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Abstract: The state of well-being and health of our body is regulated by the fine osmotic and bio-
chemical balance established between the cells of the different tissues, organs, and systems. Specific
districts of the human body are defined, kept in the correct state of functioning, and, therefore,
protected from exogenous or endogenous insults of both mechanical, physical, and biological nature
by the presence of different barrier systems. In addition to the placental barrier, which even acts as a
linker between two different organisms, the mother and the fetus, all human body barriers, including
the blood–brain barrier (BBB), blood–retinal barrier, blood–nerve barrier, blood–lymph barrier, and
blood–cerebrospinal fluid barrier, operate to maintain the physiological homeostasis within tissues
and organs. From a pharmaceutical point of view, the most challenging is undoubtedly the BBB,
since its presence notably complicates the treatment of brain disorders. BBB action can impair the
delivery of chemical drugs and biopharmaceuticals into the brain, reducing their therapeutic effi-
cacy and/or increasing their unwanted bioaccumulation in the surrounding healthy tissues. Recent
nanotechnological innovation provides advanced biomaterials and ad hoc customized engineering
and functionalization methods able to assist in brain-targeted drug delivery. In this context, lipid
nanocarriers, including both synthetic (liposomes, solid lipid nanoparticles, nanoemulsions, nanos-
tructured lipid carriers, niosomes, proniosomes, and cubosomes) and cell-derived ones (extracellular
vesicles and cell membrane-derived nanocarriers), are considered one of the most successful brain
delivery systems due to their reasonable biocompatibility and ability to cross the BBB. This review
aims to provide a complete and up-to-date point of view on the efficacy of the most varied lipid
carriers, whether FDA-approved, involved in clinical trials, or used in in vitro or in vivo studies, for
the treatment of inflammatory, cancerous, or infectious brain diseases.

Keywords: blood–brain barrier; brain diseases; nanotechnologies; liposomes; extracellular vesicles;
lipid-based nanocarriers; drug delivery

1. Introduction

One of the main functions of the vascular system is to deliver oxygen and nutrients
from the heart to all functional districts and, at the same time, remove carbon dioxide
and metabolic waste from tissues. This system is composed of arteries and arterioles,
which deliver blood to the tissues of the capillary bed and assist gas and nutrient exchange
within tissues, and venules and veins, which drain blood from tissues. The microvascula-
ture, comprising capillaries and postcapillary venules, is the constitutive component for
the establishment and maintenance of tissue health via blood perfusion and a dynamic
interaction between tissues and the extracellular environment [1].

The unique microvasculature system present in the brain is the blood–brain barrier
(BBB). Its peculiarity relies on the presence of continuous non-fenestrated capillaries,
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allowing at the same time precise regulation of brain homeostasis and protection from
physical, chemical, and biological external agents.

However, although the strict selectivity of BBB is necessary for proper brain func-
tioning, it undoubtedly represents an obstacle to the effective delivery of drugs in the
case of neurodegenerative diseases or cancer, excluding more than 98% of therapeutic
molecules from entering the brain [2]. This BBB feature makes the treatments of many brain
diseases, such as brain tumors, Alzheimer’s disease (AD), Parkinson’s disease (PD), and
Huntington’s disease (HD), difficult and sometimes ineffective.

There are different methods to increase the efficacy of drug delivery across the BBB, but
each of them has some disadvantages. The lipid solubility of the drug can be improved, but
it can also affect its pharmacological activity. The BBB could be temporarily and reversibly
disrupted in a non-specific manner and could either damage endothelial cells or brain
tissues, allowing at the same time the access of harmful or toxic compounds. The BBB could
also be bypassed through the intranasal route, limiting drug administration, and by means
of invasive approaches, causing patient discomfort and possible sites of pathogen entry [3].

However, new targeted drug delivery approaches based on inorganic and organic
nanoparticles (NPs) use provide a systemic brain-targeted administration with limited
off-target effects and damages to the BBB. Inorganic NPs are non-degradable, have intrinsic
toxicity, and are frequently used as contrast agents in imaging. Organic NPs characterized
by higher biocompatibility, lower toxicity, and extensive loading and functionalization
possibilities are often employed as nanocarriers for BBB crossing.

This field develops very rapidly, and in this updated review, we give an overview
of the BBB structure and physiopathology, shedding light on the universally recognized
mechanisms regarding the different ways to approach this barrier. Among the various
strategies developed to deliver drugs to the brain, besides methods that use ligand con-
jugation for active targeting and techniques allowing temporary BBB disruption, many
recent nanotechnological solutions have been designed to enhance the efficacy of the
available pharmacological treatments for brain diseases. Many nanocarriers have been
designed and tested as central nervous system (CNS) delivery systems, both for diagnosis
and/or therapy [4–6], and in this review, we focused our attention on the lipid-based ones.
Nanocarriers such as liposomes, solid lipid nanoparticles (SLNs), nanoemulsions (NEs),
nanostructured lipid carriers (NLCs), niosomes, proniosomes, cubosomes, extracellular
vesicles (EVs), and cell membrane-derived nanocarriers were described. For each of these
categories of lipid nanocarriers, a table containing the experimental studies published from
2016 to date referring to specific brain diseases for both in vitro and in vivo studies was
reported. For each nanocarrier, we combined a detailed description not only regarding its
therapeutic cargoes but also all the functionalization methods and/or solutions applied to
target the brain, highlighting the nanocarriers that have already undergone clinical trials.

2. The Blood–Brain Barrier

Between the end of the 19th century and the beginning of the 20th century, microbiolo-
gists Paul Ehrlich and his student Edwin Goldmann observed during histological labeling
experiments that when a dye is injected systemically, it does not reach the brain, while if
injected in the cerebrospinal fluid (CSF), it does not spread to the other organs. However, in
1898, Max Lewandowsky was the first researcher to postulate the existence of a specialized
barrier in the brain; thus, he coined the term BBB. Only in the late 1960s did Reese and
Karnovsky visualize the BBB during electron microscopy experiments [7,8].

The BBB strictly controls the permeability of cerebral capillaries and, selectively filter-
ing what should enter the brain and what should not, ensures that the right concentrations
of ions, amino acids, and peptides are maintained, preserving the homeostasis of the brain
microenvironment [9].
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2.1. BBB Structure

The physiological filtering properties of the BBB are conferred by the interactions
between different cell lines: those constituting the blood vessels, endothelial (ECs) and
mural (MCs) cells, glial and neural cells, and those of the immune system. The structure of
the BBB is represented in Figure 1.
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2.1.1. Endothelial Cells and Junctions

The endothelial cells are squamous epithelial cells forming the walls of the vessels,
and, in the central nervous system, they are phenotypically different from the ones located
in other parts of the body. They have a luminal/abluminal polarization and tightly regulate
the ions, molecules, and cell exchange through the tight junctions (TJs), which strictly
limit the paracellular flux of solutes. In addition, CNS ECs have extremely low rates of
transcytosis if compared with other ECs, greatly restricting vesicle-mediated transcellular
transport. CNS ECs have peculiar features that could be found only in BBB and allow
them to tightly regulate CNS homeostasis. In detail, they express efflux transporters for
lipophilic molecules and highly specific transporters for the conveyance of nutrients and
the removal of waste products.

If compared to ECs from other tissues, CNS ECs have a higher number of mitochondria
to generate the adenosine triphosphate (ATP) needed for transport functions, low levels
of leukocyte adhesion molecules to limit immune cell entry, and a different metabolism
to alter the physical properties of molecules, changing their reactivity, solubility, and
transport properties [12].

ECs are sealed in their conjunction sites by different types of junctions. Tight junctions,
which include integral membrane proteins such as claudin, occludin, junction adhesion
molecules, and various cytoplasmic accessory proteins, are close to the apical membrane
and limit the paracellular diffusion of solutes across the BBB [13]. TJs proteins are con-
nected to the actin and vinculin-based cytoskeletal filaments via scaffolding proteins of the
membrane-associated guanylate kinase family zonula occludens (ZO)-1, -2, and -3 [14].

TJs are stabilized by adherens junctions (AJs), which are close to the basolateral mem-
brane and comprise cadherin, catenin, alpha-actinin, and vinculin, forming homophilic
endothelial-to-endothelial contacts roughly 20 nm wide and participating in the develop-
ment and preservation of TJs [15]. AJs are connected to the EC cytoskeleton, modulate
receptor signaling, and regulate the transendothelial migration of immune cells [14]. AJs
are crucial for the integrity of TJs, and their damage leads to disruption of the BBB. The
reduction in TJs increases the probability of tumor metastasis since they are on the frontlines
as the structure that cancer cells must overcome to metastasize [16].

In addition to the previous ones, there are also the gap junctions, which include
connexin-37, 40, and 43, and they establish hemichannels between ECs, allowing endothelial
intercellular communications, but also maintaining the TJs integrity [14].

The restrictions on the paracellular movement of ions and charged molecules cause a
high transendothelial electrical resistance measurable across the BBB [17].
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2.1.2. Basement Membrane

The basement membrane (BM) surrounds the blood vessels and can be divided into
the inner vascular BM, secreted by ECs and pericytes (PCs), and the outer parenchymal
BM, secreted by astrocytes. It is composed of different molecules, such as type IV colla-
gens, laminin, nidogen, heparin sulfate proteoglycans, and other glycoproteins. Besides
the support function, the BM also acts as an additional barrier. During different neuro-
logical diseases, BM is impaired by matrix metalloproteinases, leading to leakage in its
barrier functions.

2.1.3. Pericytes

Pericytes are contractile MCs that partially wrap around the abluminal surface of
ECs with their long cellular processes and are included in the BM. They can tune the
diameter of the capillary and thus the blood flow in response to neural activity, thanks to
contractile proteins. They also play a key role in angiogenesis, deposition of extracellular
matrix, wound healing, and immune cell infiltration. They closely interact with ECs, and a
disruption of these interactions may lead to BBB dysfunction and neuroinflammation.

2.1.4. Astrocytes

The major type of glial cells in the BBB are astrocytes (ACs), and their end-feet,
surrounding ECs, BMs, and PCs, provide a link between the neuronal circuitry and
the bloodstream.

Moreover, ASs can also increase the level of TJ proteins and inhibit the differentiation
of pericytes, essential functions to maintain BBB integrity and low permeability.

In the BBB, there are different types of ACs, depending on their morphology, origin,
density, and function, and eventually adapting to the needs of the microenvironment.
The most abundant types are protoplasmic astrocytes in the gray matter, with many
radially extending processes, and fibrous astrocytes in the white matter, with smoother and
longer processes [18].

2.1.5. Microglia

Microglia are monocyte-resident cells throughout the brain and spinal cord. Being the
resident macrophage cells, their main functions are immune defense and CNS preservation,
but they can also modulate the expression of TJs [19].

2.2. BBB Transport Mechanisms

Flow across the BBB is regulated through different transport mechanisms (Figure 2).
The first mechanism of transport is the one referred to as the diffusion of molecules via

the paracellular or transcellular pathways. Small water-soluble molecules can cross the BBB
through paracellular passive diffusion following the negative gradient of concentration
across the TJs. In addition, the presence of particular enzymes in the abluminal part of
the vessels causes the degradation of unwanted small molecules that eventually infiltrate
by this mechanism. Lipophilic, non-polar, and low-molecular-weight molecules, such as
oxygen and carbon dioxide, but also alcohol and anesthetics, can cross the membranes of
the ECs, entering the BBB via a transcellular pathway.

