstein equation:

D =
kBT

6πµrH
(3)

where D is the diffusion coefficient (in the case of spherical particles), µ (Pa.s) is the dynamic
viscosity of the medium, and r (mol) is the radius, which can be derived via the molar
volume and Avogadro’s constant. T(K) is the absolute temperature, and kB = 1.3806 ×
10−23 J·molecule−1K−1 is the Boltzmann constant.

The DLS method was used to determine the most important quantitative characteristics
of Lcs nanodispersions: Z-average size, polydispersity index (PdI), as a measure of sample
heterogeneity as a result of particle aggregation and zeta potential (ZP), as a measure of the
aggregative stability of colloids.

2.7. Static Light Scattering (SLS)

To determine the particle-size distribution (“size spectrum”) from 1 to 180 µm, we used
the laser-diffraction method (low-angle laser light scattering, LALLS, Malvern Instruments,
Malvern, UK), which is based on recording the scattering indicatrix that arises during the
interaction of electromagnetic radiation with particles of the dispersed phase, the sizes
of which were commensurate with or less than the wavelength (according to the Mie
scattering). The resulting light-scattering pattern is represented by a characteristic ring
structure that shows the diffraction of light waves [34].

n-Hexane (ACS Reagent, for organic synthesis, prep-LC, and general laboratory use,
>99.9%, Merck, Rahway, NJ, USA) was used as a background and as a medium for preparing
a heterogeneous solution. The SLS method was used to determine the integral dispersion
characteristics of the studied samples: laser scattering, volume concentration (VC, %),
specific surface area (ssa, m2/cm3).

2.8. Spirotox-Method Study Design

The study of the biological activity/toxicity of Lcs samples was carried out using the
Spirotox bioassay method [35]. For this purpose, ciliated protozoan Sp. ambigua (3–5 adults)
were placed in a thermostated cell filled with 0.5% aqueous solution of the Lcs test substance.
Observation of the behavioral response and fixation of the time of cell death were recorded
by successive signs: convulsions-twisting-cessation of motor activity. The temperature
(Arrhenius) dependence of the lifetime of Sp. ambigua was studied (T = 297–305 K) with
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subsequent calculation of the activation energy of the process of cellular transformations
described by the schematic diagram (Figure 5).
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n-stoichiometric coefficient, C·Ln—intermediate state (cell after interaction with the ligand), Ke is the
equilibrium constant fast stage, fm is the rate constant of the cell transition to the dead state, DC is a
dead cell. The inserts show photographs of ciliates at the stages of incubation in the medium and
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2.9. Dissolution Rate Kinetics

The SLS (LALLS) method was also used to study the kinetics of dissolution of the
studied Lcs samples in water according to a previously developed method [36]. To do
this, a sample of Lcs substance powder of about 0.03 g was placed in a cell with 3 mL of
water. Measurements were continued at intervals t = 10 s. The moment of completion of
the measurement was recorded by the cessation of change in time of the Laser Obscuration
(LO) value, which characterizes the loss of light intensity when introducing a dispersed
sample into the measuring cell (formula (4)). The results are presented in the LO-t,sec
coordinates. The dissolution rate constant was calculated from the slope of the linearized
section of the straight line to the abscissa axis in semi-log coordinates:

Laser Obscuration (LO) = 1 − I
I0

× 100% (4)

k = −tgα (5)

where I is the light intensity measured by the detector in the presence of a sample in the
cell, I0 is the light intensity measured by the detector in the absence of a sample, k is the
dissolution rate constant, s−1.

2.10. Comparative Dissolution Kinetics Test (CDKT)

We used the comparative dissolution kinetics test as a prognostic tool, including a
comparison of the dissolution profiles of unloaded and loaded samples (tML = 90 min).
The studies were carried out using a dissolution tester (model UTD812A, Logan Instru-
ments Corp., Somerset, NJ, USA) with the paddles apparatus (USP II). The selection of
sampling points, as well as that of dissolution conditions, was carried out in accordance
with the recommendations of the FDA for conducting CDKT (U.S. Food and Drug Ad-
ministration) [37]. The CDKT conditions were as follows: dissolution medium—0.1 M
hydrochloric acid solution; volume of dissolution medium—900 mL; temperature of disso-
lution media—37 ± 0.5 ◦C; stirrer rotation speed—20 ± 2 rpm; time points—5; 10; 15; 20;
30 and 40 min.

