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Abstract: Interindividual variability, influenced by patient-specific factors including age, weight,
gender, race, and genetics, among others, contributes to variations in therapeutic response. Population
pharmacokinetic (popPK) modeling is an essential tool for pinpointing measurable factors affecting
dose-concentration relationships and tailoring dosage regimens to individual patients. Herein, we
developed a popPK model for salbutamol, a short-acting β2-agonist (SABA) used in asthma treatment,
to identify key patient characteristics that influence treatment response. To do so, synthetic data
from physiologically-based pharmacokinetic (PBPK) models was employed, followed by an external
validation using real patient data derived from an equivalent study. Thirty-two virtual patients
were included in this study. A two-compartment model, with first-order absorption (no delay), and
linear elimination best fitted our data, according to diagnostic plots and selection criteria. External
validation demonstrated a strong agreement between individual predicted and observed values.
The incorporation of covariates into the basic structural model identified a significant impact of
age on clearance (Cl) and intercompartmental clearance (Q); gender on Cl and the constant rate
of absorption (ka); race on Cl; and weight on Cl in the volume of distribution of the peripheral
compartment (V2). This study addresses critical challenges in popPK modeling, particularly data
scarcity, incompleteness, and homogeneity, in traditional clinical trials, by leveraging synthetic data
from PBPK modeling. Significant associations between individual characteristics and salbutamol’s
PK parameters, here uncovered, highlight the importance of personalized therapeutic regimens for
optimal treatment outcomes.

Keywords: interindividual variability; popPK modeling; PBPK modeling; salbutamol; pharmacokinetics;
virtual data patients

1. Introduction

Therapeutic response varies considerably among patients, with drugs being pharma-
cologically effective in some while ineffective or even toxic in others [1,2]. The precise
determination of a safe and effective drug dose is directly dependent on understanding the
PK and PD properties of that particular drug [3]. Indeed, PK variability plays a crucial role
in the success of drug treatments. Patient-specific factors such as age, weight, body mass
index (BMI), gender, hormonal status, race, ethnicity, renal and hepatic function, genetic
polymorphisms, disease status, concomitant therapies, smoking, and dietary habits can all
contribute to variation in drug disposition [1,4].

As pharmacometrics advances as a cornerstone of precision medicine, there is a
growing interest in understanding the impact of these factors on the PK profile of drugs.
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Thus, population pharmacokinetic (popPK) modeling has been recognized as an essential
tool for accurately identifying measurable pathophysiological factors that influence the
dose–concentration relationship, allowing for the optimization of dosage regimens tailored
to individual patients, thereby achieving improved therapeutic outcomes [5]. It is evident
that the careful and accurate collection of data during drug development and subsequent
analyses is extremely useful for modeling PK characteristics [6,7].

Indeed, PK variability is present in all drugs. Within the realm of treating prevalent
chronic diseases such as asthma, it becomes crucial to understand the impact of individ-
ual patient characteristics on these drugs [8]. In particular, salbutamol, a short-acting
β2-agonist (SABA), has been used as an alternative symptomatic reliever for bronchocon-
striction events [9–11]. This phenomenon is effectively mitigated by targeting β2-adrenergic
receptors in the smooth muscle of the airways, leading to bronchodilation. As a result, the
airways widen, allowing for improved airflow in and out of the lungs. When salbutamol is
inhaled, immediate relief is experienced due to its rapid onset of action [12–15]. For this
reason, the use of SABAs on an “as-needed” basis has moved towards regular use, regard-
less of prevailing symptoms, resulting in their overuse. However, evidence linking regular
SABA use with an increased risk of exacerbations due to β2-receptor downregulation, loss
of bronchodilator response, and increased airway inflammation has prompted a significant
shift in asthma management [16–20]. Since 2019, the Global Initiative for Asthma (GINA)
no longer recommends monotherapy with SABA [21]. Currently, salbutamol is adminis-
tered either in combination with inhaled corticosteroids (ICSs) or as an alternative reliever.
However, despite being on a smaller scale, SABA alone is still prescribed, particularly
salbutamol [22,23]. In this context, studying variations in salbutamol PK becomes essential
to clarify the SABA therapeutic landscape beyond the molecular level.

Progress in computational science has positioned in silico studies as an important and
well-recognized methodology in drug discovery, development processes, and optimization
of therapeutic regimens post-market integration. Understanding the influence of differ-
ent patient characteristics is important for individualizing and personalizing treatment,
allowing for maximum efficacy while reducing potential adverse effects. Coupled with
this, in silico studies offer numerous advantages in terms of cost and sustainable research,
as they can reduce the use of animal models and allow for more efficient clinical trial
design [24]. Human trials are already being partly replaced by in silico trials [25,26]. The
European Medicines Agency (EMA) and the Food and Drug Administration (FDA) are
both endorsing these studies and have been directing efforts towards the development of
computational simulations [27–29]. Concerning the optimization of therapeutic regimens
considering interindividual variability, popPK models are the easier and less expensive
way to achieve this [30].

The delivery of drugs via inhalation is affected by a wide range of factors, in particular
physiological and pathological variables [31]. To our knowledge, there are no studies
of this nature on salbutamol. Thus, developing a popPK study to explore the impact of
patient variability leads to a comprehensive understanding of how salbutamol is absorbed,
distributed, metabolized, and excreted within a diverse population.