To eventually remedy harmful lipophilic molecules permeation, on the membranes
of ECs there are efflux pumps able to drain these substances out of the cerebral tissue
into the bloodstream. The most important one is the active drug efflux transporter of the
ATP-binding cassette (ABC) gene family, which is notably responsible for drug distribution
and elimination from the CNS and is understandably one of the major obstacles to effective
drug delivery to the brain [20].
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In contrast, polar and high-molecular-weight molecules, such as glucose and amino
acids, which cannot easily cross the BBB through passive diffusion, exploit transport
proteins or carriers. These types of solutes bind to a transporter on the luminal side of
the EC membrane and, triggering a conformational change in the protein, are released
by the abluminal side in the brain. This active transport depends on Na+ gradients such
as sodium-dependent glucose transporters and amino acid transporters of glutamate
and aspartate [21].

Regarding ions, their permeability is driven by an electrostatic interaction between the
macromolecules’ positive charge and the negatively charged membranes, following a path-
way called adsorptive-mediated transcytosis (AMT), or pinocytosis. Cationic molecules,
such as cationized albumin and cell-penetrating peptides, bind to the luminal surface of
ECs and are then exocytozed at the abluminal surface [22].

Another type of transcytosis is receptor-mediated transcytosis (RMT), for the selective
delivery of macromolecules, including transferrin, melanotransferrin, insulin, leptin, TNF-
alpha, and epidermal growth factor. In detail, the specific macromolecules (ligands) bind
to the specific receptors in clathrin-coated pits, specialized areas of the plasma membrane.
Then, these coated pits invaginate into the cytoplasm, forming coated vesicles. The ligand
can dissociate from the receptor once the acidification of the endosome is complete and
cross to the other side of the membrane [20,23].

In addition to these mechanisms, there is also cell-mediated transcytosis (CMT), which
is usually exploited by pathogens to enter the CNS but can also be exploited for drug
transport. In brief, pathogens or drugs can be easily phagocytized by leukocytes and
then cross the BBB through diapedesis and chemotaxis. The infiltration of the immune
cells is a dynamic and complex procedure that requires a series of stages such as tether-
ing, rolling, crawling, arrest, and diapedesis across the ECs. However, in pathological
conditions, the TJs among ECs may be disturbed by cytokines and other proinflamma-
tory factors, letting macrophages and monocytes enter the brain by paracellular and
transcellular pathways [12,24].

3. Brain Diseases

Besides the recent advancement in medicine, brain diseases remain one of the most
important causes of death, health loss, and disability worldwide; according to the World
Health Organization, 3.4 billion people are affected by neurological pathologies or disor-
ders [25]. The difficulty of treatment of brain diseases mainly relies on their heterogeneity,
the lack of proper preclinical models, and, overall, the presence of the BBB, which rejects
more than 98% of the substances used for therapeutic treatment [26].
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The role of the BBB is key for the diagnosis and especially for the treatment of brain
diseases. Its integrity is physiologically related to the health status and the age of the
patients, and it could be directly impaired by some brain diseases, such as stroke, tumors, or
neurodegenerative diseases. An impaired BBB can cause an alteration to brain homeostasis,
such as ion imbalance and the entry of immune cells and molecules, potentially leading
to neuronal dysfunction and degeneration [1]. Many studies have shown that plasma
proteins can be neurotoxic, suggesting that even if a compromised BBB does not cause
these disorders, it can exacerbate them [13]. Furthermore, BBB, by using standard drug
delivery administration methods, mechanically and biochemically prevents the efficient
delivery of therapeutics in the brain to the injured sites, and, if locally delivered, its presence
notably limits the diffusion of the active molecules. In the following paragraphs, we give
an overview of the most diffused brain pathologies.

3.1. Stroke

Stroke is one of the most common causes of adult disability and/or death. After an
ischemic or hemorrhagic stroke, the intense neuroinflammation unleashes a cascade of
events, such as acute BBB breakdown, cytotoxic and vasogenic edema, and hemorrhagic
transformation, to remove the damaged tissue and prepare the brain for repair. It also con-
tributes to neuronal injury and worsens neurological outcomes. Besides, in an early phase,
neuroinflammation causes brain damage; it could later promote recovery by facilitating
neurogenesis, angiogenesis, and neuronal plasticity [27].

A cerebral stroke leads to a hypoxic state, causing an increase in BBB permeability and
TJ alterations. This increased permeability could be continuous, monophasic, or biphasic,
with an early phase just after the onset of hypoxia/ischemia and a later one after several
days. The degree of the altered permeability depends on the type, degree, and duration
of occlusion [13].

The presence of comorbidities, such as hypertension and hyperglycemia, can induce
anatomical and functional changes to the brain vasculature and often exacerbate BBB
disruption after ischemia.

Currently, therapies for acute ischemic stroke are mostly based on tissue plasminogen
activator-mediated thrombolysis, even if they are not always applicable [28].

3.2. Neurodegenerative Diseases

Alzheimer’s disease is one of the most common dementia disorders and is associated
with cognitive decline and memory loss. AD is characterized by the presence of insoluble
plaques of amyloid beta protein (Aβ) and neurofibrillary tangles constituted by hyperphos-
phorylated intraneuronal deposits of microtubule-associated protein tau (τ), which lead to
neuronal cell death and loss of synapse [29]. This peptide aggregation is due to dysfunc-
tional mitochondrial production of reactive oxygen species and dyshomeostasis of metals
from oxidative stress [30]. Many studies have highlighted an increased extravasation of
plasma proteins in AD brains, suggesting dysfunctional BBB properties. This dysfunction is
probably caused by Aβ and τ accumulation in the perivascular areas and includes increased
BBB permeability, microbleeds, reduced TJs’ expression, impaired transporter expression,
accumulation of blood-derived products, and degeneration of PCs and ECs. Thus, toxic
molecules, cells, and pathogens can enter the brain and trigger the inflammatory response,
leading to disease progression and eventually causing cerebral amyloid angiopathy [31].

Parkinson’s disease is another common neurodegenerative disease affecting 2–3%
of the population over 65 years old with motor dysfunctions, including tremor, rigidity,
akinesia or bradykinesia, and postural instability. It is characterized by neural loss in the
substantia nigra causing striatal dopamine deficiency, and Lewy is made of misfolded
α-synuclein, neurofilaments, and ubiquitin in dopaminergic neurons and glial cells [32].

In PD, there is a BBB disruption detected by the increase in albumin level and im-
munoglobulin G in CSF, erythrocytes, hemoglobin, and fibrin extravasation in the striatum,
and the reduction in ZO-1 and occludin [13]. There is no cure for PD, but some treatments
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could prevent the progression of the disease, such as the administration of DOPA agonists,
DOPA precursors (or L-DOPA), amantadine, and anticholinergics [33].

Huntington’s disease is caused by an autosomal-dominant mutation: an expanded
trinucleotide repetition of the CAG sequence in the gene HTT5 on chromosome 4 due to
the abnormal pathogenic multifunctional protein huntingtin. It results in a progressive loss
of neural function, resulting in movement, cognitive, and psychiatric problems, influenced
by epigenetic, oxidative stress, metabolic, and nutritional factors. Post-mortem magnetic
resonance (MR) studies showed increased BBB permeability, fibrin deposition, and a
reduction in occludin and claudin-5 expression [13]. Currently, there is no effective therapy
for the treatment or the reduction in HD progression [33].

Multiple sclerosis (MS) is the most common non-traumatic disabling disease affecting
young adults, with an increasing incidence worldwide.

The onset of MS is associated with peripheral immune activation followed by CNS
immune aggression, which causes demyelination and axonal loss, leading to neurode-
generation and irreversible neurological impairment. The most important pathological
hallmarks of MS are BBB disruption, changes in the BBB endothelium, and lymphocyte
trafficking [34]. It is generally considered a two-stage disease, characterized by early inflam-
mation responsible for relapsing–remitting disease and then delayed neurodegeneration
causing non-relapsing progression [35].

Prion diseases, or transmissible spongiform encephalopathies, are rare and fatal
neurodegenerative disorders, including Creutzfeldt–Jakob disease, Gerstmann–Sträussler–
Scheinker syndrome, fatal familial insomnia, and kuru in humans. Prions are nucleic
acid-free structures, mainly composed of scrapie prion protein, a misfolded isoform of the
host-derived cellular prion protein, and this transition is a key event for prion infection
and propagation. The etiology of prion diseases can be sporadic, inherited, or caused by
iatrogenic or dietary prion assumptions and lead to spongiform changes, neuronal loss,
and neuroinflammatory responses [36].

3.3. Brain Tumors

Brain tumors are a heterogeneous group of both benign and malignant cancers in the
brain parenchyma and surrounding tissues. They have relevant morbidity and mortality in
both adults and children, often generating severe disabilities [37]. They can be classified as
primary, when they arise from the glia and are usually called gliomas, or metastatic, when
they originate from systemic cancers and further form metastasis in the brain parenchyma.

The most common ones are astrocytomas, oligodendrogliomas, and oligoastrocytomas.
Astrocytoma arises from the ACs and is classified from grade I to grade IV, depending on
histological findings. Grades I and II are low-grade, grade III is high-grade or anaplastic
astrocytoma, and grade IV is also called glioblastoma multiforme (GBM) or malignant
astrocytic glioma and is the most aggressive type. Oligodendrogliomas originate from oligo-
dendrocytes or a glial precursor cell, while oligoastrocytomas have a mixed appearance of
glial cell origin, astrocytoma, and oligodendroglioma.

The major hurdles in effective gliomas’ treatments are related to the complex anatomy
of the brain, to the difficulties in identifying tumor burdens, to chemoresistance, and
to the concrete possibility of reaching the tumor sites in a therapeutic dose, avoiding
overtreatments, and reducing the incidence and severity of adverse effects [38].

3.4. Infectious Diseases

Infections of the brain are caused by pathogens entering the BBB that normally pre-
vent microbial invasions. Bacteria, viruses, fungi, and parasites can cause infections
in the meningeal or parenchymal compartments, leading to meningitis or encephalitis,
respectively [39–41].

Bacterial infections could be limited to localized focal infections, such as brain ab-
scesses, or spread to meningoencephalitis. Bacteria could reach the brain from the upper
airways, through the bloodstream from another primary site, or from a direct inoculation
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due to an injury or surgery. The most typical bacteria affecting the human brain are Strepto-
coccus pneumoniae, Neisseria meningitidis, Hemophilus influenzae, and Listeria monocytogenes,
while Escherichia coli and group B Streptococcus can affect neonates [42].

Viral meningitis and encephalitis are the most frequent brain infections, mostly caused
by enteroviruses, parechoviruses, herpes simplex, varicella-zoster, Epstein–Barr virus, ra-
bies, human immunodeficiency virus (HIV), measles, and COVID-19. These viral infections
could potentially lead to neurological disorders [43,44]. Viruses can affect the brain in three
different ways: by a direct invasion, causing encephalitis, inflammation, or necrosis, leading
to permanent disability or death, as a result of a viral infection elsewhere in the body, from
where inflammatory cytokines reach and cross the BBB, or this infection in another site may
damage the brain through a long-range action through other mechanisms [45].

Fungal brain infections are usually opportunistic in immunocompromised patients,
even though immunocompetent people with predisposing environmental and iatrogenic
factors can be possible hosts. These infections originate from the direct inoculation of
fungal spores, coming from yeasts, molds, and dimorphic fungi, after trauma or surgery.
The most common infection is cryptococcal meningoencephalitis; candidiasis is a typical
nosocomial infection; aspergillosis and mucormycosis, although rare, are devastating in
immunosuppressed patients; and cerebral phaeohyphomycosis strike immunocompetent
people [46,47].

Brain parasitic diseases are a huge issue, especially in low- and middle-income coun-
tries. The symptoms are very unspecific, such as meningitis, encephalitis, ventriculi-
tis, myelitis, or brain abscess, with fever and headaches. Nematode infections cause
eosinophilic meningoencephalitis, Taenia solium neurocysticercosis, which leads to epileptic
seizures, some protozoan species, and free-living amoebae [47,48].