The CDKT design included the following stages: a sample of the substance was
placed into a dissolution beaker and dissolved. At the indicated time intervals, aliquots
of 10 mL were taken with a mechanical pipette, replenishing the taken volume with
dissolution medium, and filtered through a membrane filter (GS-Tek SN02545 Nylon,
Newark, DE, USA) with a pore diameter of 0.45 µm, discarding the first portion of the
filtrate. The aliquots taken were used for subsequent analysis on a high-performance liquid
chromatograph equipped with a spectrophotometric detector, model SPD-20A (Shimadzu,
Kyoto, Japan). The analysis used a ZORBAX Eclipse XDB chromatography column with a
particle size of 5 µm, 150 mm × 4.6 mm, (Agilent, Santa Clara, CA, USA), mobile phase
of acetonitrile for chromatography/water for chromatography in a volume ratio of 13/87,
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with a flow rate of 2 µL/min and injection volume of 5 µL. Lacosamide detection was
carried out at a wavelength of 215 nm.

The concentration of lacosamide that went into solution (X, %) was calculated using
the following formula:

X =
S × a0 × V × P × 100

S0 × 100 × a × 100
=

S × a0 × P × V
S0 × a × 100

(6)

where, S is the lacosamide peak area in the chromatogram of the test solution; S0 is the
average value of the lacosamide peak area at n = 5 on chromatograms of the standard
solution; a0 is the weighed portion of the standard sample of lacosamide, (mg); V is the
volume of dissolution medium, (mL); P is the API content (%) in the reference lacosamide
sample; and a is the weighed portion of the tested substance (mg).

For each subsequent time point, the dilution factor of the solution after sampling was
taken into account:

X =

(
Si−1 × 10

900
+ Si

)
× a0 × V × P

S0 × 100 × L
(7)

where, Si−1 is the area of the lacosamide peak in the chromatogram of the test solution at
the previous time point; Si is the peak area of lacosamide in the chromatogram of the test
solution at the time point under study.

2.11. Statistical Analysis

Data were reported as mean ± SD, using the unpaired Student’s t-test. Values of * p < 0.05
and *** p < 0.001 were considered significant and extremely significant, respectively.

3. Results and Discussion

The hierarchy of the structure of a solid body that has undergone a high-intensity
impact in the form of mechanical loading, as well as the need to identify new, previously
unknown features of the structure, drives the study of deformation processes based on a
multi-level approach (macro-, meso- and micro-scales) [38,39].

3.1. Particle Size Distributions (PSDs)

To analyses the dispersibility of aqueous and non-aqueous solutions and the effect of
Trb impact on the studied powdery substances, laser-based analysis methods were used
based on the monochromatic, coherent, narrowly directed radiation flux interaction with
particles, their ensembles or fluctuations scattering.

3.1.1. Static Light Scattering

Figure 6 shows the “size spectra” of the distribution of ensembles of particles in the
range from 1 to 120 µm, as well as the integral characteristics of the dispersity of powdered
Lcs in the native sample and after the Trb impact.

The figure shows the dispersity phenomenon (DPh) previously described in [40–44].
In this study, the DPh phenomenon is observed in the increase in diameter (d, µm) and
volume fraction (%) of size groups of Lcs particles in the ongoing micronisation process at
high-intensity ML applied to the solid. A drop in specific surface area values characterizes
a decrease in the dispersion degree of the studied samples that reaches its minimum at
t = 30 min of high-intensity ML (see Figure 6b). Further changes in ssa values are in a state
of non-significant fluctuations in the region of low values.