Our study aimed to develop a popPK model of salbutamol administered via dry-
powder inhaler (DPI, one of the most common formulations available) and to identify
which individual characteristics benefit from the current therapeutic regimen. Additionally,
we aimed to demonstrate the feasibility of developing a popPK model using a set of
synthetic data generated from physiologically-based pharmacokinetic (PBPK) models. To
achieve this, the model derived from virtual patients will be externally validated using
clinical data from an equivalent study conducted in real patients. We hypothesize that
the popPK model developed with virtual patients will exhibit a predictive performance
comparable to models derived from traditional clinical trials, highlighting the potential of
virtual patient modeling in advancing this field.
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2. Materials and Methods
2.1. Virtual Patient Data Collection

The physicochemical and PK properties of salbutamol were estimated using ADMET
Predictor® (Version 10.4; Simulation Plus Inc., Lancaster, CA, USA). Its chemical structure
was drawn in MedChem Designer (Version 5.5; Simulation Plus Inc., Lancaster, CA, USA),
according to its SMILES, and then imported into ADMET Predictor®.

PBPK models developed in GastroPlus software (Version 9.8.3; Simulation Plus Inc.,
Lancaster, CA, USA) were used to generate virtual patient PK data. These models were
built using the values predicted by ADMET Predictor®. All patients were virtually treated
with 600 µg of salbutamol DPI (3 successive inhalations of 200 µg). Thus, the dosage form
selected in the software was PL:IT powder, which represents the delivery of inhaled drug
in solid phase, as a single dose. The PK profile of salbutamol was modeled in different
PBPK models with specific individual characteristics, namely, age, weight, race, and gender.
In particular, subjects aged 5, 10, 20, 30, and 65 years were included. The body mass index
(BMI) scale (BMI of 18.5–24.9 is normal, BMI of 25–29.9 is overweight, and BMI ≥ 30 is
obese) was employed to determine weight. American, Japanese, and Chinese race groups
were examined in this study. All patients were healthy, meaning that they had no adjacent
pathological conditions. Detailed characteristics of these individuals are summarized in
Supplemental Table S1.

Parameters such as bioavailability (Fa, fraction absorbed; FDp, fraction of the drug
concentration in the portal vein; and F, fraction of the drug concentration in blood), maxi-
mum plasma concentration (Cmax), time required to maximum plasma concentration (Tmax),
area under the curve (AUC), and maximum concentration in the liver (Cmax Liver), were
derived from ADMET Predictor®. The drug disposition-based parameters were simulated
in the virtual patients during 12 h. Quantitative and visual (plots) outputs of the drug
concentration profile were extracted to establish a dataset for the subsequent phase of
the study.

All PK parameter values were compared with data from the literature, and the plasma
concentration profile plots were visually inspected to evaluate and validate all PBPK models.

2.2. Noncompartmental Analysis of PK Data

To establish initial PK metrics, a noncompartmental analysis (NCA) of the virtual
dataset was performed in PKAnalix 2023R1 (Lixoft, Antony, France). The integral method
employed was linear trapezoidal linear, with equal weighting assigned to each data point.
As an acceptance criterion, we utilized adjusted R2 to select the number of points for the ter-
minal phase, enabling the determination of the slope of the linear regression for calculating
λz (elimination rate constant). Subsequently, all PK parameters were determined.

2.3. Population Pharmacokinetic Modeling

The virtual salbutamol data were inputted to build a nonlinear mixed-effects model
(NLME) through estimation by maximum likelihood using the stochastic approximation
expectation-maximization (SAEM) algorithm in Monolix Suite 2023R1 (Lixoft, Antony,
France). The determination of conditional means and standard deviations for individual
population PK parameters involved the utilization of Markov chain Monte Carlo (MCMC)
convergence assessment. The objective function value (OFV), expressed as −2 × log
likelihood (−2LL), and the Akaike information criterion (AIC) and Bayesian information
criterion (BIC), were determined to select the best popPK model. Significant reductions in
these parameters indicated better model fitting.

Structural and Statistical Models

Several PK models for extravascular administered salbutamol were investigated (one-,
two-, or three-compartment models with first- or zero-order absorption with/without lag
time or transit and with linear or Michaelis–Menten elimination). PK models correspond
to a system of ordinary differential equations (ODEs) which describes transfers between
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compartments and elimination from the central compartment. For the observation model,
the default combined 1 error model (additive and proportional term) were initially applied.
For the individual model, we also keep the default: log-normal distributions for PK pa-
rameters. In a preliminary analysis, we ignored the inclusion of covariates in the popPK
models. The optimal combination of structural and statistical models was systematically
selected by evaluating the OFV, model diagnostics, and ensuring biologically plausible and
accurately population mean estimates (as measured by relative standard error (RSE)).

2.4. Model Evaluation and Covariate Selection

After running several popPK models, the assessment of the model fitting was based
on various evaluative metrics. BIC, the precision of estimates (RSE), and the goodness-
of-fit (GOF) allowed the final decision for selecting the best popPK model. The model
with the lowest corrected BIC (BICc) value was selected. In addition, complementary
criteria including AIC, to estimate the model quality, and OFV, for identifying smaller
values indicating superior fit, were also employed. The estimated population parameters’
standard errors and the random effects error models’ standard errors were also computed.
Further, several diagnostic plots were used to visually test the model’s fit, including
observation vs. individual predictions (IPREDs), population-weighted residuals (PWRESs)
vs. time/predictions, individual weighted residuals (IWRESs) vs. time/predictions, and
the distribution of the empirical and theoretical standard Gaussian probability density
functions (PDFs) against IWRESs and normalized prediction distribution errors (NPDEs). A
visual predictive check (VPC) using a 90% prediction interval was performed to graphically
assess misspecifications in structural, variability, and covariate models.

