Influence of Light Irradiation on the Degradation of Dezocine in Injections
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HPLC Conditions
2.3. Preparative LC Conditions
2.4. LC-MS Conditions
2.5. NMR Spectroscopy Conditions
2.6. Differential Scanning Calorimetry (DSC)
3. Results and Discussion
3.1. Isolation of the Photodegradation Products in the Dezocine Injection
3.2. Structure Identification of the Photodegradation Products in the Dezocine Injection
3.3. Mechanism of the Formation Process of Degradation Products
3.4. Effect of Light Intensity and Wavelength on the Photodegradation of Dezocine Injection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- González-González, O.; Ramirez, I.O.; Ramirez, B.I.; O’Connell, P.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Drug Stability: ICH Versus Accelerated Predictive Stability Studies. Pharmaceutics 2022, 14, 2324. [Google Scholar] [CrossRef] [PubMed]
- Lortie, A.; Martin, E.A.; Arnot, K. Non-mutagenic Impurities–Recent Industry Experience of Using Dose Durational Limits in Drug Development. Regul. Toxicol. Pharm. 2024, 147, 105559. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Zhang, T.; Wang, Y.; Jin, B.; Ma, C. Characterization of Degradation Products and Process-related Impurity of Sutezolid by Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2019, 169, 196–207. [Google Scholar] [CrossRef] [PubMed]
- ICH Topic Q3A (R2) Impurities in New Drug Substances. International Conference on Harmonisation. 25 October 2006. Available online: https://database.ich.org/sites/default/files/Q3A%28R2%29%20Guideline.pdf (accessed on 19 June 2024).
- Roberts, S.W.; Cauchon, N.S.; Ma, M.; Bezemer, J.; Zhang, X.; Weilage, E.; Anson, O. Control Strategy Expectations in Early Clinical Phase Synthetic Oncology Programs: Two Global Regulatory Case Studies. Org. Process Res. Dev. 2020, 24, 96–100. [Google Scholar] [CrossRef]
- Liu, Y.; Romijn, E.P.; Verniest, G.; Laukens, K.; De Vijlder, T. Mass Spectrometry-based Structure Elucidation of Small Molecule Impurities and Degradation Products in Pharmaceutical Development. Trends Anal. Chem. 2019, 121, 115686. [Google Scholar] [CrossRef]
- Liu, C.; Luo, Y.; Tao, Q.; Hong, L.; Zeng, S. Characterization of Seven New Related Impurities and Forced Degradation Products of Tetracaine Hydrochloride and Proposal of Degradation Pathway by UHPLC-Q-TOF-MS. J. Pharm. Biomed. Anal. 2023, 223, 115116. [Google Scholar] [CrossRef] [PubMed]
- Yazar, Y.; Özel, F.G.A.; Atici, E.B.; Yılmaz, E.; Narin, İ. Investigation of Aclidinium Bromide Degradation by Stability-indicating HPLC Methods, Characterization of Impurities by NMR, and Identification of Degradation Products by LC-MS. J. Pharm. Biomed. Anal. 2024, 238, 115845. [Google Scholar] [CrossRef] [PubMed]
- Simon, C.G., Jr.; Borgos, S.E.; Calzolai, L.; Nelson, B.C.; Parot, J.; Petersen, E.J.; Roesslein, M.; Xu, X.; Caputo, F. Orthogonal and Complementary Measurements of Properties of Drug Products Containing Nanomaterials. J. Control. Release 2023, 354, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Teng, Y.; Han, W.; Yin, L.; Teng, X. Rapid Screening of Pharmaceutical Products for Elemental Impurities by A High-resolution Portable Energy Dispersive X-ray Fluorescence Spectrometer Using an Efficient Fundamental Parameter Method. Analyst 2023, 148, 1116–1122. [Google Scholar] [CrossRef]
- Görög, S. Critical Review of Reports on Impurity and Degradation Product Profiling in the Last Decade. Trends Anal. Chem. 2018, 101, 2–16. [Google Scholar] [CrossRef]
