Toward Personalized Salbutamol Therapy: Validating Virtual Patient-Derived Population Pharmacokinetic Model with Real-World Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Virtual Patient Data Collection
2.2. Noncompartmental Analysis of PK Data
2.3. Population Pharmacokinetic Modeling
Structural and Statistical Models
2.4. Model Evaluation and Covariate Selection
2.5. External Validation
3. Results and Discussion
3.1. Demographic Characteristics
3.2. Final popPK Model
Model Assessment Using the Diagnostic Plots
3.3. External Validation of the Final Structural popPK Model
3.4. Impact of Covariates on Salbutamol PK Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, Y.S.; Thummel, K.E.; Thompson, B.D.; Totah, R.A.; Cho, C.W. Sources of Interindividual Variability. Methods Mol. Biol. 2021, 2342, 481–550. [Google Scholar] [CrossRef]
- Lin, J. Pharmacokinetic and Pharmacodynamic Variability: A Daunting Challenge in Drug Therapy. Curr. Drug Metab. 2007, 8, 109–136. [Google Scholar] [CrossRef]
- Van Den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics. Suppl. Artic. J. Clin. Pharmacol. 2018, 58, 10–25. [Google Scholar] [CrossRef] [PubMed]
- Nicolas, J.M.; Espie, P.; Molimard, M. Gender and Interindividual Variability in Pharmacokinetics. Drug Metab. Rev. 2009, 41, 408–421. [Google Scholar] [CrossRef]
- Sherwin, C.M.T.; Kiang, T.K.L.; Spigarelli, M.G.; Ensom, M.H.H. Fundamentals of Population Pharmacokinetic Modelling. Clin. Pharmacokinet. 2012, 51, 573–590. [Google Scholar] [CrossRef] [PubMed]
- Wojtyniak, J.G.; Britz, H.; Selzer, D.; Schwab, M.; Lehr, T. Data Digitizing: Accurate and Precise Data Extraction for Quantitative Systems Pharmacology and Physiologically-Based Pharmacokinetic Modeling. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 322–331. [Google Scholar] [CrossRef]
- Overgaard, R.V.; Ingwersen, S.H.; Tornøe, C.W. Establishing Good Practices for Exposure–Response Analysis of Clinical Endpoints in Drug Development. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 565. [Google Scholar] [CrossRef]
- Cazzola, M.; Rogliani, P.; Sanduzzi, A.; Matera, M.G. Influence of Ethnicity on Response to Asthma Drugs. Expert Opin. Drug Metab. Toxicol. 2015, 11, 1089–1097. [Google Scholar] [CrossRef] [PubMed]
- Vet, N.J.; de Winter, B.C.M.; Koninckx, M.; Boeschoten, S.A.; Boehmer, A.L.M.; Verhallen, J.T.; Plötz, F.B.; Vaessen-Verberne, A.A.; van der Nagel, B.C.H.; Knibbe, C.A.J.; et al. Population Pharmacokinetics of Intravenous Salbutamol in Children with Refractory Status Asthmaticus. Clin. Pharmacokinet. 2020, 59, 257–264. [Google Scholar] [CrossRef]
- Boulton, D.W.; Fawcett, J.P. Enantioselective Disposition of Salbutamol in Man Following Oral and Intravenous Administration. Br. J. Clin. Pharmacol. 1996, 41, 35–40. [Google Scholar] [CrossRef]
- Salbutamol: Uses, Interactions, Mechanism of Action|DrugBank Online. Available online: https://go.drugbank.com/drugs/DB01001 (accessed on 7 October 2022).
