Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Extract Preparation
2.2. Carajurine Identification and Total Anthocyanin Quantitation
2.3. Anthocyanins Identification by Mass Spectrometry
2.4. Nanocapsules Preparation
2.5. Particle Size and Polydispersity Index
2.6. Effect of pH
2.7. Particle Morphology by SEM
2.8. Cell Culture
2.9. Cytotoxicity Assay
2.10. Colony Formation Assay
2.11. Cytokine Dosage
2.12. Data Analysis
3. Results
3.1. Extract Characterization
3.2. Nanocapsules Characterization
3.3. Effect of pH in Particle Size and ζ-Potential
3.4. Scanning Electronic Microscopy
3.5. Cytotoxic Activities
3.6. Inhibition of Colony Formation
3.7. Immunomodulatory Activities
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sampaio, M.M.; Santos, M.L.C.; Marques, H.S.; Gonçalves, V.L.d.S.; Araújo, G.R.L.; Lopes, L.W.; Apolonio, J.S.; Silva, C.S.; Santos, L.K.d.S.; Cuzzuol, B.R.; et al. Chronic myeloid leukemia-from the Philadelphia chromosome to specific target drugs: A literature review. World J. Clin. Oncol. 2021, 12, 69–94. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.L.; Hege, K.; Yang, J.; Kalpage, H.A.; Su, Y.; Edwards, H.; Hüttemann, M.; Taub, J.W.; Ge, Y. Targeting multiple signaling pathways: The new approach to acute myeloid leukemia therapy. Signal Transduct. Target. Ther. 2020, 5, 288. [Google Scholar] [CrossRef] [PubMed]
- Soni, G.; Yadav, K.S. Applications of nanoparticles in treatment and diagnosis of leukemia. Mater. Sci. Eng. C 2015, 47, 156–164. [Google Scholar] [CrossRef]
- Niu, J.; Peng, D.; Liu, L. Drug Resistance Mechanisms of Acute Myeloid Leukemia Stem Cells. Front. Oncol. 2022, 12, 896426. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yadav, N.; Mudgal, D.; Anand, R.; Jindal, S.; Mishra, V. Recent development in nanoencapsulation and delivery of natural bioactives through chitosan scaffolds for various biological applications. Int. J. Biol. Macromol. 2022, 220, 537–572. [Google Scholar] [CrossRef]
- Shetta, A.; Kegere, J.; Mamdouh, W. Comparative study of encapsulated peppermint and green tea essential oils in chitosan nanoparticles: Encapsulation, thermal stability, in-vitro release, antioxidant and antibacterial activities. Int. J. Biol. Macromol. 2019, 126, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Meng, F.; Haag, R.; Zhong, Z. Actively targeted nanomedicines for precision cancer therapy: Concept, construction, challenges and clinical translation. J. Control. Release 2021, 329, 676–695. [Google Scholar] [CrossRef] [PubMed]
- Wicki, A.; Witzigmann, D.; Balasubramanian, V.; Huwyler, J. Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. J. Control. Release 2015, 200, 138–157. [Google Scholar] [CrossRef]
- Chavda, V.P.; Patel, A.B.; Mistry, K.J.; Suthar, S.F.; Wu, Z.-X.; Chen, Z.-S.; Hou, K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front. Oncol. 2022, 12, 867655. [Google Scholar] [CrossRef]
- Lima, J.C.; De Oliveira, R.G.; Silva, V.C.; de Sousa, P.T., Jr.; Violante, I.M.; Macho, A.; Martins, D.T.D.O. Anti-inflammatory activity of 4′,6,7-trihydroxy-5-methoxyflavone from Fridericia chica (Bonpl. ) LG Lohmann. Nat. Prod. Res. 2020, 34, 726–730. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Wallqvist, A.; Covell, D.G. Anticancer metal compounds in NCI’s tumor-screening database: Putative mode of action. Biochem. Pharmacol. 2005, 69, 1009–1039. [Google Scholar] [CrossRef]
- Ribeiro, A.F.C.; Telles, T.C.; Ferraz, V.P.; Souza-Fagundes, E.M.; Cassali, G.D.; Carvalho, A.T.; Melo, M.M. Effect of Arrabidaea chica extracts on the Ehrlich solid tumor development. Rev. Bras. Farm. 2012, 22, 364–373. [Google Scholar] [CrossRef]
