The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Data Extraction Scheme and Article Selection
3.2. Most-Used Photosensitizers
3.2.1. Photosensitizers Based on TBO and MB
3.2.2. Other Photosensitizers
3.3. Photodynamic Therapy in Clinical Isolates
3.4. Photodynamic Therapy in Ex Vivo and In Vivo Studies
3.5. PDT Combined with other Therapies/Drugs
3.6. PDT Associated with Nanoparticles
3.7. Synergism of PDT with Antibiotics and Antiseptics
Bacteria | PS/Dose | PDT/Dose | Study/Reduction | Applications | Refs. |
---|---|---|---|---|---|
Enterococcus faecium | TBO/16 µg/mL, in IPA at 90% | LED 635 nm/100 mW | Ex vivo/Bacterial reduction 99.3% | Improving PDT efficiency in root canals ex vivo | [37] |
Enterococcus faecalis IBRC-M 11130 | SIOXYL + Solution (3% HP in water solution stabilized with glycerophosphate). | Diode laser; 980 nm/320 μM, 2.5 W | In vitro/Reduction of 2 log10 (p < 0.05) | Planktonic and biofilm-producing bacteria. | [86] |
Enterococcus faecalis ATCC 29212 | - AgNPs (10 ppm) - TBO (0.02 mg/mL) (20 ppm) - Mix of 20 ppm of TBO + 10 ppm of AgNPs | LED (FotoSan); 620–640 nm/2.000–4.000 mW/cm2. | Ex vivo/Reduction of 2.7 log10 | Treatment of infected root canals. | [83] |
Enterococcus faecalis | TBO/15 mg/mL Diluted in 0.9% NaCl. | LED; 635 nm/100 mW | Ex vivo/Reduction of 99.9% | Ultrasonic activation and chemical Modification of PDT against root-canal infections | [36] |
Enterococcus faecalis ATCC 29212 Enterococcus faecium VRE ATCC 700221 | MB; c-E6; (Cur). Aurein 1.2 (UA) | 450 nm (155 mW/cm²); methylen blue and chlorine-e6 ligth at 660 nm (151 mW/cm²). | In vitro/17, 34 and 68 μM Cur/reduction 5.2%; 21, 42, and 84 μM chlorine-e6 (Ce6)/reduction 10.3%; 39, 78, and 156 μM UA/reduction 3.45%; 16 μM, 16% and 32% reduction, respectively. | Planktonic and biofilm-producing bacteria. | [48] |
Enterococcus faecalis ATCC BAA-2128 | Pyoktanin blue (PB)/1% (200 μL) | Diode laser; 808 nm/3 W, 60 s | In vitro/Reduction of 100% | Planktonic and biofilm-producing bacteria. | [87] |
Enterococcus faecium EU87 Enterococcus faecalis EU92 | RB 0.1 µM, FL 0.5 µM | LED; 522 nm/ 6.4 J/cm 2 | In vitro/Reduction of 2.5 log10 (RB); 5 log10 (FL). | Planktonic and biofilm-producing bacteria. | [8] |
Enterococcus faecalis | TBO + 17% EDTA | Red laser; 660 nm/6 J/cm2 at 100 mW. | Ex vivo/Reduction of 97.6% | Treatment of infected root canals. Final irrigation in root canals of the primary teeth. | [74] |
Enterococcus faecalis (T9) | TBO 0.9%/at 5, 10, 25 and 50 mg/mL | VIS+wIRA white light and infrared 580–1400 nm/200 mW/cm2 | In vivo/Reduction of 99.99% | Use of visible light plus water-filtered infrared-A (wIRA). | [72] |
Enterococcus faecalis | MB/0.01% | Laser Diode; 660–690 nm/ 9 J/cm2 at 100 mW | Ex vivo/Reduction of 3.60 ± 0.19 log10 | Ultrasonic activation of photodynamic therapy of root canal. | [70] |
Enterococcus faecalis | ICG/100 µg/mL | Diode laser; (1 W)/ 286 J/cm2 | Ex vivo/Disinfection amounting to 99.99% (p < 0.01) | Near-Infrared Diode Laser for Infected Root Canals. | [59] |
Enterococcus faecalis ATCC 29212 | Riboflavin (Rb)/0.01% | UVA; 365 nm/Irradiancy 3 mW/cm2, dose 5405 J/cm2 | In vitro/Reduction of 60 to 70%. | Photodynamic UVA-riboflavin for bacterial elimination. | [88] |
Enterococcus faecalis | MB (38; 78; 156; 234; 312 µM) Ce-6 (20; 42; 84; 126; 168 µM) Cur (16; 34; 68; 135 µM) | LED; 450–660 nm/ 12.5 to 120 J/cm² | In vitro MB: Complete reduction Ce-6: No reduction Cur: Complete reduction | Planktonic and biofilm-producing bacteria. | [49] |
Enterococcus faecalis ATCC 29212 | ALAD/5% | TL-01 (LED 630 nm/380 mJ/cm2) TL-03 (LED 630 nm/6 mJ/cm2) | In vitro/Reduction equal to 1.5 log10 | Comparison between single and multi-LED emitters for application to planktonic and biofilm-producing bacteria. | [62] |
Enterococcus faecalis ATCC 29212 | MB/0.01% (31.2 mol/L) RB (25 mol/L) | MB: red laser 660 nm/40 mW RB: Green laser 532 nm/40 mW | In vitro/Rb reduction to 0.12 log108 from 2.82 log108 UFC/mL. No reduction for MB. | Planktonic and biofilm-producing bacteria. | [89] |
Enterococcus faecium ATCC 19434 | Cur-PpIX/ 100 μg/mL. | LED; 405 nm/ 25.3 J/cm2 (84.5 mW/cm2) | In vitro/Complete reduction | Planktonic and biofilm-producing bacteria. | [90] |
Enterococcus faecalis ATCC 9854 | TBO/0.1 mg/L | Diode laser; 810 nm/0.2 CW. LED 630 nm, 200 mW/cm2 | Ex vivo/LED reduction 4.88 ± 0.82 Laser reduction of 5.49 ± 0.71 | Comparison of the antibacterial activity of diode laser and LED lamp in extracted human anterior teeth | [91] |