The propagation of stress waves preceding the DPh phenomenon leads to a defective
crystal structure, accumulation of excess free surface energy Fs of the dispersion system
and the tendency to spontaneously reduce this parameter due to the aggregation of solid
powder particles, and decrease in the surface area in the Trb impact process [45]:

Fs =
dF
dS

S = σS (8)
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where Fs is free surface energy; σ is free surface energy per unit surface area; S is the area
of the interface.

Thus, the micronisation of Lcs particles is accompanied by deformation and aggrega-
tion of crystals, amorphization and formation of centres with increased activity, which can
result in increased reactivity [46].
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3.1.2. Dynamic Light Scattering

The effect of high-intensity ML lacosamide powder on the colloidal properties of its
aqueous solutions was studied using the example of changes in such physicochemical
properties as the hydrodynamic radius of particles (d, nm), average count rate (kcps),
electrophoretic mobility (ξ, mV) and polydispersity index (PDI) (Figure 7).
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Figure 7. Dispersive properties of lacosamide samples under different Trb impact times according to
the DLS method: (a) particle-size distributions in units of laser light-scattering intensity; (b) 2D data
diagram of the average count rate and nanodispersion size; (c) ξ-potential (mV) and polydispersity
index value (PDI).

As the results show, dynamic light scattering makes it possible to analyse changes in
the conformation of colloidal particles of the dispersed state in Lcs solutions as a function
of ML time: the largest changes in the average particle diameter, polydispersity index and,
as a consequence, an increase in the average count rate and changes in zeta potential occur
in first 30–50 min of ML. This fact may indicate the swelling of nanodispersed bicontinuous
particles in the aqueous solution of Lcs [47]. An increase in the impact time Trb (milling
time) further leads to a decrease in the average count rate (see Figure 7b): continued ML on
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a solid body changes the field of defects, described by the defect density tensor and defect
flux density [48,49]. Changes in the intramolecular thermal motion and conformation of
macromolecules lead to inhomogeneities in the refractive index of particles and fluctuations
in the intensity of scattered light [50].

3.2. Fourier Transform Infrared (FT-IR)

Since ML of a solid is accompanied by a local increase in temperature and pressure
(formation of triboplasma), phase transformations, breaking of chemical bonds, and emis-
sion of light and electrons, the emergence of vibrationally and electronically excited states
of interatomic bonds entails changes in the position of the characteristic bands and their
intensity. High intensity ML can lead to oxidation and, in some cases, degradation of the
compound [51].

Figure 8 shows FT-IR spectra in various formats (transmission mode, T(%), subtraction
of the spectra of ML samples from the native lacosamide and signal-to-noise ratio mode),
allowing a significant expansion the possibilities of analysing the resulting differential spectra.

In the spectra of the loaded samples, changes in the intensity of the transmission
bands compared with the native lacosamide (black colour) are clearly visible: in most cases,
the curves of the loaded samples lie below the curve of the native Lcs and, therefore, are
characterized by greater absorption caused by group vibrations: O-H, N-H, CO2, C-H. The
changes are especially noticeable for samples that were exposed to mechanical loading for
30–40 min, 80–90 min.

However, only special chemometric capabilities made it possible to detect wavenum-
ber regions corresponding to significant changes in the FT-IR spectra (see Figure 8b,c):
3500–4000 cm−1, 2250–1750 cm−1, 750–500 cm−1 (Table 3).

Table 3. The main transmittance bands in the Lcs FT-IR.