- Emeryk, A.; Emeryk-Maksymiuk, J. Short-Acting Inhaled B2-Agonists: Why, Whom, What, How? Adv. Respir. Med. 2020, 88, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S.; Story, R.E. Bronchodilators. In Allergy and Asthma: Practical Diagnosis and Management: Second Edition; StatPearls Publishing: Tampa, FL, USA, 2021; pp. 585–598. ISBN 9783319308357. [Google Scholar]
- Libretto, S.E. A Review of the Toxicology of Salbutamol (Albuterol). Arch. Toxicol. 1994, 68, 213–216. [Google Scholar] [CrossRef] [PubMed]
- Price, A.H.; Clissold, S.P. Salbutamol in the 1980s: A Reappraisal of Its Clinical Efficacy. Drugs 1989, 38, 77–122. [Google Scholar] [CrossRef] [PubMed]
- Ritchie, A.; Wiater, E.; Edwards, M.; Montminy, M.; Johnston, S. B2-Agonists Enhance Asthma-Relevant Inflammatory Mediators in Human Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2018, 58, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.J.; Harrison, T.W. Is It Time to Move Away from Short-Acting Beta-Agonists in Asthma Management? Eur. Respir. J. 2019, 53, 2016–2019. [Google Scholar] [CrossRef] [PubMed]
- Hancox, R.J.; Cowan, J.O.; Flannery, E.M.; Herbison, G.P.; Mclachlan, C.R.; Taylor, D.R. Bronchodilator Tolerance and Rebound Bronchoconstriction during Regular Inhaled β-Agonist Treatment. Respir. Med. 2000, 94, 767–771. [Google Scholar] [CrossRef] [PubMed]
- Gauvreau, G.M.; Jordana, M.; Watson, R.M.; Cockcroft, D.W.; O’Byrne, P.M. Effect of Regular Inhaled Albuterol on Allergen-Induced Late Responses and Sputum Eosinophils in Asthmatic Subjects. Am. J. Respir. Crit. Care Med. 1997, 156, 1738–1745. [Google Scholar] [CrossRef] [PubMed]
- Cockcroft, D.W.; McParland, C.P.; Britto, S.A.; Swystun, V.A.; Rutherford, B. Regular Inhaled Salbutamol and Airway Responsiveness to Allergen. Lancet 1993, 342, 833–837. [Google Scholar] [CrossRef] [PubMed]
- Reddel, H.K.; FitzGerald, J.M.; Bateman, E.D.; Bacharier, L.B.; Becker, A.; Brusselle, G.; Buhl, R.; Cruz, A.A.; Fleming, L.; Inoue, H.; et al. GINA 2019: A Fundamental Change in Asthma Management: Treatment of Asthma with Short-Acting Bronchodilators Alone Is No Longer Recommended for Adults and Adolescents. Eur. Respir. J. 2019, 53, 1901046. [Google Scholar] [CrossRef]
- AstraZeneca SABINA Programme Demonstrates SABA Reliever Overuse Is a Global Issue in Asthma Management. Available online: https://www.astrazeneca.com/media-centre/medical-releases/sabina-programme-demonstrates-saba-reliever-overuse-is-a-global-issue-in-asthma-management.html (accessed on 4 November 2022).
- Looijmans-van den Akker, I.; Werkhoven, A.; Verheij, T. Over-Prescription of Short-Acting Beta Agonists in the Treatment of Asthma. Fam. Pract. 2021, 38, 612–616. [Google Scholar] [CrossRef]
- Moradi, M.; Golmohammadi, R.; Najafi, A.; Moghaddam, M.; Fasihi-Ramandi, M.; Mirnejad, R. A Contemporary Review on the Important Role of In Silico Approaches for Managing Different Aspects of COVID-19 Crisis. Inform. Med. Unlocked 2022, 28, 100862. [Google Scholar] [CrossRef] [PubMed]
- Arsène, S.; Parès, Y.; Tixier, E.; Granjeon-Noriot, S.; Martin, B.; Bruezière, L.; Couty, C.; Courcelles, E.; Kahoul, R.; Pitrat, J.; et al. In Silico Clinical Trials: Is It Possible? Methods Mol. Biol. 2024, 2716, 51–99. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Russo, G.; Tshinanu, F.M.; Viceconti, M. In Silico Clinical Trials: Concepts and Early Adoptions. Brief. Bioinform. 2019, 20, 1699–1708. [Google Scholar] [CrossRef] [PubMed]
- Modelling and Simulation: Questions and Answers|European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-and-pharmacokinetics/modelling-and-simulation-questions-and-answers (accessed on 22 March 2024).
- Skottheim Rusten, I.; Musuamba, F.T. Scientific and Regulatory Evaluation of Empirical Pharmacometric Models: An Application of the Risk Informed Credibility Assessment Framework. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1281–1296. [Google Scholar] [CrossRef] [PubMed]
- Population Pharmacokinetics|FDA. Available online: http://www.fda.gov/regulatory-information/search-fda-guidance-dolcuments/population-pharmacokinetics (accessed on 23 March 2024).