4. Drug Delivery across the BBB

At this point in the discussion, it should be clear that the BBB plays a key role in
determining the success or failure of a therapy for any brain pathology. The role of this
barrier is crucial because it must allow a specific drug to reach the exact site to be treated in
the brain in the right dose and because, at the same time, it must prevent drugs used to
treat pathologies in other areas of the human body from causing neurological damage.

Below is a list and description of all the ways in which it is possible to carry out
therapies in the brain across the BBB by bypassing it, temporarily disrupting it, or by means
of ligand conjugation.

4.1. Bypassing the BBB
4.1.1. Intracerebroventricular

The intracerebroventricular (ICV) administration route consists of the direct injection
of the drug into the CSF of the lateral cerebral ventricle after the penetration of the skull,
using a catheter with an implantable reservoir or a pump. The pump is the most used
since it guarantees a more continuous and elevated concentration of drug in the CSF. This
method of administration allows a reduction in systemic side effects and avoids drug
metabolism in blood serum and opsonization [49]. However, ICV administration has some
significant drawbacks and risks. The CSF is turned over every 4–5 h via bulk flow and
absorbed into the bloodstream; conversely, the ICV-infused drug can penetrate the brain
by diffusion. The rate of CSF bulk flow is orders of magnitude greater than diffusion, so
drugs often exit the ventricles faster than they can diffuse into the brain. In addition, the
process is invasive and is often associated with other risks. For instance, catheter placement
risks include hemorrhage, postoperative infection, and mispositioning. Some drugs could
cause seizures and chemical arachnoiditis that could turn into leukoencephalopathy, but
infections remain an important adverse effect that occurs either during the insertion of the
device or for improper aseptic reservoir access [50–52].
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4.1.2. Intracerebral/Intraparenchymal

Intracerebral or intraparenchymal (IC/IP) administration is the most direct method
since it delivers the drugs directly to the brain site through an implant or injection, and it
spreads with a passive diffusion mechanism [53]. As with ICV, the process is very slow,
and the drug can diffuse only up to 2 mm from the site of injection.

4.1.3. Convection-Enhanced Delivery

Convection-enhanced delivery (CED) is a stereotactically guided drug delivery method
in which the drug is delivered directly into targeted brain parenchymal cells. After a
minimally invasive surgical exposure of the brain, one or more small catheters or micro-
infusion pumps are placed into the parenchyma, allowing the delivery of drugs and
ensuring a sustained therapeutic concentration [54]. CED has demonstrated potential
utility in treating brain malignancies, but there are two main problems: the first is the
high-flow-rate infusion for a uniform distribution across a large volume, and the second is
the use of a large cannula to achieve this flux. The high flow rate induces damage to tissues
at the infusion site and induces backflow along the insertion tract. At the same time, the
large cannula can lead to inflammation, tissue damage, and scarring around the device [55].

4.1.4. Implants

Polymeric implants and interstitial wafers are often used, for example, for glioblas-
toma’s treatment. However, they have poor drug penetration beyond the resection cavity,
drug dosage is limited by the implant size, and they are associated with high intracranial
pressures and local toxicity, causing infections and brain trauma [54,56,57].

4.1.5. Intranasal Delivery

Intranasal delivery is a non-invasive approach for the delivery of therapeutics to the
brain across the olfactory mucosa and along the connective tissue around the olfactory nerve
bundle or axons of olfactory neurons, thus bypassing the BBB. This approach, guaranteeing
a nose-to-brain direct delivery, enhances drug targeting and bioavailability with a faster
brain delivery and, avoiding the metabolism of the liver, decreases drug accumulation in
non-targeting tissues, minimizing side effects [58].

Once the intranasal-administered molecules reach the origins of the olfactory and
trigeminal nerves in the cerebrum and pons, respectively, they are dispersed throughout the
brain following different mechanisms: intracellular and extracellular. In the intracellular
one, the molecule is internalized by an olfactory neuron, transported by an endocytic
vesicle to the neuron’s projection site, and then exocytosed. Conversely, in the extracellular
pathway, the molecule crosses the nasal epithelium, reaching the lamina propria, where
the neurons are located, and it is transported externally along the neuronal axon by bulk
flow processes [59,60].

Besides the advantages of this administration method, it also has some drawbacks
due to the poor permeability of drugs from the nasal mucosa, their enzymatic degradation
and mucociliary clearance, the low retention time, and nasomucosal toxicity. The clinical
application of intranasal delivery is limited by the necessary high and frequent doses since
each human nostril has an administration volume <200 µL and at most, 1% of the drug
reaches the brain, moreover, strongly irritating the nasal mucosa [61]. In addition, the
formulations have a short residence time in the nose (15–30 min), which confines the drug
adsorption. Furthermore, the enzymes of the nasal cavities can enzymatically metabolize
many sensitive drugs, and the formulations must have pH values and viscosities compatible
with those of the nasal mucosa, such as not inducing irritation or inflammation of the
nasal epithelium [62].

The most commonly used nanocarriers for intranasal delivery are SLNs and NLCs for
their improved nasal retention, biocompatibility, drug solubility and permeability, reduced
mucociliary clearance, and drug enzymatic degradation.
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4.2. Temporary Disruption of the BBB

The temporary disruption of the BBB is the most commonly used method to deliver
drugs from the bloodstream to the CNS.

Besides the pathological degradation of the BBB, where a therapeutic nanocarrier
administered intravenously could, in theory, directly accumulate in these diseased regions,
temporary induced BBB permeability could be achieved with some strategies, such as the
administration of chemical agents, ultrasounds (US), and magnetic fields [63].

4.2.1. Osmotic Disruption

The temporary osmotic BBB disruption is based on the high osmotic pressure induced
by the administration of chemical substances such as mannitol, fructose, milk amide, urea,
and glycerol. The injection of hyperosmolar agents at a flow rate sufficient to allow a
complete filling of the vessel without producing significant reflux in the common carotid
artery leads to the reversible dehydration of brain ECs and subsequent disruption of the TJs.
This method intervenes in the overcoming of the sink effect, which is the accumulation of
the chemotherapeutic drug in tumor necrotic areas, seizing them from the periphery of the
tumor, such as the highly proliferative tumor edges with neoplastic cells. In fact, ensuring
a more uniform delivery to the entire CNS vascular territory, including tumor edges,
osmotic disruption (OD) provides longer tumor cell exposure to higher concentrations
of the drugs [64]. However, BBB’s OD temporarily increases the fluid influx, potentially
leading to a transient cerebral edema and the entrance of not only molecular components,
which can cause neuropathological changes, neurological toxicity, aphasia, and hemiparesis,
but also toxic and harmful agents, possibly resulting in a change in the normal functions of
the CNS [58,64].

4.2.2. Ultrasound Disruption

The transient disruption of the BBB using high-intensity focused US is based on the
combination of US, that can pass through the skull and converge at a specific focal point
inside the brain and intravenously injected microbubbles (MBs). These MBs, excited by
the rarefactions and compressions provided by US, start to oscillate, exerting a mechanical
stress on the cells, leading to the opening of TJs. This BBB disruption effect lasts usually for
4–6 h, but it can vary according to the patient, the intensity of US, and the size and con-
centration of the MBs [58,64]. In addition, these US favor the active transport of molecules
across the BBB, for example, by enhancing the delivery through vesicles and carrier pro-
teins or modulating mechanosensitive ion channels, they can cause convective flux in the
tumor interstitial space, and they can remodel brain vasculature and stimulate the devel-
opment of new neurons [65–67]. This approach is currently on clinical trials for gliomas
(NCT03322813, NCT02343991, NCT03616860, and NCT03551249) [68–70], recurrent GBM
(NCT02253212, NCT03626896, and NCT03712293) [71–73], amyotrophic lateral sclerosis
(NCT03321487) [74], PD (NCT03608553 and NCT04370665) [75], and AD (NCT02986932,
NCT03671889, NCT03739905, and NCT04118764) [76–78]. Although undoubtedly advan-
tageous, especially for big molecules (500–2000 kDa), BBB US disruption also provides
inherent risks, such as large volumetric oscillations of the MBs and, potentially, their
collapse, which can generate extra mechanical stresses on the capillaries in the form of
micro-jets that can damage the surrounding capillary and brain parenchyma [64,79].

4.2.3. Optical Disruption

The optical disruption of BBB consists in the illumination of a brain region, inducing
the internalization of junction molecules and locally opening the BBB for up to 48 h. This
optical disruption can be obtained in two different ways: using photodynamic or laser
interstitial thermal therapy (LITT) [80]. In the first way, the light activates some photo-
sensitizers (such as fluorescent dyes), which generate reactive oxygen species, inducing
changes in junction morphology and increasing BBB permeability with high spatiotempo-
ral selectivity [81]. LITT uses laser energy to generate heat in the target tissue, and it can
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temporally increase the BBB permeability, enhancing the secretion of heat shock proteins
and nitric oxide [80]. LITT, applied to enhance BBB permeability, has undergone some
clinical trials, such as NCT01851733 in combination with doxorubicin [82] or NCT02311582
with pembrolizumab [83]. The optical disruption of the BBB requests the exposition of the
brain by creating an optical window in the skull.

4.2.4. Electrical Disruption

The electrical disruption of the BBB can be achieved either by transcranial stimulation
applying electrodes to the skull or by using penetrating electrodes to generate pulsed elec-
tric fields (PEF) to provoke and electroporation (EP) of the BBB. In transcranial stimulation,
there is increased permeability, probably due to the increased convection through the gaps
between TJs. When PEFs are applied to cells or tissue, they change the innate electrical
potential across the cell membranes. The destabilization of membrane potential creates
nanoscale aqueous pores in the lipid bilayers, resulting in an increased membrane’s perme-
ability, termed electroporation. After the EP, if membranes reseal, it is called a reversible EP,
while if it leads to cell death, it is an irreversible EP [84]. Electrical stimulation has shown
cognitive and therapeutic effects, but its safety, efficacy, and the potential risk of increased
exposure to toxins and pathogens have not been fully evaluated. In addition, EP probes
are highly invasive, and if they must be inserted in deep brain regions, they could cause
long-term damage [80].

4.2.5. Radiation Therapy Disruption

Since ECs and oligodendrocytes are radiation-responsive, ionizing radiation can be
used in a controlled and targeted way to selectively damage BBB tissues, increasing their
permeability. High doses of radiation can favor BBB permeability through TJ modifications,
cell density reduction, and the formation of actin stress fibers. Few clinical trials, such as
NCT02974803, have been conducted using this method despite showing promising results;
the optimal radiation dose and therapeutic window are still not determined, and the side
effects remain serious [85].

4.3. Ligands Conjugation for Active Brain Targeting

Besides the just-described methods to bypass or temporarily disrupt the BBB for drug
delivery to the brain, many nanotechnological solutions have been designed to enhance
BBB penetration [86]. In the following paragraph, some of the most commonly used
functionalization approaches have been reported. The delivery of drugs to the brain occurs
through different mechanisms, according to molecules’ physicochemical properties, such
as adsorptive-mediated transcytosis, receptor-mediated transcytosis, transporter-mediated
transcytosis (TMT), and cell-mediated transcytosis [4,87].

4.3.1. Adsorptive-Mediated Transcytosis
Cardiolipin

Cardiolipin is a component of the mitochondrial membrane and is necessary for
numerous enzymatic activities for mitochondrial energy metabolism. Since cardiolipin
is positively charged, it can cross the BBB through AMT. Interestingly, in the case of AD,
nanocarriers functionalized with cardiolipin cannot by themselves decrease Aβ fibrils in
the brain, but they reveal a high affinity for these fibrils, opening new perspectives for the
generation of new vehicles for imaging and new therapeutic agents [87].