- ALSaeedy, M.; Al-Adhreai, A.; Öncü-Kaya, E.M.; Şener, E. An Overview of Advances in the Chromatography of Drugs Impurity Profiling. Crit. Rev. Anal. Chem. 2023, 53, 1455–1471. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Chen, Y.; Huang, S.; Sun, X. Interaction of Analgesic Effects of Dezocine and Sufentanil for Relief of Postoperative Pain: A Pilot Study. Drug Des. Dev. Ther. 2020, 14, 4717–4724. [Google Scholar] [CrossRef] [PubMed]
- Childers, W.E.; Abou-Gharbia, M.A. “I’ll Be Back”: The Resurrection of Dezocine. ACS Med. Chem. Lett. 2021, 12, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Huang, X.-P.; Yeliseev, A.; Xi, J.; Roth, B.L. Novel Molecular Targets of Dezocine and Their Clinical Implications. Anesthesiology 2014, 120, 714–723. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Jiang, L.; Cao, Y.; Liu, H.; Ping, M.; Li, W.; Xu, Y.; Ning, J.; Chen, Y.; Wang, X. Comparative Efficacy of Therapeutics for Chronic Cancer Pain: A Bayesian Network Meta-analysis. J. Clin. Oncol. 2019, 37, 1742–1752. [Google Scholar] [CrossRef] [PubMed]
- Ye, R.-R.; Jiang, S.; Xu, X.; Lu, Y.; Wang, Y.-J.; Liu, J.-G. Dezocine as a Potent Analgesic: Overview of Its Pharmacological Characterization. Acta Pharmacol. Sin. 2022, 43, 1646–1657. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, X.; Wang, J.; Sun, Y.; Zhang, G.; Liang, L. Comparison of the Efficacy and Safety between Dezocine Injection and Morphine Injection for Persistence of Pain in Chinese Cancer Patients: A Meta-analysis. Biosci. Rep. 2017, 37, BSR20170243. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.P.; Hinds, M.; Tayidi, I.; Jeffcoach, D.R.; Corder, J.M.; Hamilton, L.A.; Lawson, C.M.; Bollig, R.W.; Heidel, R.E.; Daley, B.J.; et al. Quetiapine for Delirium Prophylaxis in High-risk Critically Ill Patients. Surg.-J. R. Coll. Surg. E. 2021, 19, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.-X.; Wang, L.-H.; Liu, H.-M.; Chen, F.-C.; Liu, J. Stability Study of Dezocine in 0.9% Sodium Chloride Solutions for Patient-Controlled Analgesia Administration. Medicine 2017, 96, 35. [Google Scholar] [CrossRef]
- YBH06342018; Dezocine Injection. Standard of the China State Food and Drug Administration: Beijing, China, 2018.
- Adoption of ICH Guidance: Impurities in New Drug Products—ICH Topic Q3B(R). International Conference on Harmonisation. 5 February 2003. Available online: https://www.ikev.org/haber/stabilite/kitap/38%201.10%20%20Stability%20Workshop%20ICH%20Q3BR%20C.pdf (accessed on 19 June 2024).
- Kelly, S.S.; Glynn, P.M.; Madden, S.J.; Grayson, D.H. Impurities in a Morphine Sulfate Drug Product Identified as 5-(Hydroxymethyl)-2-furfural, 10-Hydroxymorphine and 10-Oxomorphine. J. Pharm. Sci. 2003, 92, 485–493. [Google Scholar] [CrossRef]
- Proksa, B. Separation of Morphine and Its Oxidation Products by Capillary Zone Electrophoresis. J. Pharm. Biomed. Anal. 1999, 20, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Farsam, H.; Eiger, S.; Lameh, J.; Rezvani, A.; Gibson, B.W.; Sadée, W. Morphine Impurity with Opioid Activity Is Identified as 10α-Hydroxymorphine. Pharm. Res. 1990, 7, 1205–1207. [Google Scholar] [CrossRef] [PubMed]
- Dang, M.; Deng, Q.-L.; Fang, G.-Z.; Zhang, D.-D.; Li, H.-J.; Liu, J.-M.; Wang, S. Bifunctional Supported Ionic Liquid-based Smart Films for Dyes Adsorption and Photodegradation. J. Colloid Interf. Sci. 2018, 530, 302–311. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Hou, K.; Gao, J.; Zhu, G.; Zhou, Z.; Xiang, H.; Qiu, T.; Zhu, M. Enhanced Photo-stability Polyphenylene Sulfide Fiber Via Incorporation of Multi-walled Carbon Nanotubes Using Exciton Quenching. Compos. Part A 2020, 129, 105716. [Google Scholar] [CrossRef]
API (Dezocine) | Degradation Product 1 | Degradation Product 2 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Chemical Shift (ppm) | 1H | Chemical Shift (ppm) | 13C | Chemical Shift (ppm) | 1H | Chemical Shift (ppm) | 13C | Chemical Shift (ppm) | 1H | Chemical Shift (ppm) | 13C |