- Mould, D.; Upton, R. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development—Part 2: Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [Google Scholar] [CrossRef]
- Hu, X.; Yang, F.-F.; Liao, Y.-H. Pharmacokinetic Considerations of Inhaled Pharmaceuticals for Systemic Delivery. Curr. Pharm. Des. 2016, 22, 2532–2548. [Google Scholar] [CrossRef] [PubMed]
- Irby, D.J.; Ibrahim, M.E.; Dauki, A.M.; Badawi, M.A.; Illamola, S.M.; Chen, M.; Wang, Y.; Liu, X.; Phelps, M.A.; Mould, D.R. Approaches to Handling Missing or “Problematic” Pharmacology Data: Pharmacokinetics. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 291–308. [Google Scholar] [CrossRef] [PubMed]
- O’Hara, K.; Martin, J.H.; Schneider, J.J. Barriers and Challenges in Performing Pharmacokinetic Studies to Inform Dosing in the Neonatal Population. Pharmacy 2020, 8, 16. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X. Handling Missing Dosing History in Population Pharmacokinetic Modeling: An Extension to MDM Method. CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 39–49. [Google Scholar] [CrossRef]
- Marques, L.; Vale, N. Salbutamol in the Management of Asthma: A Review. Int. J. Mol. Sci. 2022, 23, 14207. [Google Scholar] [CrossRef]
- Shamsuddin, R.; Maweu, B.M.; Li, M.; Prabhakaran, B. Virtual Patient Model: An Approach for Generating Synthetic Healthcare Time Series Data. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY, USA, 4–7 June 2018; pp. 208–218. [Google Scholar] [CrossRef]
- D’Amico, S.; Dall’Olio, D.; Sala, C.; Dall’Olio, L.; Sauta, E.; Zampini, M.; Asti, G.; Lanino, L.; Maggioni, G.; Campagna, A.; et al. Synthetic Data Generation by Artificial Intelligence to Accelerate Research and Precision Medicine in Hematology. JCO Clin. Cancer Inform. 2023, 7, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Giuffrè, M.; Shung, D.L. Harnessing the Power of Synthetic Data in Healthcare: Innovation, Application, and Privacy. Npj Digit. Med. 2023, 6, 186. [Google Scholar] [CrossRef]
- Jacobs, F.; D’Amico, S.; Benvenuti, C.; Gaudio, M.; Saltalamacchia, G.; Miggiano, C.; Sanctis, R.D.; Porta, M.G.D.; Santoro, A.; Zambelli, A. Opportunities and Challenges of Synthetic Data Generation in Oncology. JCO Clin. Cancer Inform. 2023, 7, e2300045. [Google Scholar] [CrossRef]
- Subbiah, V. The next Generation of Evidence-Based Medicine. Nat. Med. 2023, 29, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Palaniappan, L. Improving Diversity in Medical Research. Nat. Rev. Dis. Prim. 2021, 7, 74. [Google Scholar] [CrossRef] [PubMed]
- Porzsolt, F.; Wiedemann, F.; Becker, S.I.; Rhoads, C.J. Inclusion and Exclusion Criteria and the Problem of Describing Homogeneity of Study Populations in Clinical Trials. BMJ Evid.-Based Med. 2019, 24, 92–94. [Google Scholar] [CrossRef]
- Husain, S.; Srijithesh, P.R. Homogeneity and the Outcome of Clinical Trials: An Appraisal of the Outcome of Recent Clinical Trials on Endovascular Intervention in Acute Ischemic Stroke. Ann. Indian Acad. Neurol. 2016, 19, 21–24. [Google Scholar] [CrossRef]
- Srijithesh, P.R.; Husain, S. Influence of Trial Design, Heterogeneity and Regulatory Environment on the Results of Clinical Trials: An Appraisal in the Context of Recent Trials on Acute Stroke Intervention. Ann. Indian Acad. Neurol. 2014, 17, 365–370. [Google Scholar] [CrossRef]
- Batchelor, H.K.; Marriott, J.F. Paediatric Pharmacokinetics: Key Considerations. Br. J. Clin. Pharmacol. 2015, 79, 395–404. [Google Scholar] [CrossRef]
- Salbutamol-Mechanism, Indication, Contraindications, Dosing, Adverse Effect, Interaction, Renal Dose, Hepatic Dose|Drug Index|Pediatric Oncall. Available online: https://www.pediatriconcall.com/drugs/salbutamol/934 (accessed on 23 March 2024).