Heparin

Heparin is a polyanionic polysaccharide of the glycosaminoglycans family widely used
in nanomedicine in the oncological, coagulation, tissue engineering, and drug delivery
fields. It demonstrated an innate ability to compete with Aβ peptides in binding to
proteoglycans, properties particularly interesting for AD therapy [87].
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Cell-Penetrating Peptides

Cell-penetrating peptides (CPPs) are small cationic or amphipathic peptides that
can be translocated across cell membranes, delivering the associated compounds inside
cells without compromising their properties, exploiting the presence of peptide sequences
called protein transduction domains. They also have a positive charge, which can favor
electrostatic interactions with membranes.

An example of CPP is poly-l-Arginine, which is a synthetic cationic peptide con-
stituted by eight or more arginine residues and is one of the most widely used pep-
tides in drug delivery. Another CPP is penetratin, which enhances internalization across
epithelial cells in a two-step mechanism: penetratin binds cell-surface lipids through
electrostatic interactions and is translocated via tryptophan-induced destabilization [88].
Other CPPs are penetratin, SynB, HIV-1 trans-activator of transcription (TAT) protein, and
octa-arginine (R8) [4].

4.3.2. Receptor-Mediated Transcytosis
Transferrin Receptor

Transferrin (Tf) receptors (TfR) are transmembrane glycoproteins constituted of two
subunits of 90 kDa linked by a disulfide bridge, and each of them can bind one molecule
of transferrin [88]. TfR can be exploited for brain delivery since it is overexpressed on
brain capillary endothelial cells, but it must be considered that TfR is also expressed on
other cells, such as hepatocytes and monocytes, besides BBB, that the high concentration
of endogenous serum transferrin typically saturates all the receptors, and that it can lead
to an overdose of iron transport into the brain [89,90]. To overcome these limitations, NPs
can be conjugated with the transferrin monoclonal antibody (OX-26), since they bind to a
different site than the transferrin protein, interfering less with endogenous transferrin [90].
Another alternative is T7 (HAIYPRH), which is a heptapeptide that can bind to TfR with
high affinity without any competitive inhibition with endogenous Tf since they bind to
different sites of TfR [88].

Lactoferrin Receptor

The lactoferrin (Lf) receptor (LfR), a single-chain cationic-iron-binding glycoprotein of
the TfR family, is constituted by a homodimer and has anti-inflammatory, antimicrobial,
and immunomodulatory functions. The LfR has two binding sites, a high-affinity and a
low-affinity one, and their sizes and features change depending on the cell types, opening
the possibility of targeting a particular LfR [58,91]. Tf and Lf have similar characteris-
tics, but lactoferrin has a lower plasma concentration and a unidirectional brain uptake
mechanism [88]. In addition, LfRs are overexpressed on the BBB in several neurological
conditions, such as AD, PD, and HD [92].

Lipoproteins Receptor

Low-density lipoprotein (LDL) receptor (LDLR) is the removal of highly atherogenic
LDL from the circulation; in particular, LDLR, LDLR-related protein (LRP) 1, and very
low-density lipoprotein receptor are overexpressed on brain ECs. Alipoproteins B and E
(ApoB and ApoE) are soluble apolipoproteins that bind to the LDL receptor and, thus, can
be exploited to cross the BBB. ApoE and apoB have demonstrated efficacy but have innate
protein instability and compete with LDL [88]. An alternative to ApoE functionalization is
the coating of NPs with Tween 80, since it induces the adsorption of ApoE present in the
bloodstream’s systemic circulation.

Angiopep-2 is a 19 amino acid peptide derived from the Kunitz domains of aprotinin
and other human proteins, which are ligands for LRP1 and LRP2, and it can induce the
crossing of the BBB through the recognition of LDL receptors. Angiopep-2. It has a
high transcytosis capacity, bypassing the P-glycoprotein efflux pump. Functionalization
with angiopep-2 can increase the concentration of the nanocarrier in the brain tumor site,
probably attracted by the acidic tumor microenvironment.
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Nicotinic Acetylcholine Receptors

The nicotinic acetylcholine receptor binds the neurotransmitter acetylcholine and is
widely expressed in not only the brain in pre- and postsynaptic sites of neurons but also
the BBB. They are a very promising tool for drug delivery since they allow the passage of
the BBB but also target neuronal cells. This receptor could be exploited by the rabies virus
glycoprotein (RVG) 29 peptide, a 29 amino acid fragment from the rabies virus glycoprotein.

4.3.3. Transporter-Mediated Transport
Glutathione

Glutathione (GSH) is a hydrophilic tripeptide known as an antioxidant useful to main-
tain cellular redox homeostasis and suppress oxidative stresses. GSH has been evaluated
for brain drug delivery by exploiting the TMT via GSH transporters.

Acetycholine

Acetycholine is an essential neurotransmitter that requires choline to be synthesized
and transported to the brain via choline transporters.

Glucose

Glucose is the essential fuel of the brain that must be transported from the bloodstream
to the brain by dedicated transmembrane proteins, the glucose transporters (GLUT), since
neurons are unable to synthesize or store glucose. GLUT is expressed in the BBB to mediate
the uptake of the metabolites but is overexpressed in brain cancer cells, making them
attractive for glioma treatment. GLUT1, which transports glucose from the blood to the
extracellular spaces, and GLUT3, which transports glucose from the extracellular space to
neurons, are the main transporters in the human brain and are present in approximately
equal amounts. Although there are some concerns regarding the number of these trans-
porters in some pathologies, such as AD and hyperglycemia, GLUT can be effectively used
for brain targeting [88].

4.3.4. RGD Peptides

RGD (arginine–glycine–aspartic acid) tripeptide has been widely studied for drug
delivery applications for its affinity with the ECM proteins, fibronectin and vitronectin,
and integrin αvβ3/αvβ5. Cyclic forms of RGD such as c(RGDyK), c(RGDfC), c(RGDfK),
RGD4C (KACDCRGDCFCG), and iRGD (CRGDK/RGPD/EC) have higher stability in
biological environments. Moreover, iRGD can also act as a tumor-penetrating peptide,
binding to the neuropilin-1 (NRP-1) receptors on tumor cells [93].

4.3.5. Antibodies

Vascular endothelial growth factor (VEGF) and its type II receptor, VEGFR2, are
highly expressed in brain tumors, playing a key role in angiogenesis and metastasis. Thus,
gliomas’ and GBMs’ antiangiogenic therapies aim to inhibit angiogenesis by using anti-
VEGF monoclonal antibodies (mAbs) like bevacizumab or avoid VEGF binding to the
receptor by blocking VEGFR2 with an mAb such as ramucirumab [93].

4.3.6. Aptamers

Aptamers are short, single-stranded sequences of DNA or RNA that can bind to their
receptors with high affinity and specificity. If compared to antibodies, aptamers have
higher stability, lower immunogenicity, a small size (5–30 kDa), and a simple synthesis and
modification procedure [93].

4.3.7. Polyethylene Glycol

Coating lipid-based nanocarriers (NCs) with polyethylene glycol (PEG) is a widely
known method to prolong the NCs circulation time in plasma and their chemical stability.
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In the case of brain delivery, PEG confers a BBB crossing ability depending on the chain
length; longer chains demonstrated better efficiencies in a time-dependent manner [89].

5. Lipid-Based Nanocarriers

The major hurdle in drug delivery to the brain is the presence of the BBB and enzymes,
which strictly select the substances that could enter the brain. There are several factors that
could be controlled to drive the entry of compounds into the brain, such as binding the drug
to a transporter, opening and closing ion channels, lipophilicity, enzymatic degradation of
drugs, functional groups, and charged residues of the molecules.

Furthermore, after penetration inside the brain, the drug faces other hurdles, such as
inactivation by catabolic enzymes, drug resistance, and affinity towards multidrug ABC
transporters, making the drug less bioavailable to the target site. Some studies estimate that
almost 98% of small-molecule drugs and mostly all the large-molecule ones are excluded
from entering the BBB [54]. Thus, alternative strategies are required to enable the treatment
of CNS disease. The growing number of patients with CNS diseases urgently requires the
development of new and non-invasive drug delivery methods as alternatives to traditional
surgery, radiotherapy, and chemotherapy. In this vision, nanotechnologies are emerging
as a good alternative to classical treatments for their ability to directly alleviate oxidative
stress and inflammation, overcome the BBB, deliver therapeutics in a targeted manner
to the site of disease, enhance the dose efficacy, control the release profiles, and avoid
side effects.

Thanks to the many advances in nanotechnology, nanomedicine has a wide array of
organic, inorganic, or NCs for therapeutic applications [94,95]. Among the organic NCs,
those that seem to be most used for brain drug delivery are the lipid-based ones, that is,
liposomes, SLNs, NEs, NLCs, niosomes, proniosomes, cubosomes, EVs, cell membrane-
derived nanocarriers, and organic nanocarriers with high lipophilicity and ability to cross
the BBB through passive diffusion [86,96].

5.1. Liposomes

Liposomes are synthetic or natural self-assembled lipid bilayers deeply studied since
1960 for their applicability as drug delivery vehicles thanks to their structural similarity
to biologic membranes. They are biocompatible, non-toxic, and biodegradable, making
them suitable for drug delivery, preventing drugs’ degradation and immune responses [97].
They are composed of a hydrophobic bilayer and a hollow aqueous core, allowing the
encapsulation and delivery of hydrophilic, hydrophobic, and amphiphilic molecules, such
as proteins, peptides, nucleic acids, small molecules, and drugs (Figure 3).
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Liposomes are widely used to overcome some limitations of bare therapeutics. Some
liposomes have already been approved by the FDA for the treatment of many brain
pathologies or are undergoing some clinical trials, as follows:
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- AmBisome® for the treatment of cryptococcal meningitis, composed of amphotericin
B encapsulated in a lipid bilayer of hydrogenated soy phosphatidylcholine (HSPC),
1,2-distearoyl-sn-glycero-3-phosphoglycerol (DSPG), and cholesterol (Chol);

- Abelcet® for the treatment of cryptococcal meningitis, composed of amphotericin B
encapsulated in a liposome made of 1,2-dimyristoyl-sn-glycero-3-phosphocholine
(DMPC), and 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG);

- Daunoxome®, composed of distearoylphosphatidylcholine (DSPC) and Chol lipo-
somes carrying daunorubicin for the treatment of pediatric brain tumors;

- Depocyt®, cytarabine encapsulated in Chol, triolein, 1,2-dioleoyl-sn-glycero-3-
phosphocholine (DOPC), and 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG)
liposomes for the treatment of lymphomatous meningitis;

- Doxil®/Caelyx® also proposed for the treatment of GBM and pediatric brain tu-
mors by encapsulating doxorubicin in HSPC, Chol, and 1,2-distearoyl-sn-glycero-3-
phosphoethanolamine poly(ethylene glycol) 2000 (DSPE-PEG2000) liposomes;

- Myocet® liposome composed of egg phosphatidylcholine (EPC) and Chol-encapsulating
doxorubin were also proposed for the GBM [8].

Some already-approved liposomal formulations have been repurposed, such as
Depocyt® for the treatment of patients with recurrent GBM [98], liposomal amphotericin
B for CNS infections with azole-resistant Aspergillus [99], or recurrent Candida albicans
meningitis [100], and liposomal cytarabine for pediatric malignant brain tumors [101],
administering them through ICV or IC.

Besides all the benefits, liposomes also display some limitations. That is, fast clearance
and degradation and stability issues after prolonged storage times [89]. To face these
hurdles, different formulations and strategies have been studied to enhance drug delivery
across the BBB. Besides the lipophilic features of liposomes, they are too large to simply
diffuse across or between cells, but they must exploit transport systems such as AMT,
RMT, and CMT. To cross the BBB via the abovementioned routes, liposomes can be func-
tionalized to enhance their blood circulation time or to improve their targeting ability in
the CNS [85,89].