Enterococcus faecalis | MB/1 mM RB/5 mM | Laser; red 660 nm and green 565 nm/60 mW/cm2 | In vitro/MB Reduction of 86.50 ± 5.78%; RB reduction of 91.5% | Planktonic and biofilm-producing bacteria. | [92] |
Enterococcus faecalis ATCC 19433 | MB/0.005 μg/mL | Diode Laser/40 mW | In vitro/Reduction of 3.04 log10 | Optimized elimination of planktonic and biofilm-producing bacteria. | [44] |
Enterococcus faecalis ATCC 19433 | Eritrosin/5 and 10 μM | LED; 440–480 nm/96 J/cm2 | In vitro/5 uM Reduction of 5.517 log10 UFC 10 uM complete eradication | Planktonic bacteria. | [64] |
Enterococcus faecalis ATCC 29212 | TBO 0.1 mg/mL in NaCl at 0.9% | LED; 635 nm/2000–4000 mW/cm2 (90 J/cm2) | In vitro/TBO-LED Reduction of 1.60 × 104 TBO-LASER Reduction of 2.26 × 104 | Laser vs LED for planktonic and biofilm-producing bacteria. | [39] |
Enterococcus faecalis | MB/70 μL | Diode laser; 660 nm | In vitro/Reduction of Group 1 min 1.50 × 107 Group 2 min 2.44 × 107 Group 4 min 2.31 × 107 | Antimicrobial efficiency at different irradiation times for planktonic and biofilm-producing bacteria. | [93] |
Enterococcus faecalis ATCC 11700 | HYP/1 ug/mL | White LED with a yellow filter (590 nm)/30 mW (80 mW/cm2) | In vitro/Reduction of 6.5 log10. No significant cytotoxicity in fibroblasts | Fibroblast cell culture in bacterial suspension. | [63] |
Enterococcus faecalis ATCC 2729 | TBO/10 µM | Laser; (No-MRL-III) 630 nm/Group 1 5 J/cm2; Group 2 10 J/cm2 | In vitro/reduction Group 1 3.8 log10; Group 2 5.5 log10 | Planktonic and biofilm-producing bacteria. | [38] |
Enterococcus faecalis ATCC 29212 | Nanoparticle: chitosan (1%) and sodium selenite (Na2SeO3) 10 mM; (SeNPs) PS: MB 0.5 mg/mL | LED; 630 nm/200 mW/cm2 | In vitro/MB+SeNPs showed a significant reduction in bacteria compared to untreated controls. | Planktonic and biofilm-producing bacteria. | [61] |
Enterococcus faecalis ATCC 29212 | Cur/1.5 g/L | Blue LED; 450 nm/67 mW/cm2, (20.1 J/cm2) | In vitro/Reduction: 1.92 log10 CFU/mL | Planktonic and biofilm-producing bacteria. | [52] |
Enterococcus faecalis ATCC 29212 | Cur/600 μmol/17% EDTA 18% HEBP Cur + EDTA 17% Cur + HEBP 18% | Blue LED; 455 ± 30 nm/40 mW/cm2 | Ex vivo/Reduction Cur + EDTA – 1.89 log10. Cur + HEBP – 2.16 log10 Cur – 0.72 log10 | PDT associated with different chelators against Enterococcus faecalis biofilms | [53] |
Enterococcus faecalis ATCC 29212 | PC-1/100 uM | LED; 735 nm/30 J/cm2 | In vitro/Reduction 5.7 log10. | PC-1 in lipid vesicles with an optical concentration of E. faecalis was investigated. | [94] |
Enterococcus faecalis ATCC 29212 | Silver graphene nanoparticles at 1 and 2% with TBO, MB | Diode, red laser; 630 nm | In vitro/Reduction P2 = 0.22785 P1 = 0.38156 | Planktonic biofilm-producing bacteria and control of halitosis-causing bacteria in denture wearers | [82] |
Enterococcus faecalis | Phenothiazine chloride/10 mg/mL | High-power laser; 940 nm/1 W | Prospective clinical study/Complete elimination of E. faecium | Treatment of young permanent teeth with chronic periapical periodontitis | [71] |
Enterococcus faecalis ATCC 29212 | Chitosan (CSRBnp)/0.3 mg | Fiber-filtered light at 540 nm/5 J/cm2 × 1.66 min. | In vitro/Complete eradication Enterococcus faecalis | Treatment for reducing bacterial adhesion to the tooth dentin and the formation of root biofilms. | [84] |
Enterococcus faecalis ATCC 29212 | UCNP@SiO2/MB@QCh/2 mg/mL | Laser, NIR; 980 nm/1.5 W/cm2 × 10, 20 y 30 min. | In vitro/Eradication of over 99% of E. faecalis | The nanoparticles showed good biocompatibility and bactericidal activity, demonstrating safe clinical use. | [95] |
Enterococcus faecalis ATCC 29212 | - AgNPs (10 ppm) - TBO (0.02 mg/mL) - Mix of 20 ppm TBO + 10 ppm of AgNPs | Laser diode (FotoSan); 620–640 nm/2000–4000 mW/cm2. | Ex vivo/Reduction of 2.7 log10 | Treatment of infected dental canal. | [83] |
Enterococcus faecalis ATCC 29212 | Nanoparticles: chitosan (1%) and Na2SeO3 10 Mm; (SeNPs) PS: MB 0.5 mg/mL | Laser diode; 630 nm/200 mW/cm2 | In vitro/MB+SeNP, a significant bacterial reduction. | Planktonic biofilm-producing bacteria. | [61] |
Enterococcus faecalis ATCC 29212 | Silver graphene nanoparticles at 1 and 2% with TBO and MB | Red laser diode at 630 nm | In vitro/Reduction P2 = 0.22785 P1 = 0.38156 | To control halitosis and protect dental prostheses via planktonic and biofilm-producing bacteria eradication. | [82] |
Enterococcus faecalis CIP 76.1170 | THPP@AcLi/2.5 μM | White-diode laser/4.16 J/cm2 | In vitro/99.999% bacterial removal | Water disinfection and other applications | [96] |