Frequency Range,
cm−1 Group Compound Class Appearance/

Comments

3650–3200 O-H stretching alcohol strong, broad/
intermolecular bonded

3350–3310 N-H stretching secondary amine -

3300–2500 O-H stretching carboxylic acid strong/usually
centred on 3000 cm−1

3100–3000 C-H stretching alkene medium

2250–1800 amino acid residues, CO2

1698 C=O stretching secondary amide strong/free
associated

1690–1640 C=N stretching imine (tautomer) medium

1650–1580 N-H bending amine strong

1465 C-H bending alkane/methylene group medium

1450–1375 C-H bending alkane/methyl group medium

1420–1330 O-H bending alcohol (tautomer) medium

1250–1020 C-N stretching amine medium

1210–1163 C-O stretching ester strong

750 ± 20
700 ± 20 C-H bending monosubstituted

benzene derivative strong
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Figure 8. FT-IR spectra of Lcs samples before and after Trb impact: (a) Full range (the inset shows a
naive Lcs sample); (b) Spectra of loaded samples “subtraction” from native Lcs (the inset shows the
amplitude vibrations of the transmission maximum at 3280 cm−1, corresponding to the NH group);
(c) Dependence of the signal-to-noise value on the wave number (cm−1); (d) High-frequency region
(3200–2700 cm−1) of the range of characteristic vibrations of bonds (the insets shows the spectrum
regions with reflected transmission for Lcs samples at tML = 80 min and tML = 90 min).

3.3. Surface and Near-Surface Morphology
Scanning Electron Microscopy (SEM)

To identify changes in the grain structure of Lcs samples at different stages of high-
intensity ML, the nature of destruction, and the presence of defects, the SEM method was
used. The studies were carried out in the mode of recording secondary electrons at the
accelerating voltage of 10 kV and working distance of 15 mm at magnifications up to
×40,000. The results of the electron microscope studies are shown in Figures 9 and S1–S3.

Particles of the native Lcs substance are needle-shaped drusen with rough surfaces
and jagged edges, ranging in size from 30 µm to 50 µm (see Figure 8a). After 60 min of
loading a solid body, destruction of the Lcs sample was observed. It was accompanied
by the appearance of smaller particles (d~10 µm) with brittle surfaces and sharp edges
(see Figure 8b). The beginning of conglomeration was evidenced by the accumulation of
particles with varying dispersion degrees. However, the anisotropy of the microstructure
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was maintained (see Figure 8b). Increasing the time of mechanical loading to 90 min led
to the transformation of the sample into a glassy (amorphous, metastable) state with a
smooth, continuous surface with isotropic properties (see Figure 8c). The morphology of
the microstructure of the solid at the final stage of mechanical loading on Lcs convinc-
ingly deomonstrated the result of plastic deformation with the formation of structures
characterized by linear, surface and volumetric defects [52] (see Figure 2).
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Figure 9. SEM micrographs for Lcs obtained at different times of high-intensity ML and: (a) t = 0 min;
(b) t = 60 min; (c) t = 90 min. Device magnification (MAG) = 9.81–3.00 kx. The insets show the particle
size distribution according to the DLS method.

3.4. Lacosamide Dissolution Studies

According to [53,54], the appearance of disordered regions in API crystals as a result
of mechanical loading, accompanied by the growth of dislocations, leads to a change in
some important pharmaceutical properties, for example, to an increase in the observed
dissolution rate constant (K′obs) in bulk dissolution studies. In this regard, the next stage in
this study of the physico-chemical properties of the Lcs substance powder was experiments
in laser assessment of the kinetics of dissolution in water and the CDKT results.

3.4.1. Dissolution Kinetics by LALLS

Studies of dissolution kinetics using an original approach based on the time variation
of the laser light-scattering indicatrix (see Equation (4)) were carried out for Lcs samples
with different ML times (Figure 10).

The figure shows an exponential decrease over time in the values of the dependent
variable. Laser obscuration, however, was associated with a noticeably longer duration
in the case of the native sample (black) compared to samples at tMS = 30 min (green)
and tMS = 90 min (blue). It can be seen that the substance of the amorphous sample
(tML = 90 min) dissolves noticeably faster, showing similarity of the isotropic structure
with the molecular structure of the liquid [55]. The dissolution rate (k·102, s−1) measured
by the coefficient b of the straight line equation y = a + bx in coordinates ln(1 − I/I0) − tD
(s) (see Figure 10b), is presented in Table 4.