- Haghi, M.; Traini, D.; Bebawy, M.; Young, P.M. Deposition, Diffusion and Transport Mechanism of Dry Powder Microparticulate Salbutamol, at the Respiratory Epithelia. Mol. Pharm. 2012, 9, 1717–1726. [Google Scholar] [CrossRef]
- Lipworth, B.J. Pharmacokinetics of Inhaled Drugs. Br. J. Clin. Pharmacol. 1996, 42, 697–705. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food & Drug Administration. 2015–2019 Drug Trials Snapshots Summary Report. Available online: https://www.fda.gov/media/143592/download (accessed on 23 March 2024).
- Mangoni, A.A.; Jackson, S.H.D. Age-Related Changes in Pharmacokinetics and Pharmacodynamics: Basic Principles and Practical Applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, S.; Yang, W.; Winslet, M.C.; Seifalian, A.M. Impairment of Hepatic Microcirculation in Fatty Liver. Microcirculation 2003, 10, 447–456. [Google Scholar] [CrossRef] [PubMed]
- Hanley, M.J.; Abernethy, D.R.; Greenblatt, D.J. Effect of Obesity on the Pharmacokinetics of Drugs in Humans. Clin. Pharmacokinet. 2010, 49, 71–87. [Google Scholar] [CrossRef] [PubMed]
- Brill, M.J.E.; Diepstraten, J.; Van Rongen, A.; Van Kralingen, S.; Van Den Anker, J.N.; Knibbe, C.A.J. Impact of Obesity on Drug Metabolism and Elimination in Adults and Children. Clin. Pharmacokinet. 2012, 51, 277–304. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.D. Gender Differences in Pharmacological Response. Int. Rev. Neurobiol. 2008, 83, 1–10. [Google Scholar] [CrossRef]
- Olafuyi, O.; Parekh, N.; Wright, J.; Koenig, J. Inter-Ethnic Differences in Pharmacokinetics—Is There More That Unites than Divides? Pharmacol. Res. Perspect. 2021, 9, e00890. [Google Scholar] [CrossRef] [PubMed]
- Cazzola, M.; Page, C.P.; Calzetta, L.; Matera, M.G. Pharmacology and Therapeutics of Bronchodilators. Pharmacol. Rev. 2012, 64, 450–504. [Google Scholar] [CrossRef]
- Chung, L.P.; Waterer, G.; Thompson, P.J. Pharmacogenetics of Β2 Adrenergic Receptor Gene Polymorphisms, Long-Acting β-Agonists and Asthma. Clin. Exp. Allergy 2011, 41, 312–326. [Google Scholar] [CrossRef]
Characteristics | Virtual Patients (n = 32) | Clinical Study Patients (n = 30) |
---|---|---|
Age (years) | 20.0 ± 20.0 | 26.8 ± 4.8 |
Gender (n, %) | ||
Female | 14, 44% | 8, 27% |
Male | 18, 56% | 22, 73% |
BMI (kg/m2) | 21.3 ± 6.6 | 24.7 ± 3.8 |
Height (cm) | 157.0 ± 30.0 | 177.8 ± 9.5 |
Weight (kg) | 50.4 ± 21.9 | 78.9 ± 17.6 |
Race (n, %) | ||
American Indian or Alaskan Native | 12, 38% | 1, 3% |
East Asian | 20, 62% | ND |
Mixed Race | ND | 2, 7% |
White—White/Caucasian/European Heritage | ND | 27, 90% |
Virtual Dataset | Clinical Dataset | |||
---|---|---|---|---|
Parameter | Geometric Mean | Geometric SD | Geometric Mean | Geometric SD |