6.378 (d, J = 2.54 Hz, 1H) | C1-H | 114.05 | C1 | 6.61 (d, J = 2.3 Hz, 1H) | C1-H | 114.05 | C1 | 6.92 (s, 2H) | C13-H, C30-H | 152.60 | C1, C18 |
155.45 | C2 | 157.48 | C2 | 6.74 (s, 2H) | C2-H, C19-H | 141.59 | C3, C20 | ||||
6.274 (dd, J = 2.54, 8.22, 1H) | C3-H | 113.65 | C3 | 6.57 (dd, J = 8.1, 2.2 Hz, 1H) | C3-H | 114.38 | C3 | 3.23–3.18 (m, 2H) | C15-H, C31-H | 130.74 | C13, C30 |
6.593 (d, J = 8.22 Hz, 1H) | C4-H | 129.47 | C4 | 7.02 (d, J = 8.2 Hz, 1H) | C4-H | 132.35 | C4 | 3.04 (dd, J = 16.1, 6.6 Hz, 2H) | C11-H, C28-H | 125.70 | C12, C29 |
126.54 | C5 | 129.95 | C5 | 2.59 (d, J = 16.5 Hz, 2H) | C11-H, C28-H | 124.29 | C14, C17 | ||||
2.267, 2.730 (d, dd, J = 16.20, 7.20, 1H) | C6-H | 35.36 | C6 | 4.30 (s, 1H) | C6-H | 72.90 | C6 | 2.23 (s, 2H) | C10-H, C27-H | 114.47 | C2, C19 |
1.845 (m, 1H) | C7-H | 37.45 | C7 | 2.12–2.03 (m, 1H) | C7-H | 45.94 | C7 | 1.99–1.93 (m, 2H) | C5-H, C22-H | 58.09 | C15, C31 |
1.516, 1.304 (dt, t, 1H) | C8-H | 29.60 | C8 | 1.68–1.64 (m, 1H) | C8-H | 1.77–1.71 (m, 2H) | C9-H, C26-H | 40.06 | C4, C21 | ||
0.578, 1.282 (dt, t, 1H) | C9-H | 22.91 | C9 | 1.43–1.34 (m, 3H) | C8-H, C10-H | 1.66–1.64 (m, 2H) | C9-H, C26-H | 36.08 | C5, C22 | ||
0.852, 1.207 (dt, t, 1H) | C10-H | 29.86 | C10 | 1.09–0.97 (m, 2H) | C9-H | 1.62–1.59 (m, 2H) | C5-H, C22-H | 35.32 | C10, C27 | ||
0.512, 1.176 (dt, t, 1H) | C11-H | 26.13 | C11 | 0.71–0.54 (m, 2H) | C11-H | 1.50–1.44 (m, 6H) | C6-H, C7-H, C8-H, C23-H, C24-H, C25-H | 34.58 | C16, C32 | ||
1.263, 1.805 (dt, t, 1H) | C12-H | 36.59 | C12 | 2.03–1.92, 1.53–1.47 (m, 1H) | C12-H | 36.99 | C12 | 1.34 (s, 6H) | C16-H, C32-H | 34.19 | C11, C28 |
40.49 | C13 | 40.98 | C13 | 1.20–1.12 (m, 2H) | C7-H, C24-H | 28.98 | C9, C26 | ||||
144.93 | C14 | 145.88 | C14 | 0.88–0.85 (m, 2H) | C8-H, C25-H | ||||||
2.742 (d, J = 4.90Hz, 1H) | C15-H | 58.17 | C15 | 3.40 (d, J = 4.6 Hz, 1H) | C15-H | 53.33 | C15 | 0.84–0.78 (m, 2H) | C6-H, C23-H | ||
1.022 (s, 1H) | C16-H | 35.41 | C16 | 1.27 (s, 3H) | C16-H | 35.41 | C16 | C16 |
Target Analyte | Light Treatment | Retention Time | Area | Area% |
---|---|---|---|---|
Dezocine | 20% | 19.091 | 15,078,851 | 99.045 |
40% | 19.104 | 14,942,159 | 97.770 | |
60% | 19.078 | 14,883,555 | 96.211 | |
80% | 19.150 | 12,637,760 | 94.425 | |
100% | 19.112 | 12,308,597 | 90.733 | |
Degradation product 1 | 20% | 12.324 | 23,923 | 0.157 |
40% | 12.319 | 31,389 | 0.205 | |
60% | 12.308 | 38,302 | 0.248 | |
80% | 12.333 | 43,686 | 0.326 | |
100% | 12.334 | 61,803 | 0.456 | |
Degradation product 2 | 20% | 24.085 | 887 | 0.006 |
40% | 24.000 | 2623 | 0.019 | |
60% | 24.017 | 6748 | 0.049 | |
80% | 24.096 | 7248 | 0.053 | |
100% | 24.053 | 14,322 | 0.106 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Teng, X.; Duan, Y.; Zhang, X.; Xie, J.; Xu, M.; Yin, L. Influence of Light Irradiation on the Degradation of Dezocine in Injections. Pharmaceutics 2024, 16, 858. https://doi.org/10.3390/pharmaceutics16070858
Zhu L, Teng X, Duan Y, Zhang X, Xie J, Xu M, Yin L. Influence of Light Irradiation on the Degradation of Dezocine in Injections. Pharmaceutics. 2024; 16(7):858. https://doi.org/10.3390/pharmaceutics16070858
Chicago/Turabian StyleZhu, Li, Xu Teng, Yu Duan, Xia Zhang, Jingxin Xie, Mingzhe Xu, and Lihui Yin. 2024. "Influence of Light Irradiation on the Degradation of Dezocine in Injections" Pharmaceutics 16, no. 7: 858. https://doi.org/10.3390/pharmaceutics16070858
APA StyleZhu, L., Teng, X., Duan, Y., Zhang, X., Xie, J., Xu, M., & Yin, L. (2024). Influence of Light Irradiation on the Degradation of Dezocine in Injections. Pharmaceutics, 16(7), 858. https://doi.org/10.3390/pharmaceutics16070858