Pharmaceutics 2024, 16, 798 13 of 19

Pharmaceutics 2024, 16, x FOR PEER REVIEW 13 of 20 
 

 

Figure 9. SEM micrographs for Lcs obtained at different times of high-intensity ML and: (a) t = 0 
min; (b) t = 60 min; (c) t = 90 min. Device magnification (MAG) = 9.81–3.00 kx. The insets show the 
particle size distribution according to the DLS method. 

Particles of the native Lcs substance are needle-shaped drusen with rough surfaces 
and jagged edges, ranging in size from 30 µm to 50 µm (see Figure 8a). After 60 min of 
loading a solid body, destruction of the Lcs sample was observed. It was accompanied by 
the appearance of smaller particles (d~10 µm) with brittle surfaces and sharp edges (see 
Figure 8b). The beginning of conglomeration was evidenced by the accumulation of par-
ticles with varying dispersion degrees. However, the anisotropy of the microstructure was 
maintained (see Figure 8b). Increasing the time of mechanical loading to 90 min led to the 
transformation of the sample into a glassy (amorphous, metastable) state with a smooth, 
continuous surface with isotropic properties (see Figure 8c). The morphology of the mi-
crostructure of the solid at the final stage of mechanical loading on Lcs convincingly deo-
monstrated the result of plastic deformation with the formation of structures character-
ized by linear, surface and volumetric defects [52] (see Figure 2). 

3.4. Lacosamide Dissolution Studies 
According to [53,54], the appearance of disordered regions in API crystals as a result 

of mechanical loading, accompanied by the growth of dislocations, leads to a change in 
some important pharmaceutical properties, for example, to an increase in the observed 
dissolution rate constant (K′obs) in bulk dissolution studies. In this regard, the next stage 
in this study of the physico-chemical properties of the Lcs substance powder was experi-
ments in laser assessment of the kinetics of dissolution in water and the CDKT results. 

3.4.1. Dissolution Kinetics by LALLS 
Studies of dissolution kinetics using an original approach based on the time variation 

of the laser light-scattering indicatrix (see Equation (4)) were carried out for Lcs samples 
with different ML times (Figure 10). 

 

 

(a) (b) 

Figure 10. The Lsc’ samples dissolution in water as measured by LALLS method: In direct (a) and 
semi-logarithmic (b) coordinates. 

The figure shows an exponential decrease over time in the values of the dependent 
variable. Laser obscuration, however, was associated with a noticeably longer duration in 
the case of the native sample (black) compared to samples at tMS = 30 min (green) and tMS = 

90 min (blue). It can be seen that the substance of the amorphous sample (tML = 90 min) 
dissolves noticeably faster, showing similarity of the isotropic structure with the molecu-
lar structure of the liquid [55]. The dissolution rate (k·102, s−1) measured by the coefficient 

Figure 10. The Lsc’ samples dissolution in water as measured by LALLS method: In direct (a) and
semi-logarithmic (b) coordinates.

Table 4. Dissolution parameters in water of Lcs substance samples with different mechanical
strain times.

Mechanical Stress Time, Min Dissolution Time,
s

Dissolution Rate Constant,
k·102, s−1 ± SD

0 200 3.80 ± 0.001
30 60 8.40 ± 0.001
90 30 9.10 ± 0.017

It is known that the dissolution rate increases with an increase in the number of
dislocations, which was demonstrated by the results obtained in Table 4 [56]. According
to [57], an approximately three-fold increase in the average dislocation density leads to an
increase in obsk(s−1) by 21%. Based on the presented tabular data, an approximately 20-fold
increase in the dislocation density is observed by the final time of mechanical loading on
lacosamide (tML = 90 min).

The effect of dislocation density on the resistance to deformation is described by
the typical “stress–strain” curve [58]. An increase in the number of dislocations is also
facilitated by a rise in temperature inside the grinding container of the knife mill during
ML on the Lcs powder. If the temperature change inside the TrbCh reactor is considered
as the response of the dispersion system to the mechanical impact that is produced and
accompanied by an increase in SB deformation, it is similar to the typical “stress–strain”
curve (Figure 11).