Enterococcus faecalis ATCC 10.100 | PLGA polymeric nanoparticles loaded with curcumin (NP+Cur)/325 μg/mL and 200 μg/mL | Blue-diode laser; 450 nm/72.6 J/cm2 (22 mW/cm2) | In vitro/Reduction of 7.90 log and 5.18 log, respectively | Elimination of biofilms of bacteria associated with dentin | [15] |
Enterococcus faecalis ATCC 29212 | Fe-MIL-88B-NH2: 1 mg/mL Al-MIL-101-NH2: 1 mg/mL Fe-MIL-101-NH2: 1 mg/mL ICG: 0.5 mg/mL | Laser diode; 810 nm/31.2 J/cm2 | Ex vivo and in vitro/ Fe-88-ICG, Al-101-ICG, and Fe-101-ICG: 76%, 84%, and 89%, respectively (ex vivo) Fe-88-ICG, Al-101-ICG y Fe-101-ICG: 45.12%, 60.72%, and 62.67%, respectively (in vitro). | Good stability for use against biofilm formation and the growth of bacteria such as E. faecalis in vitro. | [97] |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Priority Pathogens List for R&D of New Antibiotics. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 19 April 2021).
- Dai, T.; Huang, Y.Y.; Hamblin, M.R. Photodynamic therapy for localized infections—State of the art. Photodiagn. Photodyn. Ther. 2009, 6, 170–188. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 27th ed.; Suite 2500; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017. [Google Scholar]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Willyard, C. The drug-resistant bacteria that pose the greatest health threats. Nature 2017, 543, 15. [Google Scholar] [CrossRef] [PubMed]
- Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti-Infect. Ther. 2013, 11, 297–308. [Google Scholar] [CrossRef]
- Fiore, E.; Van Tyne, D.; Gilmore, M.S. Pathogenicity of enterococci. Microbiol. Spectr. 2019, 7, GPP3-0053-2018. [Google Scholar] [CrossRef]
- Wozniak, A.; Kruszewska, B.; Pieranski, M.K.; Rychlowski, M.; Grinholc, M. Antimicrobial Photodynamic Inactivation Affects the Antibiotic Susceptibility of Enterococcus spp. Clinical Isolates in Biofilm and Planktonic Cultures. Biomolecules 2021, 11, 693. [Google Scholar] [CrossRef]
- Koneman, E.W.; Allen, S. Diagnóstico Microbiológico: Texto y Atlas en Color; Médica Panamericana: Madrid, Spain, 2018. [Google Scholar]
- Elashiry, M.M.; Bergeron, B.E.; Tay, F.R. Enterococcus faecalis in secondary apical periodontitis: Mechanisms of bacterial survival and disease persistence. Microb. Pathog. 2023, 183, 106337. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef]
- Elashiry, M.M.; Elashiry, M.; Zeitoun, R.; Elsayed, R.; Tian, F.; Saber, S.E.; Elashry, S.H.; Tay, F.R.; Cutler, C.W. Enterococcus faecalis Induces Differentiation of Immune-Aberrant Dendritic Cells from Murine Bone Marrow-Derived Stem Cells. Infect. Immun. 2020, 88, e00338-20. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Ma, R.; Jiang, W.; Deng, Z.; Chen, L.; Liang, Y.; Shao, L.; Zhao, W. Enterococcus faecalis-Induced Macrophage Necroptosis Promotes Refractory Apical Periodontitis. Microbiol. Spectr. 2022, 10, e0104522. [Google Scholar] [CrossRef]
- Tavares, W.L.; Neves de Brito, L.C.; Teles, R.P.; Massara, M.L.; Ribeiro Sobrinho, A.P.; Haffajee, A.D.; Socransky, S.S.; Teles, F.R. Microbiota of deciduous endodontic infections analysed by MDA and Checkerboard DNA-DNA hybridization. Int. Endod. J. 2011, 44, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Minhaco, V.M.T.R.; Huacho, P.M.M.; Imbriani, M.J.M.; Tonon, C.C.; Chorilli, M.; de Souza Rastelli, A.N.; Spolidorio, D.M.P. Improving antimicrobial activity against endodontic biofilm after exposure to blue light-activated novel curcumin nanoparticle. Photodiagn. Photodyn. Ther. 2023, 42, 103322. [Google Scholar] [CrossRef] [PubMed]
- Espindola, L.C.P.; do Nascimento, M.; do Souto, R.M.; Colombo, A.P.V. Antimicrobial susceptibility and virulence of Enterococcus spp. isolated from periodontitis-associated subgingival biofilm. J. Periodontol. 2021, 92, 1588–1600. [Google Scholar] [CrossRef] [PubMed]
- Dahlen, G.; Blomqvist, S.; Almståhl, A.; Carlén, A. Virulence factors and antibiotic susceptibility in enterococci isolated from oral mucosal and deep infections. J. Oral Microbiol. 2012, 4, 10855. [Google Scholar] [CrossRef] [PubMed]
- Ch’ng, J.H.; Chong, K.K.L.; Lam, L.N.; Wong, J.J.; Kline, K.A. Biofilm-associated infection by enterococci. Nat. Rev. Microbiol. 2019, 17, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, H.V.; Flores-Mireles, A.L.; Kau, A.L.; Kline, K.A.; Pinkner, J.S.; Neiers, F.; Normark, S.; Henriques-Normark, B.; Caparon, M.G.; Hultgren, S.J. Pilin and sortase residues critical for endocarditis- and biofilm-associated pilus biogenesis in Enterococcus faecalis. J. Bacteriol. 2013, 195, 4484–4495. [Google Scholar] [CrossRef] [PubMed]