The first modification is the formulation of cationic liposomes to use the AMT. They
display a positive surface charge to favor the electrostatic interaction with negatively
charged glycocalyx at the luminal BBB membrane. Moreover, the liposomal positive charge
enhances the adsorption of polyanions, such as DNA and RNA. The brain uptake of
liposomes strongly depends also on their adhesion force to BBB, which must overcome the
hydrodynamic force of cerebral blood flow, which can be affected by the administration
routes and pathologies. For instance, a large cationic liposome (~200 nm) is preferred when
the wall shear rate is low, such as in the case of transient cerebral hypoperfusion due to
intra-arterial injection. On the contrary, a smaller one is better when the blood flow is faster
and the hemodynamic stress is high. Thus, liposomes’ particle size must be optimized,
considering the hemodynamic stress factors [102].

To avoid the problem of fast clearance, PEG can be covalently conjugated to lipo-
somes to enhance their stability and prolong their circulation half-life. PEGylation inhibits
liposomes’ clearance by the mononuclear phagocytic cells in the liver and spleen, pre-
venting their opsonization. However, PEG chains can hinder the uptake of liposomes by
target cells by impeding the binding of surface-targeting ligands with the matching cell
surface receptor [103,104].

Furthermore, liposomes can be functionalized by targeting biological moieties, such
as proteins, antibodies, carbohydrates, aptamers, and polypeptide sequences, through
covalent or non-covalent bonds. Covalent bonding includes thioether, hydrazone, car-
boxamide, amide, and disulfide bonds, while non-covalent or physical bonding relies on
attractive forces such as electrostatic interactions, hydrogen bonding, and van der Waals
forces. However, non-covalent bonding has some problems in the control of the orientation
of the ligands, hindering the liposome’s stability and activity, and of the environmental
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conditions required since changes in ionic strength, pH, or the isoelectric point of the ligand
can lead to the detachment of the ligand from the surface [104].

Some liposomes are currently undergoing clinical trials, as follows:
NCT05034497, NCT01906385, and NCT05460507: Rhenium-186-NanoLiposome are

administered through CED [105,106] or ICV injection to allow localized GBM therapy.

- NCT05768919: liposomal curcumin is associated with radiotherapy and temozolomide
for patients with newly diagnosed high-grade gliomas (HGG).

- NCT00944801: pegylated liposomal doxorubicine and temozolomide in addition to
radiotherapy in newly diagnosed GBM [107].

- NCT04573140: RNA-lipid particle vaccines are used for the therapy of newly diag-
nosed pediatric HGG and GBM [108].

- NCT00019630 and NCT00465673: liposomal doxorubicin HCl for the pediatric treat-
ment of refractory brain tumors or brain metastases from breast cancer.

- NCT00992602: IC injection of liposomal cytarabine combined with methotrexate for
breast cancer brain metastasis.

- NCT01386580 and NCT01818713: a GSH-functionalized pegylated liposome loaded
with doxorubicin hydrochloride is administered in patients with HGG and lep-
tomeningeal breast cancer metastasis [109].

- NCT04590664: a repurposing of the drug verteporfin for the treatment of recurrent
high-grade EGFR-mutated GBM [110].

- NCT05864534: liposomal doxorubicin is administered in combination with a device
with nine US emitters to disrupt the BBB and enhance drug penetration into the brain
tumor.

- NCT01044966: ICV administration of liposomes encapsulating Ara-C (DepoCyt®) in
patients with recurrent GBM.

- NCT00734682: liposomal irinotecan for recurrent HGG [111,112].
- NCT03086616 and NCT02022644: CED of irinotecan liposome with real-time imaging

with gadolinium in children with diffuse intrinsic pontine glioma and adults with
HGG [113].

- NCT01356290: oral thalidomide, fenofibrate, celecoxib, and alternating 21-day cy-
cles of oral etoposide and cyclophosphamide, supplemented by intravenous beva-
cizumab and intraventricular therapy via an Ommaya reservoir consisting of alter-
nating etoposide and liposomal cytarabine for children with medulloblastoma and
ependydoma [114].

- NCT01222780: Marqibo® (liposomal Vincristine) for children and adolescents with
refractory tumors.

- NCT05496894: mitoxantrone hydrochloride is encapsulated in a liposomal formulation
for the treatment of MS.

- NCT01039103: intravenous PEG-liposomal prednisolone sodium phosphate (Nanocort®)
for the treatment of MS.

- NCT02686853: intrathecal administration of liposomal amphotericin B in cryptococcal
meningitis in immunocompetent patients;

- NCT05453539: a novel liposomal device constituted by DSPE-DOTA-Gadolinium for
contrast-enabled MR imaging of amyloid plaques for the diagnosis of AD.

- NCT04976127: liposomal talineuren for PD.

Otherwise, many liposomal formulations are still undergoing preclinical studies, and
some examples are reported in Table 1.
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Table 1. Liposomes for the treatment of brain diseases.

Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

HSPC + DOPE + Chol +
Didodecyldimethylammonium

bromide
Doxorubicin - 86± 2 −16.8 ± 1.4 Glioma Intravenous +

focused US [115]

Egg lecithin + Chol +
DSPE-PEG2000 Doxorubicin and carboplatin - 212± 10 −13.0 ± 0.6 GBM Intravenous [116]

LipoxalTM Oxaliplatin - - - GBM CED [117]

DPPC + Chol + poloxamer L64 Oligonucleotide - 100–200 - Spinocerebellar
ataxias Intravenous [118]

Ionizable lipid + DSPC + Chol +
PEG2000-DMG siRNA - - - Polyglutamine

diseases (HD) ICV [119]

DPPC + Chol + PEG2000 Pramipexole - 122 ± 0.13 −10.60 ± 0.12 PD Intraperitoneal [120]

Soybean PC + Chol +
DSPE-PEG2000 Nicotinamide riboside - 152 −22 Ischemic stroke Intravenous [121]

POPS + phosphatidylserine Mesoporous silica NPs and
phospholipase A2 - <200 <−30 Detoxification Intravenous [122]

POPC + Chol + DSPE-PEG2000 +
dimyristoyl-phosphatidic acid Pep63

Tf

132± 22 −16.5± 0.9 AD Intravenous [123]

Soy PC + Chol + DSPE-PEG2000 Dopamine HCl 182± 8 +7.5 ± 1.2 PD In vitro model
(transwell) [124]

DSPC + Chol + POPG +
DSPE-PEG2000

Temozolomide and
bromodomain inhibitor JQ1 137 −12 GBM Intravenous [125]

EPC + Chol +
DSPE-PEG2000-MAL Osthole 104± 4 −7.0 ± 0.6 AD Intravenous [126]

Soy lecithin + Chol +
DSPE-PEG2000 Elemene and cabazitaxel Tf and cell membrane

proteins 135± 4 +33.6± 0.7 Glioma Intravenous [127]

DOTAP + DOPE
Temozolomide

Anti-TfR single-chain Ab
fragment

41± 9 +30± 5 GBM Intravenous [128]

SOD1 siRNA ~100 - Neuroinflammation
and apoptosis Intravenous [129]
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Table 1. Cont.

Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

Chol + sphingomyelin +
DSPE-PEG2000-MAL Doxorubicin Anti-Tf mAb

(MYBE/4C1) 142± 4 −18 ± 4 Crossing the BBB In vitro model
(transwell) [130]

POPC + DOTAP + DSPE-PEG2000 Dopamine Anti-Tf OX-26 mAb ~85 - PD Internal carotid
artery perfusion [131]

DSPC + Chol + DSPE-PEG2000 Oxaliplatin 139.3 ± 1.5 −21.9± 1.0 Brain delivery Intravenous [132]

PC + Chol + DSPE-PEG2000-MAL
(+ DPPG)

Cis-
diamminedinitratotplatinum(II)

Anti-VEGFR and
Anti-VEGFR 2 mAb

126± 10
(136 ± 11)

in PBS
143 ± 12
(−26 ± 4)

in H2O

−1.6± 0.3
(−7.6 ± 1.1)

in PBS
158 ± 13
(−39 ± 5)

in H2O

GBM Intravenous [133]

DC + Chol + DOPE +
DSPE-PEG2000

Paclitaxel and survivin
siRNA

Anti-CD133 aptamer and
angiopep-2

119± 6
in H2O

11.5± 0.6
in H2O GBM Intravenous [134]

DPPC + Chol + DSPE-PEG2000 Magnetic NPs and
camptosar Cetuximab 194 ± 2 +2.3 ± 0.1 Glioma

Intravenous and
alternating

magnetic fields
[135]

DOPC + Chol + DSPE-PEG2000 miRNA-92b inhibitor ApoE 41 ± 6 −3 ± 3 GBM Intravenous [136]

DMPC + Chol Porphyrin ApoE3 29± 9 - GBM Intravenous [137]

EPC + DOTAP + Chol +
DSPE-PEG2000 Doxorubicin CPP R8 95± 5 +12 ± 4 Glioma Intravenous [138]

Soy PC + Chol + DSPE-PEG2000 Paclitaxel R8-dGR peptide 100–120 - Glioma Intravenous [139]

DSPC + DPPC + Chol +
Cardiolipin + phosphatidic acid +

DSPE-PEG2000

Nerve growth factor,
rosmarinic acid, curcumin,

and quercetin
CPP TAT peptide 159 −28 AD Intravenous [140]

DOTAP + DOPE +
DSPE–PEG2000

ApoE2 encoding plasmid
DNA

CPP RVG and mannose 168± 3 +20± 4
AD Intravenous [141]CPP, penetratin, and

mannose 172± 3 +19.0± 0.9

Lipoid S100 + Chol +
mPEG2000-DSPE

N-3,4-bis(pivaloyloxy)-
dopamine RVG29 135 ± 3 −14 ± 0.4 PD Intravenous [142]
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Table 1. Cont.

Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

DSPC + DPPC + Chol +
Cardiolipin + dihexadecyl

phosphate + DSPE-PEG2000

Ceftriaxone, FK506, and
nilotinib GSH 160 −39 PD In vitro model

(transwell) [143]

DSPC + Chol + DSPE-PEG2000 Gefitinib
GSH and Tween 80 86 ± 4 −3.8 ± 0.9

Glioma
In vitro model

(transwell) [144]
α-helical CPP 147 ± 4 −1.7 ± 0.2

Soybean PC + Chol +
DSPE-PEG2000 Paclitaxel CPP dNP2 and folic acid 104 −6 Glioma Intravenous [145]

DSPC + Chol + POPG +
DSPE-PEG2000

Temozolomide and
bromodomain inhibitor JQ1 Folate 165 −14 GBM Intravenous [125]

Soy PC + Chol
Paclitaxel Vitamin C and glucose 109± 3 −4.5± 0.5 Glioma Intravenous [146]

Resveratrol Vitamin E, TPGS 65± 6 −1.1± 1.1 Glioma Intravenous [147]

DPPC + Chol
Docetaxel and quantum dots RGD, and vitamin E

TPGS 182 ± 8 +1.1 ± 0.3 Glioma Intravenous [148]

Docetaxel
AuNPs with glutathione

Vitamin E and TPGS and
TfR 268 ± 10 −6 ± 5 Crossing the BBB Intravenous [149]

DSPC + Chol + DMPC +
phosphatidylserine

astragaloside IV and
nestifin-1

Wheat germ, agglutinin,
and leptin Many - PD In vitro model

(transwell) [150]

EPC + Chol + DSPE-PEG2000 Curcumin and quinacrine
Mannose

119.7 ± 0.2 −2.7 ± 0.7 GBM IC [151]

C12-alkyl-mannopyranoside +
Chol Dynantin 232 ± 4 - Depression Intranasal [152]

EPC + Ginsenoside Rh2 + Chol +
DSPE-PEG Paclitaxel Menthol 102 ± 7 11.7 ± 0.1 GBM Intravenous [153]

EPC + Chol + DSPE-PEG2000 Daunorubicin PEI and 4-Aminophenyl
β-D-glucopyranoside 106± 3 −8.7± 0.4 Glioma Intravenous [154]

EPC encapsulating PLGA NPs Rivastigmine Dextran and cholic acid 112 ± 11 - AD Intravenous [155]

ZP: zeta-potential; DOPE: dioleoylphosphatidylethanolamine; DPPC: dipalmitoylphosphatidylcholine; PEG2000-DMG: 1,2-dimyristoyl-rac-glycero-3-methoxypolyethylene glycol-2000;
POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoserine; POPC: 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine; POPG: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1′-rac-glycerol);
MAL: maleimide; DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; PC: phosphatidylcholine; PLGA: poly(lactic-co-glycolic acid); TPGS: D-α-tocopheryl polyethylene glycol
succinate; PEI: polyethylenimine.
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5.2. Solid–Lipid NPs

Similar to liposomes, solid–lipid NPs are nanometric lipid-based constructs, but they
have a solid hydrophobic lipid core, in which both hydrophilic and lipophilic drugs can be
encapsulated. They were developed for the first time in the early 1990s by Müller et al. and
found application, especially in the cosmetic field [156].