By analogy with the stress–strain curve, the shape of the temperature curve allows
for predictive evaluation of dynamic changes in the SB properties, such as the tensile
strength under ML and the angular coefficient of the straight section to the OX axis:
k = tgα = 2.64 min−1 by analogy with the calculation of Young’s modulus (see Figure 11b).
It can be observed that the limit of elastic deformation of lacosamide corresponds to the
mechanical loading (ML) time tMl = 20 min. At tML > 20 min, the system enters the region
of plastic deformation, and this is accompanied by an increase in resistance to ML and
hardening of the solid body. At tML = 70 min, the system reaches its strength limit, the
maximum uniform plastic deformation. At tML > 70 min, the Lcs sample undergoes uneven
deformation and reaches the failure point at tML = 90 min. It is noteworthy that, according
to the FT-IR method, significant changes in quantum transitions between vibrational energy
levels of lacosamide are observed at tMS = 80–90 min (see Figure 8d).
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In general, based on the appearance of the stress–strain curve, we can conclude that
the lacosamide substance is a strong but not plastic material: it stretches very little and
suddenly breaks.

The study of the dissolution of Lcs samples showed the peculiarity of its aqueous
solutions in the observed dependence of the dissolution parameters—time and speed, as
well as the activation energy (Ea, kJmol−1)—of cell transformations [59] (see Figure 5)
on the time of mechanical loading (ML) of the solid: the inflection point at tML~20 min
corresponds to the equilibrium time ML (teqv), as well as to the equilibrium dissolution
(deqv) of the substance in water and activation of the process of cell biosensor death in
aqueous solutions of Lcs (Figure 12).
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Figure 12. 2D-diagrams showing the dependence of the parameters of dissolution in water and death
of the Spirostomum ambigua A cell biosensor in 0.5% aqueous solutions of various ML Lcs samples:
(a) Time and dissolution-rate constant; (b) activation energy of cell transformations.

It is noteworthy that the detected teqv(min) corresponds to the first amplitude jump in
the 2D diagram, demonstrating the change in the integral dispersion characteristics of Lcs
depending on the ML time (see Figure 6b).

3.4.2. In Vitro Equivalence Dissolution Test (CDKT)

According to [60], when testing the dissolution of a therapeutic agent in vitro, any
change in the properties of the pharmaceutical substance (for example, particle size) must
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be taken into account. A comparative test of dissolution kinetics makes it possible to identify
fundamental changes in the composition and properties of a therapeutic agent at stages of
the production cycle that affect the rate and proportion of its release into the dissolution
medium [61]. Figure 13 shows the dissolution profiles of samples of the Lcs substance at
the final stage of tribochemical impact (mechanical loading, tML = 90 min) and those of the
native substance, demonstrating the proportion of API released into the solution of 0.1 M
HCl (pH 1.2), which simulates gastric fluid (without enzyme).
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The reliability of the analysis results was confirmed using relative standard deviation
(RSD) calculations at each time point (Table 5).

Table 5. Amount of API transferred into solution.

Time,
min

Lacosamide (Unloaded)
tML = 0 min

Lacosamide (Loaded)
tML = 90 min

C, % RSD, % C, % RSD, %

5 73.0 1.1 71.2 5.5
10 85.2 0.2 91.9 2.2
15 93.3 1.6 95.0 1.4
20 94.7 2.0 95.9 0.5
30 96.3 1.3 95.5 0.4
40 96.7 1.6 96.3 0.5

Both dissolution profiles demonstrate complete release of the API; that is, the curves
reach a plateau with a value above 85%. However, in comparison with the native sample,
the loaded lacosamide, which underwent a cycle of tribochemical impact for 90 min,
demonstrates kinetic advantages: 92% is recovered into the dissolution medium in 10 min,
which represents a 7% difference vs the native sample; the loaded Lcs goes completely into
the dissolution medium in 15 min with 95% release, and this process is characterized by
a low (>1% RSD) variability of values and exhibits a higher dissolution rate. The native
(unloaded) lacosamide goes into the dissolution medium in 20 min, with a lower rate
of saturated solution formation and a higher (<1% RSD) variability of values at each
time point.