Cmax (μg·mL−1) | 0.00650 | 1.61 | 0.000160 | 1.35 |
AUC (μg·h·mL−1) | 0.00490 | 1.50 | 0.00780 | 1.24 |
Tmax (h) | 0.0800 | NA | 0.310 | 2.25 |
Cl (mL/h) | 118 | 1.50 | 20689.13 | 1.21 |
Parameters | Estimate | RSE (%) |
---|---|---|
Fixed Effects | ||
ka (h−1) | 3.71 | 2.42 |
Cl (L/h) | 24.33 | 20.4 |
V1 (L) | NaN | |
Q (L/h) | 10.59 | 1.96 |
V2 (L) | 2.40 | |
Random Effects | ||
IIV(ka) | 0.062 | 36.6 |
IIV(Cl) | 0.082 | 13.3 |
IIV(V1) | 10.09 | NaN |
IIV(Q) | 0.045 | 52.6 |
IIV(V2) | 0.032 | 30.4 |
Correlation | ||
ka and Q | 0.89 | 36.4 |
Parameters | Estimate | RSE (%) |
---|---|---|
Fixed Effects | ||
ka (h−1) | 13.55 | 18.0 |
Cl (L/h) | 34.93 | 16.6 |
V1 (L) | 162.93 | 22.6 |
Q (L/h) | * | |
V2 (L) | 0 | * |
Random Effects | ||
IIV(ka) | 0.89 | 15.4 |
IIV(Cl) | 0.51 | 13.3 |
IIV(V1) | 0.41 | 13.4 |
IIV(Q) | 1.17 | * |
IIV(V2) | 0.30 | * |
Correlation | ||
ka and Q | –0.83 | * |
V1 and Cl | 0.92 | 3.98 |
Covariates | Parameters | ||||
ka (h−1) | Cl (mL/h) | V1 (mL) | Q (mL/h) | V2 (mL) | |
Age | |||||
5–22 | 0.0130 ± 13.1 | 8.77 ± 6.08 | ± 508 | ± 11.5 | 0.0460 ± 563 |
23–65 | 0.00380 ± 4.62 | 3.95 ± 3.12 | ± 330 | ± 124 | 0.0430 ± 6997 |
Weight | |||||
17.77–75.00 | 0.00930 ± 10.7 | 7.00 ± 5.42 | ± 447 | ± 59.3 | 0.067 ± 3320 |
75.01–105.00 | 0.00230 ± 1.28 | 3.17 ± 1.30 | ± 297 | ± 19.6 | 0.00440 ± 204 |
Gender | |||||
Female | 0.00610 ± 7.92 | 5.07 ± 4.01 | ± 786 | ± 65.0 | 0.00500 ± 5056 |
Male | 0.00890 ± 11.19 | 7.37 ± 5.77 | ± 228 | ± 39.8 | 0.300 ± 753 |
Race | |||||
American Indian or Alaskan Native | 0.00820 ± 13.8 | 6.46 ± 4.49 | ± 357 | ± 65.7 | 0.0310 ± 1804 |
East Asian | 0.00710 ± 7.62 | 6.03 ± 5.26 | ± 454 | ± 42.5 | 0.0540 ± 3154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques, L.; Vale, N. Toward Personalized Salbutamol Therapy: Validating Virtual Patient-Derived Population Pharmacokinetic Model with Real-World Data. Pharmaceutics 2024, 16, 881. https://doi.org/10.3390/pharmaceutics16070881
Marques L, Vale N. Toward Personalized Salbutamol Therapy: Validating Virtual Patient-Derived Population Pharmacokinetic Model with Real-World Data. Pharmaceutics. 2024; 16(7):881. https://doi.org/10.3390/pharmaceutics16070881
Chicago/Turabian StyleMarques, Lara, and Nuno Vale. 2024. "Toward Personalized Salbutamol Therapy: Validating Virtual Patient-Derived Population Pharmacokinetic Model with Real-World Data" Pharmaceutics 16, no. 7: 881. https://doi.org/10.3390/pharmaceutics16070881
APA StyleMarques, L., & Vale, N. (2024). Toward Personalized Salbutamol Therapy: Validating Virtual Patient-Derived Population Pharmacokinetic Model with Real-World Data. Pharmaceutics, 16(7), 881. https://doi.org/10.3390/pharmaceutics16070881