Age, height, and weight were the continuous independent covariates tested to be
included in the popPK model. Gender and race were designated as categorical covariates.
The selection of covariates was based on the model proposed by the software program.
Using the ANOVA statistical test for the categorical covariate and the Pearson’s correlation
test for the continuous covariate, a p-value can be calculated. Regardless of their incorpora-
tion into the model, the random effect–covariate associations are sorted using the p-values.
The forward and backward method was employed to select covariates. Until there are no
correlation p-values over a threshold, the covariate with the smallest correlation p-value
is included in the model, or the next smallest if the smallest has already been attempted.
Until there are no correlation p-values below a threshold, the covariate with the highest
correlation p-value is disregarded, or the next highest if the highest value has already been
attempted. Therefore, covariates with a p-value less than 0.05 that improved the fit while
lowering BIC remained in the model.

For the evaluation of the proposed final model, we employed statistical tests using
individual parameters drawn from the conditional distribution. Correlation and Wald test
were used to assess whether covariates should be removed from the model. The normal
distribution of random effects and the symmetry around 0 of residuals’ distribution were
examined through Shapiro–Wilk test and symmetry test, respectively.

2.5. External Validation

External validation was conducted using data from an open-label, randomized,
crossover, two-cohort, single-dose study in healthy volunteers to evaluate the unit dose
dry powder inhaler (UD-DPI) for the delivery of salbutamol and to compare the PK profile
with the MDI and Diskus presentations (NCT01984086) [27], with access granted by Glaxo-
SmithKline (GSK). The focus of data extraction was on Part A of the study, encompassing
30 individuals subjected to Treatment A. This treatment involved a single administration of
salbutamol (as sulfate) (200 µg per blister of 1.6% blend), delivered via UD-DPI through
the inhalation of 3 blisters, resulting in a cumulative dose of 600 µg. The selection of this
treatment aimed to align with the dose administered in the development of the popPK
model using virtual patients.
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The study cohort comprised healthy nonsmoking male/female individuals, aged
18 to 65 years, with a body weight ≥ 50 kg, and a body mass index (BMI) within the
range of 19.0 to 34.0 kg/m2. Participants had to provide written informed consent. Main
exclusion criteria included current or history of chronic liver disease, a history of salbutamol
sensitivity, positive tests for Hepatitis B, Hepatitis C, and HIV, pregnancy, breastfeeding, or
active attempts to conceive. Further details can be found in the study protocol.

Collected data included demographic information (age, race, gender, weight, and
height) and details about plasma concentrations. Salbutamol PK analysis involved blood
samples collected at the following time points: 0, 0.08, 0.17, 0.33, 0.50, 0.75, 1, 1.5, 2, 4, 6,
8, 10, and 12 h. Plasma concentrations of salbutamol were quantified using an approved
bioanalytical method.

Upon acquisition of the dataset for input into Monolix software, the popPK model
derived from virtual data was applied, following the previously outlined steps. The
validation of the virtual data-based model was performed through visual inspection of
outcomes after applying the same popPK model to the clinical dataset. A general scheme
of the workflow is shown in Figure 1.
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3. Results and Discussion

During the process of developing a precise popPK model, pharmacometricians en-
counter significant challenges, particularly regarding the substantial quantity and access to
PK data and personal information required, due to several limitations imposed by com-
pany policies and ethical considerations. In addition, data derived from clinical trials are
often incomplete, especially datasets collected in large, late-phase trials or during routine
healthcare or follow-up visits. Most of these data may be missing or inaccurate due to a
variety of factors such as study site noncompliance, patient noncompliance, inappropriate
sample handling, data entry errors, and analytical issues. Consequently, how these missing
or erroneous data are handled can impact their interpretation. Although popPK modeling
requires a smaller volume of data points, that is, it is possible to develop an accurate model
with sparse data (few observations per subject) [30], sometimes even this is difficult to
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obtain in clinical studies (especially in Phase I trials), because volunteers have to undergo
a number of blood draws, raising serious ethical questions, especially in special popula-
tions such as children. Indeed, there are some guidelines that help pharmacometricians in
dealing with these challenging data, but the truth is that this will always have a significant
impact on the final model and outcomes [32–34].

In this context, PK data for salbutamol are scarce, as we previously stated [35], and
to circumvent all the aforementioned issues, our study proposes a new way to study
therapeutic regimen optimization through the generation of a synthetic dataset, which
encompasses a diverse set of virtual patients. This approach has already been employed
in recent studies and involves the artificial generation of data that mimics real-world
data [36–39]. For example, artificial intelligence (AI) algorithms have been proposed in this
scope. In the context of our study, a virtual dataset was generated using PBPK models to
simulate salbutamol PK profiles across various demographic characteristics.

3.1. Demographic Characteristics

Thirty-two virtual subjects were included in this study. Among these subjects, there
are 18 males and 14 females, with a median age of 20.0 years and a BMI median of
21.3 kg/m2. Furthermore, the virtual population is composed of two groups, according
to race: American Indian or Alaskan Native represent 38% of total patients, with East
Asian (Japanese and Chinese) patients representing 62% of the sample. These demographic
characteristics are summarized in Table 1.

Table 1. Subject characteristics (mean or median ± standard deviation, SD or interquartile range, IR)
from virtual dataset and clinical trial.

Characteristics Virtual Patients (n = 32) Clinical Study Patients (n = 30)

Age (years) 20.0 ± 20.0 26.8 ± 4.8
Gender (n, %)

Female 14, 44% 8, 27%
Male 18, 56% 22, 73%

BMI (kg/m2) 21.3 ± 6.6 24.7 ± 3.8
Height (cm) 157.0 ± 30.0 177.8 ± 9.5
Weight (kg) 50.4 ± 21.9 78.9 ± 17.6
Race (n, %)

American Indian or Alaskan Native 12, 38% 1, 3%
East Asian 20, 62% ND
Mixed Race ND 2, 7%
White—White/Caucasian/European Heritage ND 27, 90%

ND—not determined.