The approach based on the use of compression, shear and friction energy to transform a
solid drug substance into an amorphous state has been widely reported in the literature [62].
Compared to the crystal form, amorphous solid pharmaceutical substances with a relatively
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high density of defects have significant potential and advantages for effectively improving
the per os bioavailability of poorly water-soluble substances [63]. It is known that the lower
the crystallinity of a solid, the greater the degree of disorder and, accordingly, the entropy
of a given system, as, in amorphous states, there is no long-range translational order [64].
If the value of the product T∆S is large, the loss of Gibbs free energy is therefore increasing:
the energy spent on the destruction of an amorphous solid is small and the increase in the
enthalpy of dissolution ∆Hsol is mainly due to the change in enthalpy due to solvation by
solvent particles ∆Hsol. We demonstrated solvation during the swelling of Lcs colloids as
a result of the penetration of solvent molecules into the nearest layers of particles of the
loaded substance (see Figure 7a).

Consequently, our results based on dissolution kinetics by LALLS and an in vitro
equivalence dissolution test showed a positive effect of the amorphous nature of the loaded
lacosamide sample in terms of increasing the dissolution rate in different media.

4. Conclusions

The technology of tribochemical microphase deformation of the crystal structure of
antiepileptic lacosamide was studied under conditions of mechanical loading with dis-
charge of dispersed samples of the substance at different stages of ML. The analysis of
discharged samples in situ showed that the destruction of Lcs is a complex multi-stage pro-
cess at various structural levels that includes the following effects: phenomenal aggregation
of particles; dispersion phenomena (macro- and meso-levels), the driving force of which
was the desire of the system to reduce surface energy with a decrease in surface-area section;
initiation of conglomeration with transformation into an amorphous metastable substance
with isotropy of properties (microlevel) as a result of plastic deformation; changes in the
position and intensity of characteristic bands in the FT-IR spectra of all unloaded samples
due to the occurrence of vibrationally and electronically excited states of interatomic bonds;
swelling of nanodispersed bicontinuous particles (nanolevel) in aqueous solutions; 2.4-time
increase in dissolution and dissolution rates in water for samples of the substance as a
result of mechanical loading; improvement of kinetic characteristics according to the CDKT
method and analysis of the dissolution profile of a loaded sample in a medium simulating
gastric juices; reducing the activation energy of the process of cell-biosensor death in a
solution of a loaded sample as a sign of an increase in its biological activity; establishing
the tensile strength according to a curve similar to the “stress–strain” curve and setting the
time tML~20 min as corresponding to equilibrium dissolution. Thus, micronisation of Lcs
particles is accompanied by deformation and amorphization with the formation of centres
with increased activity, which can lead to increased reactivity.

The conducted research may have promising practical significance in managing im-
proved pharmaceutical properties and increasing the strength of therapeutic matrices
through preliminary stress hardening due to structural changes under mechanical loading.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/pharmaceutics16060798/s1, Figure S1: SEM micrographs for Lcs native
obtained at t = 0 min of high-intensity ML; Figure S2: SEM micrographs for Lcs obtained at t = 60 min
of high-intensity ML; Figure S3: SEM micrographs for Lcs obtained at t = 90 min of high-intensity ML.
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in situ the original (primary, without movement) location of experiments
CRMP-2 collapsin response mediator protein-2
DLS dynamic light scattering
DPh dispersity phenomenon
DSA dynamic strain aging
DRE drug resistant epilepsy
EMA The European Medicines Agency
Ea activation energy
FDA Food and Drug Administration
FT-IR Fourier transform IR spectroscopy
kcps kilo counts per second
Lcs lacosamide
LALLS low-angle laser light scattering
MCh mechanochemistry
MAct mechanoactivation
ML mechanical loading
OM optical microscopy
PDI polydispersion index
SnCh sound chemistry (sonochemia)
SEM scanning electron microscopy
SB solid body
TrbCh tribochemical
CDKT Comparative Dissolution Kinetics Test (In vitro equivalence dissolution test)
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