- Brinkwirth, S.; Ayobami, O.; Eckmanns, T.; Markwart, R. Hospital-acquired infections caused by enterococci: A systematic review and meta-analysis, WHO European Region, 1 January 2010 to 4 February 2020. Euro Surveill. 2021, 26, 2001628. [Google Scholar] [CrossRef] [PubMed]
- Kristich, C.J.; Rice, L.B.; Arias, C.A. Enterococcal infection—Treatment and antibiotic resistance. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection; Massachusetts Eye and Ear Infirmary: Boston, MA, USA, 2014. [Google Scholar]
- Huang, L.; Dai, T.; Hamblin, M.R. Antimicrobial photodynamic inactivation and photodynamic therapy for infections. Methods Mol. Biol. 2010, 635, 155–173. [Google Scholar] [CrossRef] [PubMed]
- Dai, T.; Fuchs, B.B.; Coleman, J.J.; Prates, R.A.; Astrakas, C.; St Denis, T.G.; Ribeiro, M.S.; Mylonakis, E.; Hamblin, M.R.; Tegos, G.P. Concepts and principles of photodynamic therapy as an alternative antifungal discovery platform. Front. Microbiol. 2012, 3, 120. [Google Scholar] [CrossRef]
- Daniell, M.D.; Hill, J.S. A history of photodynamic therapy. Aust. N. Z. J. Surg. 1991, 61, 340–348. [Google Scholar] [CrossRef]
- Muehler, D.; Rupp, C.M.; Keceli, S.; Brochhausen, C.; Siegmund, H.; Maisch, T.; Hiller, K.A.; Buchalla, W.; Cieplik, F. Insights Into Mechanisms of Antimicrobial Photodynamic Action toward Biofilms Using Phenalen-1-One Derivatives as Photosensitizers. Front. Microbiol. 2020, 11, 589364. [Google Scholar] [CrossRef] [PubMed]
- Topaloglu, N.; Guney, M.; Aysan, N.; Gulsoy, M.; Yuksel, S. The role of reactive oxygen species in the antibacterial photodynamic treatment: Photoinactivation vs. proliferation. Lett. Appl. Microbiol. 2016, 62, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Cieplik, F.; Spath, A.; Regensburger, J.; Gollmer, A.; Tabenski, L.; Hiller, K.A.; Baumler, W.; Maisch, T.; Schmalz, G. Photodynamic biofilm inactivation by SAPYR—An exclusive singlet oxygen photosensitizer. Free Radic. Biol. Med. 2013, 65, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Morton, C.A.; Brown, S.B.; Collins, S.; Ibbotson, S.; Jenkinson, H.; Kurwa, H.; Langmack, K.; McKenna, K.; Moseley, H.; Pearse, A.D.; et al. Guidelines for topical photodynamic therapy: Report of a workshop of the British Photodermatology Group. Br. J. Dermatol. 2002, 146, 552–567. [Google Scholar] [CrossRef] [PubMed]
- Yoon, I.; Li, J.Z.; Shim, Y.K. Advance in photosensitizers and light delivery for photodynamic therapy. Clin. Endosc. 2013, 46, 7–23. [Google Scholar] [CrossRef] [PubMed]
- Garin, C.; Alejo, T.; Perez-Laguna, V.; Prieto, M.; Mendoza, G.; Arruebo, M.; Sebastian, V.; Rezusta, A. Chalcogenide nanoparticles and organic photosensitizers for synergetic antimicrobial photodynamic therapy. J. Mater. Chem. B 2021, 9, 6246–6259. [Google Scholar] [CrossRef]
- Abrahamse, H.; Hamblin, M.R.J.B.J. New photosensitizers for photodynamic therapy. Biochem. J. 2016, 473, 347–364. [Google Scholar] [CrossRef]
- Boyce, J.M. CDC guideline for hand hygiene in health-care setting. MMWR Recomm. Rep. 2002, 51, 1–44. [Google Scholar] [PubMed]
- Cieplik, F.; Deng, D.; Crielaard, W.; Buchalla, W.; Hellwig, E.; Al-Ahmad, A.; Maisch, T. Antimicrobial photodynamic therapy–what we know and what we don’t. Crit. Rev. Microbiol. 2018, 44, 571–589. [Google Scholar] [CrossRef]
- Wainwright, M. Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 1998, 42, 13–28. [Google Scholar] [CrossRef]
- Aydin, S.A.; Tasdemir, T.; Buruk, C.K.; Celik, D. Efficacy of Erbium, Chromium-doped Yttrium, Scandium, Gallium and Garnet Laser-activated Irrigation Compared with Passive Ultrasonic Irrigation, Conventional Irrigation, and Photodynamic Therapy against Enterococcus faecalis. J. Contemp. Dent. Pract. 2020, 21, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Tennert, C.; Drews, A.M.; Walther, V.; Altenburger, M.J.; Karygianni, L.; Wrbas, K.T.; Hellwig, E.; Al-Ahmad, A. Ultrasonic activation and chemical modification of photosensitizers enhances the effects of photodynamic therapy against Enterococcus faecalis root-canal isolates. Photodiagn. Photodyn. Ther. 2015, 12, 244–251. [Google Scholar] [CrossRef] [PubMed]
- Tennert, C.; Zinovieva, Y.; Shishkov, K.; Karygianni, L.; Altenburger, M.J.; Wierichs, R.J.; Al-Ahmad, A. Improving the Efficiency of Photodynamic Chemotherapy in Root Canals against Enterococcus faecalis In Vitro. Antibiotics 2020, 9, 543. [Google Scholar] [CrossRef] [PubMed]