The main feature of SLNs is that they contain solid lipids at room temperature
(Figure 4). Its solid lipidic core, instead of an aqueous one, protects drugs from biochemical
degradation. SLNs have excellent physicochemical stability that allows them to escape the
reticuloendothelial system by bypassing liver and spleen filtration; they are physiological
and biodegradable, with a high biocompatibility; and their fabrication is scalable, fast,
and economic.
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Figure 4. Structure of other synthetic lipid-based delivery systems.

The solid lipid core allows SLNs’ storage for a long time in aqueous solutions, which
is impossible with liposomes for the establishment of degradation phenomena.

However, SLNs also have some drawbacks, such as poor drug loading due to the
limited space in the organized solid lipid core and the possible interaction of the drug with
the lipid matrix, resulting in a failure of the formulation [157,158].

Some SLN formulations are undergoing promising preclinical studies, as listed
in Table 2.
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Table 2. SLN for the treatment of brain diseases.

Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

Compritol 888 ATO + stearic acid +
span 60

Levofloxacin and
doxycycline - ∼50 - Bacterial infection Intranasal [159]

Witepsol E 85 RVG-9R and BACE1
siRNA Chitosan 358 ± 26 +10.5 ± 0.8 AD Intranasal [160]

Cetyl palmitate + Tween80 Quercetin

Tf

234± 18 −32 ± 8 AD In vitro model
(transwell) [161]

Sodium behenate + sodium stearate +
PVA120000 + PEG Methotrexate 500± 45 - GBM Intravenous [162]

Glyceryl monostearate + stearic acid +
soy lecithin Docetaxel

Lf

121± 6 −21.5 ± 1.2 Glioma Intravenous [163]

Behenic acid + tripalmitin + cacao
butter + DSPE-PEG(2000)

Tamoxifen and
carmustine Many Many GBM In vitro model

(transwell) [164]

Sodium behenate + sodium stearate +
PVA120000 + PEG Methotrexate Insulin 445 ± 41 - GBM Intravenous [162]

Dynasan 116 + Tween80 Donepezil ApoE 147.5 ± 0.8 −9.6 ± 0.5 AD In vitro model
(transwell) [165]

Lecithin soya + stearic acid+ Tween80 Docetaxel Angiopep-2 111 ± 3 −16.4 ± 1.2 GBM Intravenous [166]

Cetyl palmitate + Tween80 Resveratrol and
grape skin/seeds Anti-Tf OX-26 mAb 254 ± 17 −4.0 ± 0.1 AD In vitro model

(transwell) [167]

Chol + sphingomyelin +
phosphatidylserine + sphingosine +

phosphatidylethanolamine
Methylprednisolone

Anti-contactin-2 mAb 158 ± 19 −8.7 ± 0.5
Multiple sclerosis Intravenous [168]

Anti-neurofascin mAb 162 ± 13 −8.7 ± 0.4

PVA: polyvinyl alcohol.
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5.3. Other Synthetic Lipid Nanocarriers

Besides liposomes and SLNs, there are other lipid-based synthetic NCs, such as
nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes,
that are studied for brain delivery applications (Table 3, Figure 3).

5.3.1. Nanoemulsions

Emulsions are biphasic liquid systems constituted by two phases, the internal one
dispersed as a small droplet in the external or continuous one. Their main feature, making
them extremely useful in the food, pharmaceutical, and cosmetic fields, is the possibility to
mix non-polar and polar molecules. Among them, NEs are nanosized emulsions where
surfactants are employed to lower the surface tension and act as a barrier to emulsion
coalescence at the interface between the two phases. NEs are widely used in nanomedicine
to solubilize hydrophobic drugs, reducing side effects [169].

5.3.2. Nanostructured Lipid Carriers

NLCs are the second generation of SLNs, developed in 1999, and they are defined as
nanometric (50–500 nm) colloidal drug delivery systems, containing a lipid mixture of both
solid and liquid lipids in their core. Compared to SLNs, which have a solid lipid core in a
highly organized fashion, NLCs contain liquid and solid lipid, forming an unorganized
drug matrix. This unorganized nature allows the encapsulation of more drugs in the core
and prevents crystallization and drug leakage during storage. They are biocompatible, non-
toxic, and safe, with high stability and drug loading ability if compared to other lipid-based
delivery tools [170].

5.3.3. Niosomes and Proniosomes

Niosomes are nonionic surfactant vesicles, like liposomes, used to improve the sol-
ubility and stability of poorly soluble drugs. Proniosomes are water-soluble nonionic
dehydrated powdered or gelated structured provesicles that can be immediately rehy-
drated before use, avoiding many issues related to aqueous vesicular dispersions [171].
They are constituted by a lipid compound, cholesterol, or L-α-soya phosphatidylcholine,
and nonionic surfactants, such as spans, tweens, and Brij [172].

5.3.4. Cubosomes

Cubosomes are composed of amphiphilic lipids and surfactants organized in a cubic
nanostructure. The presence of liquid–crystal phases favors the dissolution of hydrosol-
uble peptides. They have some advantages, such as easy formulations, biocompatibility,
prevention from degradation, and stability [33].
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Table 3. Nanoemulsions, nanostructured lipid carriers, niosomes, proniosomes, and cubosomes for the treatment of brain diseases.

LNC Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

NE

Capmul MCM + Tween 80 +
Transcutol P + propylene glycol Quetiapine fumarate - 144.0± 0.5 −8.1± 1.8 Brain delivery Intranasal [173]

Capryol PGMC + Kolliphore® RH40 +
Transcutol®-P

Zolmitriptan Chitosan 43.5 ± 1.9 +5.2 ± 0.9 Migraine Intranasal [174]

Isopropyl myristate + Capryol +
Cremophor EL + Labrasol Huperzine A

Lf
15.2 ± 0.7 −4.5 ± 1.0 AD Intranasal [175]

oleic acid + α-tocopherol + Span 8 +
olive oil + Tween 80 Indinavir 112 ± 4 −33± 3 HIV Intravenous [176]

NLCs

Precirol ATO 5+ Capmul MCM +
Tween 80 + Span 20 Carbamazepine - 132.8 −29 ± 6 Epilepsy Intranasal

inside gel [177]

Compritol + Sweet almond oil + L-PC
+ gelucire 44/14 Flibanserin - 115 - Brain delivery Intranasal

inside gel [178]

Precirol ATO 5 + Lauroglycol 90 +
Tween 80

Escitalopram and
paroxetine - 165 ± 2 +11.2 ± 0.4 Depression Intravenous

and intranasal [179]

Cetyl palmitate + oleic acid + Tween 80
+ Polaxomer 188 Sesamol - 92 ± 6 −27.9 ± 0.6 Ischemic stroke Intravenous [180]

Compritol + Labrafil + Tween 80 +
lauroglycol Almotriptan malate

Chitosan
254.9± 1.9 +34.1 ± 0.1 Migraine Intranasal [181]

Glyceryl monostearate + oleic acid +
Tween 80 + pluronic F127 Lorazepam 72± 5 −20 ± 3 Epilepsy Intranasal [182]

Palmityl palmitate + Miglyol® +
sphingosylphosphorylcholine +
Solutol HS15® + DSPE-PEG2000

Nimodipine
Lf

170 ± 14 −15.9 ± 1.1 Ischemic stroke Intravenous [183]

PC + chol oleate + glycerol trioleate +
S100-COOH Curcumin 103.8 ± 0.6 −5.8 ± 0.7 AD IC [184]
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Table 3. Cont.

LNC Composition Drug Surface
Functionalization

Size
(nm)

ZP
(mV) Disease Administration

Route Reference

Niosomes

Span60 + Chol Bromocriptine
mesylate - 180 ± 5 −14.2 ± 1.8 Brain delivery Intranasal [185]

DOTMA + lycopene + polysorbate 60 pCMS-EGFP
plasmid - 119 ± 3 +23 ± 2 Brain delivery IC [186]

Chol + Tween60 Thymoquinone - 78 −5 Ischemic stroke Intravenous [187]

SUR II + Chol + PEG2000 Pramipexole - 103 ± 0.4 −13.8 ± 0.2 PD Intraperitoneal [120]

Tween60 + Chol Oleuropein - 79.37 ± 0.12 +1.38 ± 0.07 Metastatic brain
tumors Intravenous [188]

Span 60 + Solulan C24 Albumin Glucopyranose
and alanine 94 ± 10 −3.8 ± 1.0 Brain delivery Intravenous [189]

Span + Chol Olanzapine

Chitosan

250 ± 5 - Schizophrenia Intranasal [190]

Span 60 + Chol Lacosamide 194 +36 Epilepsy Intravenous [191]

Dicetyl phosphate + Chol + Tween20 Pentamidine 118 ± 2 −26.7 ± 0.7 Brain delivery Intranasal [192]

Cubosomes

Phytantriol + Tween80 - - 170–250 - Brain delivery Intravenous [193]

Gold NPs - 196 ± 3 - Intravenous [194]

Selachyl alcohol + Tween80 Phenytoin - 144 ± 4 - Seizure Intravenous [195]

Glycerol mono-oleate + poloxamer 407 Donepezil HCl - 138–231 −40 AD Intranasal [196]

Glycerol monooleate + Poloxamer 407
+ Tween 80 Granisetron - 267 ± 3 −27 ± 2 Chemotherapy-

induced emesis Intranasal [197]

Glyceryl monooleate + poloxamer 407
+ ethanol + polyethylene glycol 200

Tizanidine
hydrochloride - 50.2 −6.4 Brin delivery Intranasal [198]

Monoolein + Tween80 Paliperidone
palmitate Chitosan 306 ± 23 +42.4 ± 0.2 Schizophrenia Intranasal [199]

Glyceryl monooleate + Pluronic 127 Gambogenic acid
and PLHSpT

Angiopep-2
128.7 ± 1.0 >30 GBM Intravenous [200]

Monoolein + amphiphilic polymer Temozolomide or
cisplatin ∼280 +18 GBM Intravenous [201]

DOTMA: 1,2-di-O-octadecenyl-3-trimethylammonium propane.
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5.4. Extracellular Vesicles