Notable differences across various parameters are observed between virtual patients
and patients enrolled in the clinical study. The mean age is 26.8 years. Gender distribution
varies, with virtual patients having a more balanced ratio, while clinical study patients skew
towards a higher percentage of males (73%). In terms of body composition, virtual patients,
on average, have a lower BMI, height, and weight. This is attributed to the inclusion of
Japanese and Chinese individuals in the virtual dataset, who inherently present lower
values. Consequently, racial composition significantly differs between the two datasets.
Virtual patients are predominantly East Asian or American, whereas patients included in the
clinical study are mostly Caucasian. In fact, studies of this nature do not accurately represent
the “real-world” population [40]. Clinical trials often impose stringent criteria to ensure
sample homogeneity and minimize confounding variables, employing limited analyses
tailored to address specific research questions. Further, voluntary participation introduces
a potential bias, as participants are self-selected and willing to engage. Additionally, due
to resource constraints, many studies exhibit limited representation of racial and ethnic
groups, resulting in underrepresentation or inadequate portrayal of population diversity,
creating a gap between the trial world and the real world [41–44].
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Efforts within the scientific community have been undertaken to address this gap by
enhancing diversity in clinical trial recruitment [40]. Therefore, this virtual dataset aims to
present a more diverse ethnic group. Ideally, it would include Caucasians as well; however,
the PBPK modeling software mimicking the patient cohort has limitations concerning
ethnic groups.

Subsequently, an NCA of both datasets was conducted, allowing the collection of PK
parameters to compare their distribution between virtual and real populations. Table 2
displays the Cmax, AUC, Tmax, and the volume of plasma from which drug is removed from
the human body (Cl). The observed differences in values may be attributable to variations
in the characteristics of the datasets.

Table 2. PK parameters of the virtual and clinical datasets using NCA.

Virtual Dataset Clinical Dataset
Parameter Geometric Mean Geometric SD Geometric Mean Geometric SD

Cmax (µg·mL−1) 0.00650 1.61 0.000160 1.35
AUC (µg·h·mL−1) 0.00490 1.50 0.00780 1.24

Tmax (h) 0.0800 NA 0.310 2.25
Cl (mL/h) 118 1.50 20689.13 1.21

Cmax—maximum observed concentration; AUC—area under the curve from the time of dosing to the last measur-
able positive concentration; Tmax—time of maximum observed concentration; Cl—clearance; NA—not applicable.

The exploration of virtual patient data is depicted in Figure 2. The data were stratified
based on some crucial individual characteristics: age, weight, race, and gender. A noticeable
difference is observed between the younger and the adult and elderly populations—younger
subjects exhibit higher concentrations of salbutamol over time. The pediatric population is
recognized as a special group for drug therapy, as many physiological changes occurring
at these ages have a significant impact on the PK of several compounds. Factors such as
pH, differences in bile luminal concentrations, intestinal permeability, and variations in
enzymatic activity may explain higher plasma concentrations of salbutamol in younger
individuals [45]. Consequently, toxicity may occur in this age range, highlighting the im-
portance of dose adjustment in children. In the context of this study, the dose administered
to virtual patients under 18 years is equivalent to the dose for children (up to 100–200 µg as
a single dose on demand) [46].

Weight also influences the PK profile of this drug, with individuals with more than
75 kg (overweight and obese) displaying reduced values. Regarding race and gender, with
this preliminary analysis, it is not visually discernible to determine the impact that different
groups may have on the kinetics of this β-agonist.

Data exploration also uncovered several correlations between PK parameters and
covariates. There is a negative correlation between the AUC and both height and weight,
implying that individuals with greater height or weight tend to have lower overall exposure
to the drug over time. Similarly, a negative correlation was observed between Cmax and
height/weight. On the other hand, there is a positive correlation between drug clearance
and height or weight. Individuals with higher height or weight tend to eliminate the drug
from their bodies at a faster rate.

An interesting observation is that Asians exhibit higher AUC and Cmax values and
lower clearance values compared to the American population, suggesting that, on average,
Asians may experience higher overall drug exposure and slower elimination of the drug
from their bodies.
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3.2. Final popPK Model

The plasma concentration–time profiles of inhaled salbutamol in DPI form were best
described by a two-compartment model, with first-order absorption (no lag time), and
linear elimination. During the development of the structural model, several models were
created and evaluated based on criteria detailed in Section 2.3. The model with the lowest
BICc value, following visual inspection of the VPC, was selected. BICc values for each
tested model are provided in the Supplementary Material (Table S2). In particular, for this
model, a −2LL of −6480.18 and a BICc of −6420.66 were obtained.

Therefore, the most suitable model for this dataset included first-order absorption,
as salbutamol is absorbed through passive diffusion [47], a common mechanism in drugs
following first-order kinetics, without lag time, considering salbutamol is inhaled and
has an immediate onset of action at its target. Two compartments were also incorporated,
a central compartment and a peripheral compartment, although the literature reports a
one-compartment model to describe salbutamol PK. In fact, after inhalation of salbutamol, a
significant portion of the dose is swallowed, and only a small fraction (around 20%) reaches
the specific target (lungs) [48]. Thus, the inclusion of two compartments in the PK model
may be logical, with the central compartment being the lungs, where drug distribution
occurs, binding to the β2-adrenergic receptors present in lung tissue, and the peripheral
compartment being the gut, where the drug is delivered due to swallowing that occurs in
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inhaled drugs. Additionally, the most appropriate elimination type is linear elimination,
which means that the elimination rate is directly proportional to the drug concentration.