- Misba, L.; Abdulrahman, H.; Khan, A.U. Photodynamic efficacy of toluidine blue O against mono species and dual species bacterial biofilm. Photodiagn. Photodyn. Ther. 2019, 26, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Afkhami, F.; Karimi, M.; Bahador, A.; Ahmadi, P.; Pourhajibagher, M.; Chiniforush, N. Evaluation of antimicrobial photodynamic therapy with toluidine blue against Enterococcus faecalis: Laser vs. LED. Photodiagn. Photodyn. Ther. 2020, 32, 102036. [Google Scholar] [CrossRef] [PubMed]
- Mozayeni, M.A.; Vatandoost, F.; Asnaashari, M.; Shokri, M.; Azari-Marhabi, S.; Asnaashari, N. Comparing the Efficacy of Toluidine Blue, Methylene Blue and Curcumin in Photodynamic Therapy against Enterococcus faecalis. J. Lasers Med. Sci. 2020, 11, S49–S54. [Google Scholar] [CrossRef]
- Misba, L.; Zaidi, S.; Khan, A.U. A comparison of antibacterial and antibiofilm efficacy of phenothiazinium dyes between Gram positive and Gram negative bacterial biofilm. Photodiagn. Photodyn. Ther. 2017, 18, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jimenez, L.; Fuste, E.; Martinez-Garriga, B.; Arnabat-Dominguez, J.; Vinuesa, T.; Vinas, M. Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers Med. Sci. 2015, 30, 1519–1526. [Google Scholar] [CrossRef]
- Afrasiabi, S.; Chiniforush, N. Antibacterial potential of riboflavin mediated blue diode laser photodynamic inactivation against Enterococcus faecalis: A laboratory investigation. Photodiagn. Photodyn. Ther. 2023, 41, 103291. [Google Scholar] [CrossRef]
- Soares, J.A.; Soares, S.; de Jesus Tavarez, R.R.; de Castro Rizzi, C.; Vaz Rodrigues, S.C.G.; Maia Filho, E.M.; Brito-Junior, M.; Pereira, R.D.; Magalhaes, P.P.; de Macedo Farias, L. Exploring different photodynamic therapy parameters to optimize elimination of Enterococcus faecalis in planktonic form. Photodiagn. Photodyn. Ther. 2018, 22, 127–131. [Google Scholar] [CrossRef]
- Soares, J.A.; Santos Soares, S.M.C.; Santos Cesar, C.A.; de Carvalho, M.A.R.; Brito-Junior, M.; de Sousa, G.R.; Soares, B.M.; de Macedo Farias, L. Monitoring the effectiveness of photodynamic therapy with periodic renewal of the photosensitizer on intracanal Enterococcus faecalis biofilms. Photodiagn. Photodyn. Ther. 2016, 13, 123–127. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, B.P.; Aguiar, C.M.; Camara, A.C.; de Albuquerque, M.M.; Correia, A.C.; Soares, M.F. The efficacy of photodynamic therapy and sodium hypochlorite in root canal disinfection by a single-file instrumentation technique. Photodiagn. Photodyn. Ther. 2015, 12, 436–443. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.M.; Lorenzon, E.N.; Cilli, E.M.; de Oliveira, K.T.; Fontana, C.R.; Mang, T.S. Photodynamic and peptide-based strategy to inhibit Gram-positive bacterial biofilm formation. Biofouling 2019, 35, 742–757. [Google Scholar] [CrossRef] [PubMed]
- de Freitas, L.M.; Lorenzon, E.N.; Santos-Filho, N.A.; Zago, L.H.P.; Uliana, M.P.; de Oliveira, K.T.; Cilli, E.M.; Fontana, C.R. Antimicrobial Photodynamic therapy enhanced by the peptide aurein 1.2. Sci. Rep. 2018, 8, 4212. [Google Scholar] [CrossRef] [PubMed]
- Sampaio, L.S.; de Annunzio, S.R.; de Freitas, L.M.; Dantas, L.O.; de Boni, L.; Donatoni, M.C.; de Oliveira, K.T.; Fontana, C.R. Influence of light intensity and irradiation mode on methylene blue, chlorin-e6 and curcumin-mediated photodynamic therapy against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2020, 31, 101925. [Google Scholar] [CrossRef] [PubMed]
- Dovigo, L.N.; Pavarina, A.C.; Ribeiro, A.P.; Brunetti, I.L.; Costa, C.A.; Jacomassi, D.P.; Bagnato, V.S.; Kurachi, C. Investigation of the photodynamic effects of curcumin against Candida albicans. Photochem. Photobiol. 2011, 87, 895–903. [Google Scholar] [CrossRef] [PubMed]
- de Annunzio, S.R.; de Freitas, L.M.; Blanco, A.L.; da Costa, M.M.; Carmona-Vargas, C.C.; de Oliveira, K.T.; Fontana, C.R. Susceptibility of Enterococcus faecalis and Propionibacterium acnes to antimicrobial photodynamic therapy. J. Photochem. Photobiol. B Biol. 2018, 178, 545–550. [Google Scholar] [CrossRef] [PubMed]
- Rocha, M.P.; Santos, M.S.; Rodrigues, P.L.F.; Araujo, T.S.D.; de Oliveira, J.M.; Rosa, L.P.; Bagnato, V.S.; da Silva, F.C. Photodynamic therapry with curcumin in the reduction of enterococcus faecalis biofilm in bone cavity: rMicrobiological and spectral fluorescense analysis. Photodiagn. Photodyn. Ther. 2021, 33, 102084. [Google Scholar] [CrossRef] [PubMed]
- Cusicanqui Mendez, D.A.; Cardenas Cuellar, M.R.; Feliz Pedrinha, V.; Velasquez Espedilla, E.G.; Bombarda de Andrade, F.; Rodrigues, P.A.; Cruvinel, T. Effects of curcumin-mediated antimicrobial photodynamic therapy associated to different chelators against Enterococcus faecalis biofilms. Photodiagn. Photodyn. Ther. 2021, 35, 102464. [Google Scholar] [CrossRef]