Extracellular vesicles (EVs) are phospholipid bilayer-delimited vesicles naturally
produced by cells in both physiological and pathological conditions. Their membrane
and cargo composition mirror the cell of origin and can modulate many physiological and
pathological cellular processes, acting as effective intercellular communication mediators
(Figure 5). In this way, EVs modulate immune reactions, tissue regeneration, tumor niche
establishment, and tumor metastatization, triggering phenotypic changes in acceptor cells.
This key role of EVs demonstrates their potential as vehicles for the delivery of therapeutic
cargoes or as hybrid nanosized tools engineered ad hoc to regulate a physio-pathological
condition or a disease progression. In addition to their delivery capabilities, EVs have
intrinsic targeting abilities towards the parental or pathological tissue [202]. The increasing
interest of researchers in EVs mainly relies on their potential diagnostic and therapeutic
applications in many medical fields such as cancer, neurodegenerative, and immunological
diseases, and many clinical trials involving different types of EVs, even from plants, are
already on the go [203].
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In addition to the just-described properties, EVs have the outstanding, and still not
totally understood, ability to cross the BBB bidirectionally, influencing neurons or peripheral
tissues through the bloodstream. The comprehension of this phenomenon becomes essential
for the use of EVs as drug delivery vehicles in pharmacology and therapeutics. In the last
decade, the effects of EVs have been evaluated in preclinical models of brain diseases such
as AD, stroke, traumatic brain injury, and intracerebral hemorrhage. Similarly to other body
compartments, EVs in the brain also play a key role in the communication between neurons,
glia, and vascular cells, especially in the maintenance of homeostasis and the progression
of pathologies. In the last decade, there has been a shift from cell-based therapeutics
to EV-based ones, and in this regard, many studies have shown the potential of EVs as
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nanotherapeutics for brain pathologies. Native EVs have neuroprotective and regenerative
effects, but they can also be engineered in terms of payload and surface functionalization
to enhance their bioactivity and targeting [204].

Although EVs have unique properties to advance smart drug delivery systems in
terms of pharmacokinetics, targeting, and safety against those of synthetic nanocarriers,
clinical translation of these results is still challenging. The EVs’ intrinsic size heterogeneity,
batch-to-batch differences, and the risks of the biogenesis procedure are higher than in
synthetic nanocarriers. Moreover, effective and reproducible methods to load them with
therapeutic drugs are still needed, and the current EV purification methods limit the
development of standardized and large-scale production [205].

Therapeutic effects of native EVs on different brain pathologies have been reported
since 2011; most of them use EVs derived from mesenchymal stem cells (MSCs) for the
treatment of stroke, traumatic brain injury, or AD. MSC-derived EVs show a homing
mechanism toward injured brain tissue driven by inflammation. Other studies use EVs
from neural stem cells (NSCs) isolated from mice or humans after the differentiation
of induced pluripotent stem cells (iPSC), opening the perspective of a very personalized
medicine by isolating iPSC from the patient himself. In this last case, the patient may benefit
from his own cells after the generation of iPSCs [25,53]. NSCs-derived EVs demonstrate an
outstanding innate tropism to make the brain capable of reaching the injury site [204]. In
addition, dendritic cell-derived EVs have been proven to be promising for the treatment
of brain cancers, which are resistant to immune cell recruitment, proposing them for
immunotherapy against GBM [206].

To date, some EV-based treatments have undergone clinical trials:

- NCT03384433: EVs from allogenic placenta MSCs are IC injected to ameliorate the
brain injury by promoting neurogenesis after an ischemic stroke [207];

- NCT05490173: MSC-derived EVs are intranasally administered to low-birth-weight
infants to mitigate neurodevelopmental outcomes;

- NCT04202770: MSCs-derived EVs with transcranial focused US in patients with
refractory, treatment-resistant depression, anxiety, and neurodegenerative dementia;

- NCT06138210: intravenous injection of EVs derived from human-induced pluripotent
stem cells for ischemic stroke;

- NCT04388982: intranasal administration of allogenic adipose MSC-EVs in the treat-
ment of mild to moderate dementia due to AD [208].

Besides the ongoing clinical trials, many other applications of EVs at the preclinical
stage are listed in Table 4.

Although it has been demonstrated that EVs have clear potential for therapeutic
applications already used in their native state, that is, being isolated from the cellular
fluids in which they are dispersed after being secreted by a specific cell line, there are an
increasing number of pharmaceutical applications of EVs engineered or functionalized
after their isolation (Table 5).
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Table 4. Native EVs for the treatment of brain diseases.

Origin Mechanism of Action Disease Administration Route References

Astrocytes Ameliorated neuronal damage through
regulating autophagy Ischemic stroke Intravenous [209]

Embryonic stem cells Promote neurological recovery Ischemic stroke Intravenous [210]

MSCs

β-amyloid degradation, immunoregulation, and
neurotrophic action

AD

IC [211]

Protect neurons against amyloid-β peptide-induced
oxidative stress and synapse damage

In vitro model
(transwell) [212,213]

Immunomodulatory and neuroprotective effects Intranasal [214–216]

Neuroprotective and reduce neuroglia activation Amyotrophic lateral sclerosis Intranasal [217]

Behavioral improvement Autism Intranasal [218–220]

Diminished loss of glutamatergic and GABAergic neurons,
reduced inflammation, neuroprotective, and

anti-inflammatory effects
Epilepsy Intranasal [221]

Reduced neuronal apoptosis and improved
neurological function Hemorrhage Intravenous [222]

Reduce the infarct zone, favor neurological and functional
recovery, and promote neurovascular remodeling Ischemic stroke

Intravenous [223,224]

Promote neurogenesis and angiogenesis Intranasal [225,226]

Enhanced angiogenesis PD Intraperitoneal [227]

Reduced microglia-mediated neuroinflammation Perinatal brain injury Intranasal [228]

Reduce glutamate levels and preserve the number of
parvalbumin-positive GABAergic interneurons Schizophrenia Intranasal [229]

Increase newborn ECs, reduce neuroinflammation,
promote angiogenesis and neurogenesis, decrease neuron

cell death, and inhibit ferroptosis
Traumatic brain injury Intravenous [230–233]
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Table 4. Cont.

Origin Mechanism of Action Disease Administration Route References

Microglia cells Attenuate brain injury and promote neural survival Ischemic stroke Intravenous [234]

Neural stem cells

Neuroprotective, reduce edema, protect astrocytes, and
reduce infarct volume

Ischemic stroke

Intravenous [235–237]

Neurological recovery and neuroregeneration in mice Internal carotid artery perfusion [238]

Reduced lesion volume and microgliosis, improved
spontaneous movements, and increased neuronal survival ICV [239]

Neuroprotection AD Intravenous [240]

T cells
Reduces pro-inflammatory transcripts and

neuroinflammatory responses, slowing
disease progression

Amyotrophic lateral sclerosis Intranasal [241]

Ginseng Inhibit glioma progression and regulate
tumor-associated macrophages Glioma Intravenous [242]

Escherichia coli Antitumor effect Neuroblastoma Intravenous [243]

Lactobacillus plantarum

Reduced apoptosis in ischemic neurons Ischemic stroke ICV [244]

Increased BDNF expression in the hippocampus produces
antidepressant effects Depression Intraperitoneally [245]
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Table 5. Engineered EVs for the management of brain diseases.

Origin Drug Surface
Functionalization Disease Administration Route Reference

Astrocytes

Homer1 - Hemorrhage IC [246]

Ultrasmall superparamagnetic NPs - Brain delivery Intranasal [247]

miR-143-3p - Intracerebral hemorrhage Intravenous [248]

Blood Dopamine Tf PD Intravenous [249]

Brain endothelial cells
VEGF siRNA - Brain cancer Intravenous [250]

TPP-Ce6 Saturated TfR GBM Intravenous and light [251]

Dendritic cells

VEGF-A siRNA and doxorubicin - Glioma Intranasal [252]

Curcumin and siSNCA in polymeric NPs
RVG peptide PD

Intravenous [253]

Short hairpin RNA microcircles Intravenous [254]

Embryonic stem cells
Curcumin - Ischemic stroke Intranasal [255]

Paclitaxel c(RGDyK) peptide GBM Intravenous [256]

Endothelial progenitor cells miR-126 - Ischemic stroke Intravenous [257]

Fibroblasts

Achaete-scute homolog 1, myelin
transcription factor 1 like, and POU-III

transcription factor Brain-2

Metabotropic glutamate
receptor 8 Brain delivery Intranasal [258]

Methotrexate KLA-LDL peptide GBM Intravenous [259]

HEK-293T cells

miR-21-sponge - GBM Intratumor [260]

Doxorubicin Angiopep-2 and
TAT peptides Glioma Intravenous [261]

Verrucarin A EGFR mAb GBM Intravenous [262]

AMO-21 Lamp2b-T7 GBM Intravenous [263]

CircDYM Lamp2b-RVG Depressive disorders Intravenous [264]
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Table 5. Cont.

Origin Drug Surface
Functionalization Disease Administration Route Reference

HEK-293T cells

Aptamer F5R2

RVG peptide

PD Intravenous [265]

circSCMH1
Ischemic stroke

Intravenous [266]

Nerve growth factor Intravenous [267]

mRNA SNAP25 and Gap43 AD Intravenous [268]

Single guide RNA and dCas9-DNMT3A PD Intravenous and US [269]

Hippocampal cells Adenosine - Ischemic stroke Intravenous [270]

Leukocytes Retrovirus-like mRNA-packaging capsids - Brain delivery Intravenous [271]

Macrophages

TPP1 - Batten disease Intraperitoneal [272]

Curcumin AD Intravenous [273]

BDNF - Inflammation Intravenous [274]

GDNF - PD Intranasal [275]

Recombination signal-binding protein-Jκ -
Glioma

Hypodermically injected [276]

SPIONs and curcumin Neuropilin-1-targeted
peptide Intravenous [277]

Macrophages and
blood serum Doxorubicin - Glioma Intravenous and US [278]

MSCs

- RVG AD Intravenous [279]

- AAV capsid-specific
peptides- Lamp2b Brin delivery Intravenous [280]

Neprilysin - AD Intranasal [281]

BDNF -

Ischemic stroke

Intranasal [282]

miR-126 - Intravenous [283]

Magnetic iron oxide NPs - Intravenous [284]

Antisense oligonucleotide 4 - PD ICV [285]

miR-124 - Traumatic brain injury Intravenous [286]
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Table 5. Cont.

Origin Drug Surface
Functionalization Disease Administration Route Reference

MSCs

miR-29a-3p - Glioma Intravenous [287]

miR-133 - IC hemorrhage Intravenous [288]

Curcumin c(RGDyK) peptide

Ischemic stroke

Intravenous [289]

miR-210 Lamp2b-RVG Intravenous [290]

miR-124 Intravenous [291]

Curcumin and SPIONs Penetratin and RVG29 PD Intranasal [292]

Microglia cells

- DA7R and SDF-1 Ischemic stroke Intravenous [293]

lincRNA-Cox2 - Lipopolysaccharide-induced
microglia proliferation Intranasal [294]

miR-124-3p -
Traumatic brain injury

Intravenous [295]

NR2B9c RVG29
Intravenous [296]

Ischemic stroke Intravenous [297]

Doxorubicin Amphiphilic peptide GBM Intravenous [298]

Neural progenitor cells - RGD-4C peptide Ischemic stroke Intravenous [299]

PD-L1 siRNA c(RGDyK) peptide GBM Intravenous and radiation [300]

Neural stem cells
Bryostatin-1 Ligand of PDGFRα MS Intravenous [301]

Anti-miRNA-21 and miRNA-100 CXCR4 GBM Intranasal [302]

Neutrophils Doxorubicin - Glioma Intravenous [303]
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Table 5. Cont.