Covariate analysis, employing the model proposed by Monolix®, encompassed gender,
age, height, weight, and racial population. The incorporation of all covariates significantly
improved the base structural model. Therefore, we highlighted the influence of individual
patient characteristics on salbutamol’s kinetics: age exhibited a significant impact on Cl and
intercompartmental clearance (Q); gender influences absorption constant rate (ka) and Cl;
race has an impact on Cl, and weight showed a considerable influence on Cl, Q, and on the
volume of distribution of peripheral compartment (V2). The interindividual variability (IIV)
in these PK parameters was considered by applying a normal distribution and a combined
residual model, consisting of proportional and additive terms. Parameter estimates for
the final structural model are shown in Table 3. All structure parameters were estimated
with good precision, with relative standard error (RSE) < 30% for fixed effects, except for
the volume of distribution of the central compartment (V1), which exhibited an infinitely
large standard error. Regarding the RSE of random effects, there is insufficient accuracy in
some estimates. A correlation between ka and Q was identified from scatter plots for each
pair of random effects, along with the Pearson correlation coefficient. This correlation was
introduced into the model to achieve a more accurate estimation of these parameters.

Table 3. Estimates of the population pharmacokinetic parameters of the final model for salbutamol
DPI formulation.

Parameters Estimate RSE (%)

Fixed Effects
ka (h−1) 3.71 2.42
Cl (L/h) 24.33 20.4
V1 (L) 0.02 × 10−9 NaN
Q (L/h) 10.59 1.96
V2 (L) 0.66 × 10−2 2.40

Random Effects
IIV(ka) 0.062 36.6
IIV(Cl) 0.082 13.3
IIV(V1) 10.09 NaN
IIV(Q) 0.045 52.6
IIV(V2) 0.032 30.4

Correlation
ka and Q 0.89 36.4

RSE: relative standard error; ka: absorption constant rate; Cl: clearance; V1 and V2: the volume of distribution of
the compartments one (central), and two (peripheral); Q: intercompartmental clearance; NaN: infinitely large
standard error.

Model Assessment Using the Diagnostic Plots

The low p-values (p < 0.05) in Pearson’s correlation test confirmed that the correlation
between parameters and covariates was significant. These tests were in agreement with
Wald test results, where low p-values (p < 0.05) indicated the relevance of covariate effects.

The goodness-of-fit plots of the final PK model with covariates are shown in Figure 3.
The individual predicted values, obtained through the conditional model (empirical Bayes
estimates, EBEs) demonstrated strong agreement with the observed salbutamol plasma
concentrations. The proportion of outliers, determined by assessing the balance of points
on each side of the y = x line and the points lying outside the 90% prediction interval, was
4.62%, suggesting an insignificant proportion. Both NPDE and IWRES plots revealed that
the residuals are randomly scattered around the horizontal zero-line, indicating that residu-
als behave as independent standardized normal random variables. Figure 4 illustrates the
VPC plot of the final model. It reveals a close alignment between observed (empirical) and
predicted (theoretical), within their respective prediction intervals, along with a reduced
proportion of outliers. This alignment suggests an adequate fit of the model to the observed
data. These diagnostic plots allow for a clearer detection of potential misspecifications in



Pharmaceutics 2024, 16, 881 10 of 18

the model. Overall, the developed model is well suited to the salbutamol PK data generated
using virtual patients.
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3.3. External Validation of the Final Structural popPK Model

External validation was conducted by applying the structural model obtained pre-
viously to the GSK-derived dataset. The variation of plasma concentration profile over
time in the patients enrolled in the clinical study can be visualized in Figure 4, according
to stratifications by age, weight, race, and gender. No significant differences are observed,
as was noted in the virtual dataset, likely due to the homogeneity of the population. In-
deed, this remains a challenge in clinical trials, which has been discussed over the years.
Clinical trials are the cornerstone of evidence-based medicine; however, the quality of
evidence provided is often poor, particularly regarding participant recruitment. Many
clinical researchers tend to perceive heterogeneity as a burden that must be eliminated or
controlled through refined statistical approaches to reduce the effects of interindividual
variability and achieve consistent results [41–44]. Nevertheless, the population does not
accurately represent the diversity of the overall population. In a 2020 analysis of global
participation in clinical trials, the FDA revealed significant disparities among various racial
groups: 76% of participants were white, 11% were Asian, and only 7% were black [49].
With the shift in healthcare towards precision medicine, variability in responses across
different subpopulations has been recognized. For instance, data from the clinical trial
sponsored by GSK predominantly include Caucasian patients, as previously discussed.
Several reasons may explain this occurrence. Inclusion and exclusion criteria are usually
limited due to ethical and scientific considerations. Including children, for example, in
general clinical trials is not very common unless they are pediatric studies designed for that
purpose. Participant recruitment alone significantly limits the study, making recruitment
of a diverse population in terms of characteristics even more challenging. Attempts to
minimize potential confounding variables are also one of the reasons behind the homo-
geneity of these studies. Ethical and policy issues involving stakeholders may also explain
this. Thus, enrolling a homogenous population is not beneficial in any instance for studies
seeking to understand the impact of interindividual variability.
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The two-compartment model with first-order absorption, no delay, and linear elimina-
tion was found to fit the data when analyzing diagnostic plots (Figures 5–7). Despite an
outlier proportion of 7.62% (also visually confirmed in the VPC plot), the model is consid-
ered suitable for the data. A −2LL of −7138.63 and a BICc of −7058.17 were obtained. The
estimates of the popPK parameters are outlined in Table 4.
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Table 4. Estimates of the popPK parameters of the final model for salbutamol DPI formulation (using
GSK-derived data).