- Afkhami, F.; Akbari, S.; Chiniforush, N. Entrococcus faecalis Elimination in Root Canals Using Silver Nanoparticles, Photodynamic Therapy, Diode Laser, or Laser-activated Nanoparticles: An In Vitro Study. J. Endod. 2017, 43, 279–282. [Google Scholar] [CrossRef]
- Higuchi, N.; Hayashi, J.I.; Fujita, M.; Iwamura, Y.; Sasaki, Y.; Goto, R.; Ohno, T.; Nishida, E.; Yamamoto, G.; Kikuchi, T.; et al. Photodynamic Inactivation of an Endodontic Bacteria Using Diode Laser and Indocyanine Green-Loaded Nanosphere. Int. J. Mol. Sci. 2021, 22, 8384. [Google Scholar] [CrossRef]
- Bolhari, B.; Pourhajibagher, M.; Bazarjani, F.; Chiniforush, N.; Rad, M.R.; Pirmoazen, S.; Bahador, A. Ex vivo assessment of synergic effect of chlorhexidine for enhancing antimicrobial photodynamic therapy efficiency on expression patterns of biofilm-associated genes of Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2018, 22, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Chiniforush, N.; Pourhajibagher, M.; Parker, S.; Benedicenti, S.; Shahabi, S.; Bahador, A. The effect of sublethal photodynamic therapy on the expression of Enterococcal surface protein (esp) encoding gene in Enterococcus faecalis: Quantitative real-time PCR assessment. Photodiagn. Photodyn. Ther. 2018, 24, 311–317. [Google Scholar] [CrossRef]
- Beltes, C.; Sakkas, H.; Economides, N.; Papadopoulou, C. Antimicrobial photodynamic therapy using Indocyanine green and near-infrared diode laser in reducing Entrerococcus faecalis. Photodiagn. Photodyn. Ther. 2017, 17, 5–8. [Google Scholar] [CrossRef]
- Beltes, C.; Economides, N.; Sakkas, H.; Papadopoulou, C.; Lambrianidis, T. Evaluation of Antimicrobial Photodynamic Therapy Using Indocyanine Green and Near-Infrared Diode Laser against Enterococcus faecalis in Infected Human Root Canals. Photomed. Laser Surg. 2017, 35, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Chiniforush, N.; Pourhajibagher, M.; Parker, S.; Shahabi, S.; Bahador, A. The in vitro effect of antimicrobial photodynamic therapy with indocyanine green on Enterococcus faecalis: Influence of a washing vs. non-washing procedure. Photodiagn. Photodyn. Ther. 2016, 16, 119–123. [Google Scholar] [CrossRef]
- Shahmoradi, S.; Shariati, A.; Zargar, N.; Yadegari, Z.; Asnaashari, M.; Amini, S.M.; Darban-Sarokhalil, D. Antimicrobial effects of selenium nanoparticles in combination with photodynamic therapy against Enterococcus faecalis biofilm. Photodiagn. Photodyn. Ther. 2021, 35, 102398. [Google Scholar] [CrossRef] [PubMed]
- Petrini, M.; Pierfelice, T.V.; D’Amico, E.; Carlesi, T.; Iezzi, G.; D’Arcangelo, C.; Di Lodovico, S.; Piattelli, A.; D’Ercole, S. Comparison between Single and Multi-LED Emitters for Photodynamic Therapy: An In Vitro Study on Enterococcus faecalis and Human Gingival Fibroblasts. Int. J. Environ. Res. Public Health 2022, 19, 3048. [Google Scholar] [CrossRef]
- Kashef, N.; Borghei, Y.S.; Djavid, G.E. Photodynamic effect of hypericin on the microorganisms and primary human fibroblasts. Photodiagn. Photodyn. Ther. 2013, 10, 150–155. [Google Scholar] [CrossRef]
- Borba, A.S.M.; da Silva Pereira, S.M.; Borba, M.C.M.; Paschoal, M.A.B.; de Jesus Tavarez, R.R.; de Castro Rizzi, C.; Ferreira, M.C.; Maia Filho, E.M. Photodynamic therapy with high-power LED mediated by erythrosine eliminates Enterococcus faecalis in planktonic forms. Photodiagn. Photodyn. Ther. 2017, 19, 348–351. [Google Scholar] [CrossRef]
- Silva, T.C.; Pereira, A.F.; Buzalaf, M.A.; Machado, M.A.; Crielaard, W.; Deng, D.M. Diverse outcomes of Photodynamic Antimicrobial Chemotherapy on five Enterococcus faecalis strains. Photodiagn. Photodyn. Ther. 2014, 11, 283–289. [Google Scholar] [CrossRef]
- Gusmao, L.A.; Machado, A.E.H.; Perussi, J.R. Improved Hypericin solubility via beta-cyclodextrin complexation: Photochemical and theoretical study for PDT applications. Photodiagn. Photodyn. Ther. 2022, 40, 103073. [Google Scholar] [CrossRef] [PubMed]
- Greeson, J.M.; Sanford, B.; Monti, D.A. St. John’s wort (Hypericum perforatum): A review of the current pharmacological, toxicological, and clinical literature. Psychopharmacology 2001, 153, 402–414. [Google Scholar] [CrossRef] [PubMed]
- Eriksson, E.S.; Eriksson, L.A. Identifying the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) as a potential target for hypericin--a theoretical study. Phys. Chem. Chem. Phys. 2012, 14, 12637–12646. [Google Scholar] [CrossRef] [PubMed]