- Batalha, A.D.d.S.J.; Souza, D.C.d.M.; Ubiera, R.D.; Chaves, F.C.M.; Monteiro, W.M.; da Silva, F.M.A.; Koolen, H.H.F.; Boechat, A.L.; Sartim, M.A. Therapeutic Potential of Leaves from Fridericia chica (Bonpl.) L. G. Lohmann: Botanical Aspects, Phytochemical and Biological, Anti-Inflammatory, Antioxidant and Healing Action. Biomolecules 2022, 12, 1208. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Moragas-Tellis, C.J.; Almeida-Souza, F.; Chagas, M.D.S.D.S.; Souza, P.V.R.D.; Silva-Silva, J.V.; Ramos, Y.J.; Moreira, D.D.L.; Calabrese, K.D.S.; Behrens, M.D. The Influence of anthocyanidin profile on antileishmanial activity of Arrabidaea chica morphotypes. Molecules 2020, 25, 3547. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taffarello, D.; Jorge, M.P.; Sousa, I.M.D.O.; Duarte, M.C.T.; Figueira, G.M.; Queiroz, N.D.C.A.; Rodrigues, R.A.F.; Carvalho, J.E.D.; Goes, A.L.T.R.; Foglio, M.A.; et al. Cabral atividade de extratos de Arrabidaea chica (humb. & bonpl.) verlot obtidos por processos biotecnológicos sobre a proliferação de fibroblastos e células tumorais humanas. Quim. Nova 2013, 36, 431–436. [Google Scholar]
- Höfling, J.; Anibal, P.; Obando-Pereda, G.; Peixoto, I.; Furletti, V.; Foglio, M.; Gonçalves, R. Antimicrobial potential of some plant extracts against Candida species. Braz. J. Biol. 2010, 70, 1065–1068. [Google Scholar] [CrossRef]
- Jorge, M.P.; Madjarof, C.; Ruiz, A.L.T.G.; Fernandes, A.T.; Rodrigues, R.A.F.; de Oliveira Sousa, I.M.; Foglio, M.A.; de Carvalho, J.E. Evaluation of wound healing properties of Arrabidaea chica Verlot extract. J. Ethnopharmacol. 2008, 118, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, W.L.R.; Pinto, L.D.N.; Quignard, E.; Vieira, J.M.D.S.; Silva, J.O.C., Jr.; Albuquerque, S. Arrabidaea chica (HBK) Verlot: Phytochemical approach, antifungal and trypanocidal activities. Rev. Bras. Farmacogn. 2008, 18, 544. [Google Scholar] [CrossRef]
- Mafioleti, L.; da Silva Junior, I.F.; Colodel, E.M.; Flach, A.; Martins, D.T. Evaluation of the toxicity and antimicrobial activity of hydroethanolic extract of Arrabidaea chica (Humb. & Bonpl.) B. Verl. J. Ethnopharmacol. 2013, 150, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Rocha, K.B.F.; Oliveira, C.N.; Azevedo, M.; de Macedo, R.; Medeiros, A.C. Effect of Arrabidaea chica extract against chemically induced breast cancer in animal model. Acta Cir. Bras. 2019, 34, e201901001. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Taffarello, D. Extratos de Arrabidaea chica (Humb. & Bonpl.) Verlot Obtidos por Processos Biotecnológicos: Otimização da Extração e Avaliação Farmacológica. Master’s Thesis, Interunidades em Biotecnologia, São Paulo, Brazil, 2009. [Google Scholar]
- Vasconcelos, C.C.; Lopes, A.J.O.; Sousa, E.L.F.; Camelo, D.S.; Lima, F.C.V.M.; Rocha, C.Q.d.; Silva, G.E.B.; Garcia, J.B.S.; Cartágenes, M.d.S.d.S. Effects of Extract of Arrabidaea chica Verlot on an Experimental Model of Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 4717. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Neto, S.F.; Prada, A.L.; Achod, L.D.R.; Torquato, H.F.V.; Lima, C.S.; Paredes-Gamero, E.J.; de Moraes, M.O.S.; Lima, E.S.; Sosa, E.H.; de Souza, T.P.; et al. α-amyrin-loaded nanocapsules produce selective cytotoxic activity in leukemic cells. Biomed. Pharmacother. 2021, 139, 111656. [Google Scholar] [CrossRef] [PubMed]
- ISO 22412; International Standard. Particle Size Analysis: Dynamic Light Scattering (DLS). ISO: Geneva, Switzerland, 2008.