Parameters Estimate RSE (%)

Fixed Effects
ka (h−1) 13.55 18.0
Cl (L/h) 34.93 16.6
V1 (L) 162.93 22.6
Q (L/h) 1.30 × 10−7 2.83 × 106 *
V2 (L) 0 1.35 × 107 *

Random Effects
IIV(ka) 0.89 15.4
IIV(Cl) 0.51 13.3
IIV(V1) 0.41 13.4
IIV(Q) 1.17 3.88 × 106 *
IIV(V2) 0.30 6.09 × 109 *

Correlation
ka and Q –0.83 3.88 × 106 *
V1 and Cl 0.92 3.98

RSE: relative standard error; ka: absorption constant rate; Cl: clearance; V1 and V2: the volume of distribution of
the compartments one (central), and two (peripheral); Q: intercompartmental clearance; * values are very large
standard errors, potentially suggesting an overparametrization of the model.

Despite the identified demographic differences between the virtual patients and the
clinical trial participants, the range of values in the two datasets is comparable, allowing
the validation of the popPK model developed using virtual patients with real-world data.
In addition, the need for more heterogeneous clinical trials implies more extensive and
costly studies [41]. Therefore, by validating the model developed from synthetic data with
real-world data, we can employ this methodology in therapeutic regimen optimization
studies. Its advantages are evident, including flexibility, cost-effectiveness, and the ability
to simulate diverse patient populations.

3.4. Impact of Covariates on Salbutamol PK Parameters

The developed model revealed the influence of covariates on the PK parameters
of salbutamol. Thus, we proceeded to analyze these parameters considering various
stratifications for age, weight, gender, and race (Table 5).



Pharmaceutics 2024, 16, 881 14 of 18

Table 5. Differences in PK parameters according to the stratification of the virtual population in terms
of age, weight, gender, and race. Values presented in geometric mean ± geometric SD.

Covariates Parameters

ka (h−1) Cl (mL/h) V1 (mL) Q (mL/h) V2 (mL)

Age
5–22 0.0130 ± 13.1 8.77 ± 6.08 0.540 × 10−4 ± 508 0.920 × 10−7 ± 11.5 0.0460 ± 563
23–65 0.00380 ± 4.62 3.95 ± 3.12 0.390 × 10−4 ± 330 0.140 × 10−6 ± 124 0.0430 ± 6997

Weight
17.77–75.00 0.00930 ± 10.7 7.00 ± 5.42 0.450 × 10−4 ± 447 0.140 × 10−6 ± 59.3 0.067 ± 3320
75.01–105.00 0.00230 ± 1.28 3.17 ± 1.30 0.540 × 10−4 ± 297 0.47 × 10−7 ± 19.6 0.00440 ± 204

Gender
Female 0.00610 ± 7.92 5.07 ± 4.01 0.310 × 10−4 ± 786 0.590 × 10−7 ± 65.0 0.00500 ± 5056
Male 0.00890 ± 11.19 7.37 ± 5.77 0.660 × 10−4 ± 228 0.210 × 10−6 ± 39.8 0.300 ± 753

Race
American Indian or Alaskan Native 0.00820 ± 13.8 6.46 ± 4.49 0.860 × 10−4 ± 357 0.270 × 10−6 ± 65.7 0.0310 ± 1804
East Asian 0.00710 ± 7.62 6.03 ± 5.26 0.320 × 10−4 ± 454 0.690 × 10−7 ± 42.5 0.0540 ± 3154

ka: absorption constant rate; Cl: clearance; V1 and V2: the volume of distribution of the compartments one
(central), and two (peripheral); Q: intercompartmental clearance.

Firstly, the model identified that age influenced Cl and Q, which, as observed, pre-
sented significantly different values when comparing the two subgroups of asthmatic
patients (5–22 years and 23–65 years). Q is a parameter that specifies the drug transfer
rate between compartments and mainly impacts the drug volume in compartments, which
consequently differs significantly between the two subgroups. In general, the V2 is much
higher than the volume in V1, suggesting a lower drug availability to target its site of action,
increased risk of ADRs due to accumulation in peripheral tissues, or prolonged drug action.
At this point, it is not possible to distinguish whether it is a positive or negative effect. In
contrast, Cl is higher in the younger population (5–22 years), potentially indicating a need
for closer observation in younger individuals. Maximum efficacy may not be reached, and
a dose adjustment may be required. Regarding the absorption of this β2-agonist, younger
people display increased ka, following the PK profile observed in Figure 2A. Indeed, sev-
eral underlying processes related to aging influence drug disposition, such as reduced
first-pass metabolism, decreased organ/tissue mass, increased body fat, and decreased
body water content [50]. Concerning the latter one, salbutamol being a hydrophilic drug,
with a greater affinity for water, tends to have a lower distribution volume, as confirmed
by the presented results.

Weight, in turn, proved to be an important characteristic in the disposition of salbu-
tamol. For individuals weighing over 75 kg (overweight and obese), markedly reduced
values were observed for all PK parameters. Regarding the popPK model, relationships
between this covariate and Cl, Q, and V2 were identified. Variations in Cl may be explained
by several factors. For instance, fat accumulation in the liver (the main organ responsible
for elimination) may alter hepatic blood flow [51,52]. Changes in enzyme expression of
cytochrome P450 (CYP) enzymes, especially CYP2D6 and CYP2C19, may also underlie
these decreased values [53]. Further, the discrepancy in drug distribution values is rea-
sonable, considering the hydrophilicity of salbutamol—individuals with higher weight
have more adipose tissue. Tissue perfusion may also be reduced in obese patients, impact-
ing Vd (volume of distribution) [52]. The drug absorption rate was also much lower in
individuals > 75 kg compared to individuals with normal weight (<75 kg, according to
software guidelines). This difference can be attributed once more to changes in blood flow
and body composition.

According to the initial population analysis, gender influences ka and Cl, which is
consistent with the results presented in Table 5. Ka and Cl are both reduced in females.
However, Cl is, indeed, decreased in women (approximately half of the Cl value displayed
in men). These variations may be explained by anatomical differences, namely, weight
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and total body water volume [4,54]. Consequently, alterations in drug distribution are
also expected.