- Ghorbanzadeh, R.; Assadian, H.; Chiniforush, N.; Parker, S.; Pourakbari, B.; Ehsani, B.; Alikhani, M.Y.; Bahador, A. Modulation of virulence in Enterococcus faecalis cells surviving antimicrobial photodynamic inactivation with reduced graphene oxide-curcumin: An ex vivo biofilm model. Photodiagn. Photodyn. Ther. 2020, 29, 101643. [Google Scholar] [CrossRef] [PubMed]
- Ghinzelli, G.C.; Souza, M.A.; Cecchin, D.; Farina, A.P.; de Figueiredo, J.A. Influence of ultrasonic activation on photodynamic therapy over root canal system infected with Enterococcus faecalis—an in vitro study. Photodiagn. Photodyn. Ther. 2014, 11, 472–478. [Google Scholar] [CrossRef] [PubMed]
- Dragana, R.; Jelena, M.; Jovan, M.; Biljana, N.; Dejan, M. Antibacterial efficiency of adjuvant photodynamic therapy and high-power diode laser in the treatment of young permanent teeth with chronic periapical periodontitis. A prospective clinical study. Photodiagn. Photodyn. Ther. 2022, 41, 103129. [Google Scholar] [CrossRef] [PubMed]
- Al-Ahmad, A.; Tennert, C.; Karygianni, L.; Wrbas, K.T.; Hellwig, E.; Altenburger, M.J. Antimicrobial photodynamic therapy using visible light plus water-filtered infrared-A (wIRA). J. Med. Microbiol. 2013, 62, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Rapacka-Zdonczyk, A.; Wozniak, A.; Pieranski, M.; Woziwodzka, A.; Bielawski, K.P.; Grinholc, M. Development of Staphylococcus aureus tolerance to antimicrobial photodynamic inactivation and antimicrobial blue light upon sub-lethal treatment. Sci. Rep. 2019, 9, 9423. [Google Scholar] [CrossRef]
- Maciel Martins, C.R.; de Andrade, M.V.; Carvalho, A.P.; Afonso Pereira, R.M.; Bresolin, C.R.; Mello-Moura, A.C.V.; Imparato, J.C.P. Photodynamic therapy associated final irrigation in root canals of the primary teeth. Photodiagn. Photodyn. Ther. 2021, 33, 102182. [Google Scholar] [CrossRef]
- Asnaashari, M.; Kooshki, N.; Salehi, M.M.; Azari-Marhabi, S.; Amin Moghadassi, H. Comparison of Antibacterial Effects of Photodynamic Therapy and an Irrigation Activation System on Root Canals Infected With Enterococcus faecalis: An In Vitro Study. J. Lasers Med. Sci. 2020, 11, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef]
- Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nanosci. Technol. 2008, 7, 771–782. [Google Scholar] [CrossRef]
- He, H.; Nieminen, A.-L.; Xu, P. A bioactivatable self-quenched nanogel for targeted photodynamic therapy. Biomater. Sci. 2019, 7, 5143–5149. [Google Scholar] [CrossRef] [PubMed]
- Zanella, R. Metodologías para la síntesis de nanopartículas: Controlando forma y tamaño. Mundo Nano. Rev. Interdiscip. Nanociencias Nanotecnol. 2012, 5, 69–81. [Google Scholar] [CrossRef]
- Urrejola, M.C.; Soto, L.V.; Zumarán, C.C.; Peñaloza, J.P.; Álvarez, B.; Fuentevilla, I.; Haidar, Z.S. Sistemas de nanopartículas poliméricas II: Estructura, métodos de elaboración, características, propiedades, biofuncionalización y tecnologías de auto-ensamblaje capa por capa (layer-by-layer self-assembly). Int. J. Morphol. 2018, 36, 1463–1471. [Google Scholar] [CrossRef]
- Perni, S.; Prokopovich, P.; Pratten, J.; Parkin, I.P.; Wilson, M. Nanoparticles: Their potential use in antibacterial photodynamic therapy. Photochem. Photobiol. Sci. 2011, 10, 712–720. [Google Scholar] [CrossRef]
- Bacali, C.; Carpa, R.; Buduru, S.; Moldovan, M.L.; Baldea, I.; Constantin, A.; Moldovan, M.; Prodan, D.; Dascalu Rusu, L.M.; Lucaciu, O.; et al. Association of Graphene Silver Polymethyl Methacrylate (PMMA) with Photodynamic Therapy for Inactivation of Halitosis Responsible Bacteria in Denture Wearers. Nanomaterials 2021, 11, 1643. [Google Scholar] [CrossRef] [PubMed]
- Aydin, H.; Er, K.; Kustarci, A.; Akarsu, M.; Gencer, G.M.; Er, H.; Felek, R. Antibacterial activity of silver nanoparticles activated by photodynamic therapy in infected root canals. Dent. Med. Probl. 2020, 57, 393–400. [Google Scholar] [CrossRef]
- Shrestha, A.; Kishen, A. Antibacterial efficacy of photosensitizer functionalized biopolymeric nanoparticles in the presence of tissue inhibitors in root canal. J. Endod. 2014, 40, 566–570. [Google Scholar] [CrossRef]
- Maisch, T.; Scholz, K.J.; Forster, E.M.; Wenzl, V.; Auer, D.L.; Cieplik, F.; Hiller, K.A. Optimal effective concentration combinations (OPECCs) for binary application of membrane-targeting antiseptics and TMPyP-mediated antimicrobial photodynamic therapy. Photochem. Photobiol. Sci. 2024, 23, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Afrasiabi, S.; Chiniforush, N. An in vitro study on the efficacy of hydrogen peroxide mediated high-power photodynamic therapy affecting Enterococcus faecalis biofilm formation and dispersal. Photodiagn. Photodyn. Ther. 2023, 41, 103310. [Google Scholar] [CrossRef]