- McNeil, S.E. Characterization of Nanoparticles Intended for Drug Delivery; McNeil, S.E., Ed.; Humana Press: Totowa, NJ, USA, 2011; Volume 697. [Google Scholar] [CrossRef]
- Amado, J.R.R.; Prada, A.L.; Duarte, J.L.; Keita, H.; da Silva, H.R.; Ferreira, A.M.; Sosa, E.H.; Carvalho, J.C.T. Development, stability and in vitro delivery profile of new loratadine-loaded nanoparticles. Saudi Pharm. J. 2017, 25, 1158–1168. [Google Scholar] [CrossRef] [PubMed]
- Acácio, B.R.; Prada, A.L.; Neto, S.F.; Gomes, G.B.; Perdomo, R.T.; Nazario, C.E.D.; Neto, E.S.; Martines, M.A.U.; de Almeida, D.A.T.; Junior, A.G.; et al. Cytotoxicity, anti-inflammatory effect, and acute oral toxicity of a novel Attalea phalerata kernel oil-loaded nanocapsules. Biomed. Pharmacother. 2024, 174, 116308. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira, R.C.; Pontes, G.S.; Kostyuk, A.; Camargo, G.B.C.; Dhyani, A.; Shvydenko, T.; Shvydenko, K.; Grafov, A. Anticancer and Immunomodulatory Activities of a Novel Water-Soluble Derivative of Ellipticine. Molecules 2020, 25, 2130. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Sousa, I.M. de Oliveira Sousa, I.M. Avaliação da Estabilidade do Extrato seco e Formulações de Bases Semi Sólidas, Contendo Arrabidaea chica Verlot, Para uso em Cicatrização. Master’s Thesis, Universidade Estadual de Campinas, Instituto de Biologia, Campinas, Brazil, 2013. Available online: https://www.academia.edu/111773573/Avalia%C3%A7%C3%A3o_da_estabilidade_do_extrato_seco_e_formula%C3%A7%C3%B5es_de_bases_semi_s%C3%B3lidas_contendo_Arrabidaea_chica_Verlot_para_uso_em_cicatriza%C3%A7%C3%A3o (accessed on 1 June 2024).
- Prada, A.L.; Keita, H.; de Souza, T.P.; Lima, E.S.; Acho, L.D.R.; Silva, M.d.J.A.d.; Carvalho, J.C.T.; Amado, J.R.R. Cassia grandis Lf nanodispersion is a hypoglycemic product with a potent α-glucosidase and pancreatic lipase inhibitor effect. Saudi Pharm. J. 2019, 27, 191–199. [Google Scholar] [CrossRef]
- BASF. Technical Information. Kollicoat MAE 100P: Methacrylic Acids/Ethyl Acrylates Copolymer for Enteric Coating. BASF Pharma Ingredients and Service, The Chemical Company. 2019. Available online: https://pharma.basf.com/technicalinformation/30070095/kollicoat-mae-100-p (accessed on 12 January 2024).
- Takenaka, I.K.T.M.; Amorim, J.M.; de Barros, P.A.V.; Brandão, G.C.; Contarini, S.M.L.; de Sales Souza e Melo, É.L.; de Almeida-Leite, C.M.; Martins, F.D.S.; Cardoso, V.N.; Castilho, R.O.; et al. Chemical Characterization and Anti-inflammatory Assessment of the Hydroethanolic Extract of Fridericia chica. Rev. Bras. Farm. 2020, 30, 559–567. [Google Scholar] [CrossRef]
- Servat-Medina, L.; González-Gómez, A.; Reyes-Ortega, F.; Sousa, I.M.O.; Queiroz, N.d.C.A.; Zago, P.M.W.; Jorge, M.P.; Monteiro, K.M.; Carvalho, J.E.; Román, J.S.; et al. Chitosan–tripolyphosphate nanoparticles as Arrabidaea chica standardized extract carrier: Synthesis, characterization, biocompatibility, and antiulcerogenic activity. Int. J. Nanomed. 2015, ume 10, 3897–3909. [Google Scholar] [CrossRef]
- Ramos, P.; Pedra, N.; Soares, M.; da Silveira, E.; Oliveira, P.; Grecco, F.; da Silva, L.; Ferreira, L.; Ribas, D.; Gehrcke, M.; et al. Ketoprofen-loaded rose hip oil nanocapsules attenuate chronic inflammatory response in a pre-clinical trial in mice. Mater. Sci. Eng. C 2019, 103, 109742. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Gong, C.; Song, H.; Cui, Y. Effects of anthocyanins on the prevention and treatment of cancer. Br. J. Pharmacol. 2017, 174, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Binder, S.; Luciano, M.; Horejs-Hoeck, J. The cytokine network in acute myeloid leukemia (AML): A focus on pro- and anti-inflammatory mediators. Cytokine Growth Factor Rev. 2018, 43, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Sariani, O.K.; Eghbalpour, S.; Kazemi, E.; Buzhani, K.R.; Zaker, F. Pathogenic and therapeutic roles of cytokines in acute myeloid leukemia. Cytokine 2021, 142, 155508. [Google Scholar] [CrossRef] [PubMed]