Finally, significant differences were found in Vd and ka between the two racial groups,
in contrast to the popPK model results. In particular, American people exhibit higher values
for ka and Vd. Among many other factors, well-recognized polymorphisms between racial
groups may explain the variation in these PK parameters [55]. Several single-nucleotide
polymorphisms (SNPs) have been identified in the coding region of the ABRB2 gene, the
gene encoding for the β2-adrenoceptor. The most common SNPs result from three missense
mutations, one of which involves the substitution of isoleucine (Ile) for threonine (Thr) at
codon 164 [56]. According to in vitro studies conducted by Chung et al. [57], this alteration
has been associated with decreased receptor binding to the ligand and coupling to Gs
proteins in response to different SABAs, namely, salbutamol. This results in a reduction in
receptor activity and agonist-stimulated activation. In this regard, the ethnic disparities
reflected by the polymorphisms significantly influence the PK parameters of salbutamol,
and it is crucial to take them into account when prescribing the drug.

4. Conclusions

This study addresses critical challenges in popPK modeling, particularly regarding
data scarcity, incompleteness, and homogeneity in traditional clinical trials. Although the
landscape of clinical trials has been changing in recent years, pharmacometricians still face
a burden when it comes to PK data. Therefore, by leveraging synthetic data generated
through PBPK models, we have overcome these limitations and provided insights into
salbutamol’s PK profile across diverse patient populations. External validation using real
data from clinical trials is crucial for ensuring the accuracy and reliability of the final models.

Through this comprehensive analysis, significant associations between individual
characteristics and salbutamol’s PK parameters have been identified. Age, weight, gender,
and race have indeed a great impact on salbutamol’s ADME processes. This underscores
the relevance of personalized dosing strategies, minimizing adverse effects and maximizing
therapeutic efficacy. Although the popPK model fails to identify some relationships, these
findings revealed great consistency. Further studies using this methodological approach
should be conducted, to prove its reliability and capability of predicting interindividual
variability in drug responses.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/pharmaceutics16070881/s1, Table S1: PBPK models and respective
individuals’ characteristics; Table S2. Basic popPK models of salbutamol DPI.

Author Contributions: Conceptualization, L.M. and N.V.; methodology L.M.; formal analysis, L.M.
and N.V.; investigation, L.M.; writing—original draft preparation, L.M.; writing—review and editing,
N.V.; supervision, N.V.; project administration, N.V.; funding acquisition, N.V. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was financed by Fundo Europeu de Desenvolvimento Regional (FEDER)
funds through the COMPETE 2020 Operational Programme for Competitiveness and Internationalisa-
tion (PO-CI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e a Tecnologia
(FCT) in the framework of projects IF/00092/2014/CP1255/CT0004 and CHAIR in Onco-Innovation
from Faculty of Medicine, University of Porto (FMUP).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Acknowledgments: L.M. is thankful for support her PhD granto to CHAIR in Onco-Innovation
from FMUP. This publication is based on research using data from GlaxoSmithKline that have been
made available through Vivli, Inc. Vivli has not contributed to or approved, and is not in any way
responsible for, the contents of this publication.

https://www.mdpi.com/article/10.3390/pharmaceutics16070881/s1
https://www.mdpi.com/article/10.3390/pharmaceutics16070881/s1


Pharmaceutics 2024, 16, 881 16 of 18

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lin, Y.S.; Thummel, K.E.; Thompson, B.D.; Totah, R.A.; Cho, C.W. Sources of Interindividual Variability. Methods Mol. Biol. 2021,

2342, 481–550. [CrossRef]
2. Lin, J. Pharmacokinetic and Pharmacodynamic Variability: A Daunting Challenge in Drug Therapy. Curr. Drug Metab. 2007, 8,

109–136. [CrossRef]
3. Van Den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental Changes in Pharmacokinetics and Pharmacodynamics.

Suppl. Artic. J. Clin. Pharmacol. 2018, 58, 10–25. [CrossRef] [PubMed]
4. Nicolas, J.M.; Espie, P.; Molimard, M. Gender and Interindividual Variability in Pharmacokinetics. Drug Metab. Rev. 2009, 41,

408–421. [CrossRef]
5. Sherwin, C.M.T.; Kiang, T.K.L.; Spigarelli, M.G.; Ensom, M.H.H. Fundamentals of Population Pharmacokinetic Modelling. Clin.

Pharmacokinet. 2012, 51, 573–590. [CrossRef] [PubMed]
6. Wojtyniak, J.G.; Britz, H.; Selzer, D.; Schwab, M.; Lehr, T. Data Digitizing: Accurate and Precise Data Extraction for Quantitative

Systems Pharmacology and Physiologically-Based Pharmacokinetic Modeling. CPT Pharmacomet. Syst. Pharmacol. 2020, 9,
322–331. [CrossRef]

7. Overgaard, R.V.; Ingwersen, S.H.; Tornøe, C.W. Establishing Good Practices for Exposure–Response Analysis of Clinical Endpoints
in Drug Development. CPT Pharmacomet. Syst. Pharmacol. 2015, 4, 565. [CrossRef]

8. Cazzola, M.; Rogliani, P.; Sanduzzi, A.; Matera, M.G. Influence of Ethnicity on Response to Asthma Drugs. Expert Opin. Drug
Metab. Toxicol. 2015, 11, 1089–1097. [CrossRef] [PubMed]

9. Vet, N.J.; de Winter, B.C.M.; Koninckx, M.; Boeschoten, S.A.; Boehmer, A.L.M.; Verhallen, J.T.; Plötz, F.B.; Vaessen-Verberne, A.A.;
van der Nagel, B.C.H.; Knibbe, C.A.J.; et al. Population Pharmacokinetics of Intravenous Salbutamol in Children with Refractory
Status Asthmaticus. Clin. Pharmacokinet. 2020, 59, 257–264. [CrossRef]

10. Boulton, D.W.; Fawcett, J.P. Enantioselective Disposition of Salbutamol in Man Following Oral and Intravenous Administration.
Br. J. Clin. Pharmacol. 1996, 41, 35–40. [CrossRef]

11. Salbutamol: Uses, Interactions, Mechanism of Action|DrugBank Online. Available online: https://go.drugbank.com/drugs/
DB01001 (accessed on 7 October 2022).