Origin Drug Surface
Functionalization Disease Administration Route Reference

Plasma

Donepezil AD Intravenous [304]

Tf - MS Intranasal [305]

Quercetin
- AD Intravenous [306]

mAB Gap43 Ischemic stroke Intravenous [307]

Grapefruit Doxorubicin Heparin and cRGD Glioma Intravenous [308]

miR-17 Folic acid GBM Intranasal [309]

Escherichia coli Pioglitazone - Ischemic stroke Intravenous [310]

Salmonella Doxorubicin - Glioma Intravenous [311]

TPP: triphenylphosphonium; Ce6: chlorin e6; siSNCA: siRNA targeting SNCA; SPIONs: superparamagnetic iron oxide nanoparticles; AAV: adeno-associated virus; Lamp2: lysosomal-
associated membrane protein 2; BDNF: brain-derived neurotrophic factor; GDNF: glial-cell-line-derived neurotrophic factor.
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5.5. Cell-Membrane-Derived Nanocarriers

Cell-derived EV-mimetic nanocarriers have been used as an alternative to EVs, taking
advantage of a much higher production yield for the drug delivery of different therapeutic
molecules and NPs to the brain (Table 6).

The first membranes used were derived from red blood cells (RBCs), trying to exploit
their prolonged circulating time due to the presence of membrane-oriented CD47. However,
RBCs do not expose specific targeting, limiting their application to specific targets.

Trying to achieve enhanced targeting ability, other sources of cell membranes have
been evaluated to favor the therapeutic effects of the nanocarriers and their side effects.
Hence, tumor cells, neutrophils, macrophages, and leukocytes, stem cells, natural killer
cells, platelets, and bacteria have been assessed as cell membrane sources [312,313].

Table 6. Cell membrane-derived nanocarriers for the management of brain diseases.

Membranes’
Origin Carrier Cargo Surface

Functionalization Disease Administration
Route Reference

4T1 and platelet
hybrid

Polymetformin +
hyaluronic acid liposomes Paeonol - Ischemic stroke Intravenous [314]

Aorta endothelial
cells HOP NPs Rapamycin CXCR4 Ischemic stroke Intravenous [315]

Brain
microvasculature
endothelial cells

Mesoporous silica NPs Dihydroartemisinin - Cerebral malaria Intravenous [316]

PLGA-PEG NPs Doxorubicin - GBM Intravenous [317]

Dendritic cells PLGA NPs Rapamycin Glioma Intravenous [318]

Macrophages

-
Molybdenum

disulfide quantum
dots

- AD Intravenous [319]

- Cannabidiol - Post-traumatic
stress disorder

Intravenous and
US [320]

- aPD-L1 and CXCL10 Angiopep-2 GBM Intravenous [321]

Liposomes
(DSPE-PEG2000) IR-792 - PTT of GBM Intravenous [322]

Liposomes (DPPC, Chol,
and DSPE-PEG2000) Oxytocin - AD Intranasal [323]

Mesoporous silica NPs anti-NF-κB peptides - GBM Intravenous [324]

Poly(N-vinylcaprolactam)
nanogel

Manganese dioxide
and cisplatin - Glioma Intravenous [325]

Liposomes (Chol and
soybean lecithin) Baicalin - Ischemic stroke Intravenous [326]

Cu2−x Se and PVP NPs Curcumin DSPE-PEG2000-
TPP PD Intravenous [327]

SLN (glycerol monostearate,
Tween 80, and soya lecithin) Genistein RVG29 and TPP AD Intravenous [328]

PLGA Rapamycin PD-1 GBM Intravenous [329]

Microglia cells

Poly(propylene glycol
dithiopropionate) Zoledronate - GBM Intravenous [330]

PLGA NPs PLX3397 DSPE-PEG2000 Cognitive
impairment Intravenous [331]

MSCs Liposomes (PC) Curcumin - Ischemic stroke Intravenous [332]
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Table 6. Cont.

Membranes’
Origin Carrier Cargo Surface

Functionalization Disease Administration
Route Reference

Monocytes PLGA Rapamycin -
Ischemic stroke

Intravenous [333]

Neutrophil

- Fingolimod
hydrochloride - Intravenous [334]

- Mesoporous Prussian
blue nanozyme - Intravenous [335]

PLGA NPs Superparamagnetic
iron oxide NPs - Neuroinflammation

imaging Intravenous [336]

Liposomes (DPPC + Chol +
DSPE-PEG2000) Leonurine -

Ischemic stroke

Intravenous [337]

Dendrigraft poly-L-lysine
and PEG NPs Catalase N-acetyl

Pro-Gly-Pro Intravenous [338]

β-cyclodextrin PBAP Edaravone SHp-PEG-DSPE Intravenous [339]

PEI NPs Octanoic acid RVG29 Intravenous [340]

Neural stem cells
- Oncolytic adenovirus

A4/k37 - GBM Intravenous [341]

Zein NPs Antisense
oligonucleotide Aptamer 19S PD Intravenous [342]

NK cells PLGA NPs Temozolomide and
IL-15 cRGD peptide GBM Intravenous [343]

Neuron cells Cu2–xSe-PVP Quercetin VCAM-1 PD Intravenous and
US [344]

Platelets

-
L-arginine and

γ-Fe2O3 magnetic
nanoparticles

-

Ischemic stroke

Intravenous [345]

T7-PEG-poly-histidine-
poly-lysine miRNA-Let-7c Intravenous [346]

PLGA NPs Human fat extract RGD peptide Intravenous [347]

Dextran NPs Neuroprotectant
(ZL006e)

Recombinant
tissue plasminogen

activator (rtPA)
and thrombin-

cleavable
Tat-peptide

Intravenous [348]

RBCs

- Celecoxib - AD Intranasal [349]

Mesoporous silica NPs +
upconversion NPs S-nitrosoglutathione - PD Intravenous [350]

- Doxorubicin CDX peptide

Glioma
Intravenous

[351]

- Docetaxel
nanocrystals pHA-VAP peptide [352]

Surfactant Docetaxel cRGDyK peptide [353]

pH-sensitive NPs of
acetal-dextran

Doxorubicin and
lexiscan Angiopep-2

GBM

Intravenous [354]

PEI + Poly-L-lysine NPs siRNA Intravenous [355]

Nanogel
(Poly(deca-4,6-diynedioic

acid) + Puilulan)

Temozolomide and
indocyanine green

ApoE

Intravenous [356]

Acetal dextran

Temozolomide and
OTX015 Intravenous [357]

ABT + A12 inhibitors Intravenous [358]

NLC (Tween 80 + cetyl
palmitate + oleic acid + chol

+ DSPE-PEG2000)
Resveratrol RVG29 and TPP AD Intravenous [359]

Human serum albumin NPs Curcumin T807 and TPP Intravenous [360]

- Curcumin
nanocrystals RVG29 PD Intravenous [361]

Boronic ester-Dextran NR2B9C Stroke-homing
peptide Ischemic stroke Intravenous [362]

NLC (Chol oleate + Chol +
soybean lecithin + triolein)

PARP inhibitor
olaparib

C3 and SS31
peptides

Traumatic brain
injury Intravenous [363]
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Table 6. Cont.

Membranes’
Origin Carrier Cargo Surface

Functionalization Disease Administration
Route Reference

Cancer
cell-derived PCL NPs Indocyanine green -

Fluorescent
imaging and

phototherapy of
GBM

Intravenous [364]

Brain cancer Nanocomposite of PDPP3T
+ PLGA + PVA

Ultrasmall iron oxide
NPs

cRGD
peptide Brain tumors Intravenous [365]

Breast cancer PEG–PDPA Succinobucol - Ischemic stroke Intravenous [366]

Brain metastatic
breast cancer cell mPEG-PLGA Doxorubicin - Brain delivery Intravenous [367]

GBM cell line

pH-sensitive biomimetic
NPs of acetal dextran

Temozolomide and
cisplatin -

GBM

Intravenous [368]

pH-sensitive polyglutamic
acid Doxorubicin - Intravenous +

US [369]

PEI pDNA (pHSVtk) - Intravenous/Intranasal[370]

Boron nitride nanotubes Doxorubicin - Intravenous [371]

- CuFeSe2
nanocrystals - Photothermal

therapy GBM Intravenous [372]

Nanosuspension 10-
hydroxycamptothecin - Glioma Intravenous [373]

PVP K30 + Sodium
deoxycholate Paclitaxel WSW peptide Intravenous [374]

Poly(MIs)-PEI Paclitaxel siPGK1 GBM Intravenous [375]

GBM from the
patient - Au Nanorods - GBM Intravenous [376]

Glioma cell line
Cu2−x Se NPs Cinobufotalin - GBM Intravenous [377]

Liposomes (DPPC, DSPC,
DOPC, and Chol) Indocyanine green - PTT of glioma Intravenous [378]

Metastatic
melanoma

Citraconic anhydride
grafted poly-lysine and

polyethyleneimine xanthate
siPGK1 - GBM Intravenous [356]

Brain metastatic
breast cancer cells
and glioma cells

Oleic acid, TPGS, and
lanthanide-doped NPs

Gambogic acid and
indocyanine green - Glioma Intravenous [379]

Dendritic cells and
glioma cells NE (lecithin) Docetaxel - Glioma Intravenous [380]

GBM, macrophage,
and microglia cells

Amphiphilic polymer
chlorin e6, cucurbit[7]urils,

and PEG

5-(3-methyltriazene-
1-yl)imidazole-4-

carboxamide
- GBM Intravenous [381]

Mitochondria and
GBM cells PEG-PHB Gboxin - GBM Intravenous [382]

Neutrophils and
macrophages PLGA NPs Rapamycin - Glioma Intravenous [383]

Platelets and
glioma cells PLGA NPs β-mangostin - Glioma Intravenous [384]

Platelets and RBCs -
Hypoxia inducible
factor-1α inhibitor

YC-1
- Ischemic stroke Intravenous [385]

CXCR4: C-X-C motif chemokine receptor 4; HOP: ROS-responsive amphiphilic copolymer HBA-OC-PEG2000;
PBAP: phenylboronic acid pinacol ester; VCAM: vascular cell adhesion protein; pHA: p-hydroxybenzoic acid;
PARP: poly(ADP-ribose) polymerase; PCL: polycaprolactone; PDPA: poly(2-(diisopropylamino)ethyl methacry-
late; PVP: polyvinylpyrrolidone; PGK1: phosphoglycerate kinase-1; PEG-PHB: poly (ethylene glycol)-poly
(4-(4,4,5,5-Tetramethyltetramethyl-1,3,2-dioxaborolan-2-yl) benzyl acrylate).

6. Conclusions

This review pointed out that nanomedicine is a significant tool for the development of
efficient and safe brain disease treatments. The BBB, due to its structure, poses a formidable
challenge to achieving effective drug delivery.

Nanosystems can be designed to reach the BBB and specifically deliver the cargo,
thus increasing drug retention at the target site. For an efficacious design of drug delivery
systems, a deep knowledge of the BBB structure and physiopathology is mandatory.
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The lipid-based nanocarriers here described are versatile platforms, and several efforts
have been made in the past years for the treatment of several BBB diseases.

Some liposomal formulations are currently used or are undergoing clinical trials,
especially for tumor treatments. Some clinical trials are already active for the treatment of
brain diseases with EVs. A relevant number of other nanocarriers were able to overcome
the in vitro/vivo bottleneck since their activity was shown in animal models, paving the
way for future clinical translation.

Nanotechnologies for therapeutic and diagnosis applications allow not only to en-
hance the availability of active anti-stroke, anticancer, antimicrobics, and neuroprotective
agents for targeting e/o personalized brain drug delivery applications but also to em-
power the reengineering of a wide variety of small molecules and biologic drugs to assist
neurodevelopment and face neurological diseases.
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