- Carey, A.; Edwards, D.K.; Eide, C.A.; Newell, L.; Traer, E.; Medeiros, B.C.; Pollyea, D.A.; Deininger, M.W.; Collins, R.H.; Tyner, J.W.; et al. Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Rep. 2017, 18, 3204–3218. [Google Scholar] [CrossRef] [PubMed]
- Mikucki, M.E.; Fisher, D.T.; Ku, A.W.; Appenheimer, M.M.; Muhitch, J.B.; Evans, S.S. Preconditioning thermal therapy: Flipping the switch on IL-6 for anti-tumour immunity. Int. J. Hyperth. 2013, 29, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.T.; Chen, Q.; Skitzki, J.J.; Muhitch, J.B.; Zhou, L.; Appenheimer, M.M.; Vardam, T.D.; Weis, E.L.; Passanese, J.; Wang, W.-C.; et al. IL-6 trans-signaling licenses mouse and human tumor microvascular gateways for trafficking of cytotoxic T cells. J. Clin. Investig. 2011, 121, 3846–3859. [Google Scholar] [CrossRef] [PubMed]
- Oft, M. IL-10: Master Switch from Tumor-Promoting Inflammation to Antitumor Immunity. Cancer Immunol. Res. 2014, 2, 194–199. [Google Scholar] [CrossRef]
- Nguyen, K.G.; Vrabel, M.R.; Mantooth, S.M.; Hopkins, J.J.; Wagner, E.S.; Gabaldon, T.A.; Zaharoff, D.A. Localized Interleukin-12 for Cancer Immunotherapy. Front. Immunol. 2020, 11, 575597. [Google Scholar] [CrossRef]
- Gallipoli, P.; Pellicano, F.; Morrison, H.; Laidlaw, K.; Allan, E.K.; Bhatia, R.; Copland, M.; Jørgensen, H.G.; Holyoake, T.L. Autocrine TNF-α production supports CML stem and progenitor cell survival and enhances their proliferation. Blood 2013, 122, 3335–3339. [Google Scholar] [CrossRef]
- Zhang, A.Y.; Harada, H.; Bluethmann, J.B.; Wang, S.; Nakao, N.; Mukaida, K. Matsushima, Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: Increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 1995, 86, 2930–2937. [Google Scholar] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Freitas Gomes, A.; Batalha, A.D.d.S.J.; de Castro Alves, C.E.; Galvão de Azevedo, R.; Rodriguez Amado, J.R.; Pereira de Souza, T.; Koolen, H.H.F.; da Silva, F.M.A.; Chaves, F.C.M.; Florentino Neto, S.; et al. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics 2024, 16, 828. https://doi.org/10.3390/pharmaceutics16060828
de Freitas Gomes A, Batalha ADdSJ, de Castro Alves CE, Galvão de Azevedo R, Rodriguez Amado JR, Pereira de Souza T, Koolen HHF, da Silva FMA, Chaves FCM, Florentino Neto S, et al. Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics. 2024; 16(6):828. https://doi.org/10.3390/pharmaceutics16060828
Chicago/Turabian Stylede Freitas Gomes, Alice, Adriane Dâmares de Souza Jorge Batalha, Carlos Eduardo de Castro Alves, Renata Galvão de Azevedo, Jesus Rafael Rodriguez Amado, Tatiane Pereira de Souza, Hector Henrique Ferreira Koolen, Felipe Moura Araújo da Silva, Francisco Celio Maia Chaves, Serafim Florentino Neto, and et al. 2024. "Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia" Pharmaceutics 16, no. 6: 828. https://doi.org/10.3390/pharmaceutics16060828
APA Stylede Freitas Gomes, A., Batalha, A. D. d. S. J., de Castro Alves, C. E., Galvão de Azevedo, R., Rodriguez Amado, J. R., Pereira de Souza, T., Koolen, H. H. F., da Silva, F. M. A., Chaves, F. C. M., Florentino Neto, S., Boechat, A. L., & Soares Pontes, G. (2024). Immunomodulatory and Anticancer Effects of Fridericia chica Extract-Loaded Nanocapsules in Myeloid Leukemia. Pharmaceutics, 16(6), 828. https://doi.org/10.3390/pharmaceutics16060828