- Masuda, Y.; Sakagami, H.; Horiike, M.; Kadokura, H.; Yamasaki, T.; Klokkevold, P.R.; Takei, H.H.; Yokose, S. Photodynamic Therapy with Pyoktanin Blue and Diode Laser for Elimination of Enterococcus faecalis. In Vivo 2018, 32, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Makdoumi, K.; Backman, A. Photodynamic UVA-riboflavin bacterial elimination in antibiotic-resistant bacteria. Clin. Exp. Ophthalmol. 2016, 44, 582–586. [Google Scholar] [CrossRef] [PubMed]
- Sebrao, C.C.; Bezerra, A.G., Jr.; de Franca, P.H.; Ferreira, L.E.; Westphalen, V.P. Comparison of the Efficiency of Rose Bengal and Methylene Blue as Photosensitizers in Photodynamic Therapy Techniques for Enterococcus faecalis Inactivation. Photomed. Laser Surg. 2017, 35, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.M.; Jung, H.I.; Kim, B.I. Susceptibility of oral bacteria to antibacterial photodynamic therapy. J. Oral Microbiol. 2019, 11, 1644111. [Google Scholar] [CrossRef] [PubMed]
- Asnaashari, M.; Mojahedi, S.M.; Asadi, Z.; Azari-Marhabi, S.; Maleki, A. A comparison of the antibacterial activity of the two methods of photodynamic therapy (using diode laser 810 nm and LED lamp 630 nm) against Enterococcus faecalis in extracted human anterior teeth. Photodiagn. Photodyn. Ther. 2016, 13, 233–237. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Yuan, L.; Jia, W.; Qin, M.; Wang, Y. Effects of Rose Bengal- and Methylene Blue-Mediated Potassium Iodide-Potentiated Photodynamic Therapy on Enterococcus faecalis: A Comparative Study. Lasers Surg. Med. 2021, 53, 400–410. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, C.; Karaarslan, E.S.; Ozsevik, S.; Zer, Y.; Sari, T.; Usumez, A. Antimicrobial efficiency of photodynamic therapy with different irradiation durations. Eur. J. Dent. 2013, 7, 469–473. [Google Scholar] [CrossRef]
- Sobotta, L.; Dlugaszewska, J.; Kasprzycki, P.; Lijewski, S.; Teubert, A.; Mielcarek, J.; Gdaniec, M.; Goslinski, T.; Fita, P.; Tykarska, E. In vitro photodynamic activity of lipid vesicles with zinc phthalocyanine derivative against Enterococcus faecalis. J. Photochem. Photobiol. B Biol. 2018, 183, 111–118. [Google Scholar] [CrossRef]
- Zong, B.; Li, X.; Xu, Q.; Wang, D.; Gao, P.; Zhou, Q. Enhanced Eradication of Enterococcus faecalis Biofilms by Quaternized Chitosan-Coated Upconversion Nanoparticles for Photodynamic Therapy in Persistent Endodontic Infections. Front. Microbiol. 2022, 13, 909492. [Google Scholar] [CrossRef] [PubMed]
- Maldonado-Carmona, N.; Marchand, G.; Villandier, N.; Ouk, T.S.; Pereira, M.M.; Calvete, M.J.F.; Calliste, C.A.; Zak, A.; Piksa, M.; Pawlik, K.J.; et al. Porphyrin-Loaded Lignin Nanoparticles against Bacteria: A Photodynamic Antimicrobial Chemotherapy Application. Front. Microbiol. 2020, 11, 606185. [Google Scholar] [CrossRef] [PubMed]
- Golmohamadpour, A.; Bahramian, B.; Khoobi, M.; Pourhajibagher, M.; Barikani, H.R.; Bahador, A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2018, 23, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, Y.; Aoki, A.; Hiratsuka, K.; Chui, C.; Ichinose, A.; Aung, N.; Kitanaka, Y.; Hayashi, S.; Toyoshima, K.; Iwata, T.; et al. Application of Different Wavelengths of LED Lights in Antimicrobial Photodynamic Therapy for the Treatment of Periodontal Disease. Antibiotics 2023, 12, 1676. [Google Scholar] [CrossRef]
- Pourhajibagher, M.; Chiniforush, N.; Shahabi, S.; Ghorbanzadeh, R.; Bahador, A. Sub-lethal doses of photodynamic therapy affect biofilm formation ability and metabolic activity of Enterococcus faecalis. Photodiagn. Photodyn. Ther. 2016, 15, 159–166. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubilar-Huenchuman, M.; Ortega-Villanueva, C.; González, I.A.; Palavecino, C.E. The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics 2024, 16, 825. https://doi.org/10.3390/pharmaceutics16060825
Rubilar-Huenchuman M, Ortega-Villanueva C, González IA, Palavecino CE. The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics. 2024; 16(6):825. https://doi.org/10.3390/pharmaceutics16060825
Chicago/Turabian StyleRubilar-Huenchuman, Mariaignacia, Camilo Ortega-Villanueva, Iván A. González, and Christian Erick Palavecino. 2024. "The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review" Pharmaceutics 16, no. 6: 825. https://doi.org/10.3390/pharmaceutics16060825
APA StyleRubilar-Huenchuman, M., Ortega-Villanueva, C., González, I. A., & Palavecino, C. E. (2024). The Effect of Photodynamic Therapy on Enterococcus spp. and Its Application in Dentistry: A Scoping Review. Pharmaceutics, 16(6), 825. https://doi.org/10.3390/pharmaceutics16060825