12. Emeryk, A.; Emeryk-Maksymiuk, J. Short-Acting Inhaled B2-Agonists: Why, Whom, What, How? Adv. Respir. Med. 2020, 88,
443–449. [CrossRef] [PubMed]

13. Kim, J.S.; Story, R.E. Bronchodilators. In Allergy and Asthma: Practical Diagnosis and Management: Second Edition; StatPearls
Publishing: Tampa, FL, USA, 2021; pp. 585–598, ISBN 9783319308357.

14. Libretto, S.E. A Review of the Toxicology of Salbutamol (Albuterol). Arch. Toxicol. 1994, 68, 213–216. [CrossRef] [PubMed]
15. Price, A.H.; Clissold, S.P. Salbutamol in the 1980s: A Reappraisal of Its Clinical Efficacy. Drugs 1989, 38, 77–122. [CrossRef]

[PubMed]
16. Ritchie, A.; Wiater, E.; Edwards, M.; Montminy, M.; Johnston, S. B2-Agonists Enhance Asthma-Relevant Inflammatory Mediators

in Human Airway Epithelial Cells. Am. J. Respir. Cell Mol. Biol. 2018, 58, 128–132. [CrossRef] [PubMed]
17. Martin, M.J.; Harrison, T.W. Is It Time to Move Away from Short-Acting Beta-Agonists in Asthma Management? Eur. Respir. J.

2019, 53, 2016–2019. [CrossRef] [PubMed]
18. Hancox, R.J.; Cowan, J.O.; Flannery, E.M.; Herbison, G.P.; Mclachlan, C.R.; Taylor, D.R. Bronchodilator Tolerance and Rebound

Bronchoconstriction during Regular Inhaled β-Agonist Treatment. Respir. Med. 2000, 94, 767–771. [CrossRef] [PubMed]
19. Gauvreau, G.M.; Jordana, M.; Watson, R.M.; Cockcroft, D.W.; O’Byrne, P.M. Effect of Regular Inhaled Albuterol on Allergen-

Induced Late Responses and Sputum Eosinophils in Asthmatic Subjects. Am. J. Respir. Crit. Care Med. 1997, 156, 1738–1745.
[CrossRef] [PubMed]

20. Cockcroft, D.W.; McParland, C.P.; Britto, S.A.; Swystun, V.A.; Rutherford, B. Regular Inhaled Salbutamol and Airway Responsive-
ness to Allergen. Lancet 1993, 342, 833–837. [CrossRef] [PubMed]

21. Reddel, H.K.; FitzGerald, J.M.; Bateman, E.D.; Bacharier, L.B.; Becker, A.; Brusselle, G.; Buhl, R.; Cruz, A.A.; Fleming, L.; Inoue,
H.; et al. GINA 2019: A Fundamental Change in Asthma Management: Treatment of Asthma with Short-Acting Bronchodilators
Alone Is No Longer Recommended for Adults and Adolescents. Eur. Respir. J. 2019, 53, 1901046. [CrossRef]

22. AstraZeneca SABINA Programme Demonstrates SABA Reliever Overuse Is a Global Issue in Asthma Management. Available
online: https://www.astrazeneca.com/media-centre/medical-releases/sabina-programme-demonstrates-saba-reliever-overuse-
is-a-global-issue-in-asthma-management.html (accessed on 4 November 2022).

23. Looijmans-van den Akker, I.; Werkhoven, A.; Verheij, T. Over-Prescription of Short-Acting Beta Agonists in the Treatment of
Asthma. Fam. Pract. 2021, 38, 612–616. [CrossRef]

24. Moradi, M.; Golmohammadi, R.; Najafi, A.; Moghaddam, M.; Fasihi-Ramandi, M.; Mirnejad, R. A Contemporary Review on
the Important Role of In Silico Approaches for Managing Different Aspects of COVID-19 Crisis. Inform. Med. Unlocked 2022,
28, 100862. [CrossRef] [PubMed]

25. Arsène, S.; Parès, Y.; Tixier, E.; Granjeon-Noriot, S.; Martin, B.; Bruezière, L.; Couty, C.; Courcelles, E.; Kahoul, R.; Pitrat, J.; et al. In
Silico Clinical Trials: Is It Possible? Methods Mol. Biol. 2024, 2716, 51–99. [CrossRef] [PubMed]

https://doi.org/10.1007/978-1-0716-1554-6_17
https://doi.org/10.2174/138920007779816002
https://doi.org/10.1002/jcph.1284
https://www.ncbi.nlm.nih.gov/pubmed/30248190
https://doi.org/10.1080/10837450902891485
https://doi.org/10.1007/BF03261932
https://www.ncbi.nlm.nih.gov/pubmed/22799590
https://doi.org/10.1002/psp4.12511
https://doi.org/10.1002/psp4.12015
https://doi.org/10.1517/17425255.2015.1047341
https://www.ncbi.nlm.nih.gov/pubmed/25995058
https://doi.org/10.1007/s40262-019-00811-y
https://doi.org/10.1111/j.1365-2125.1996.tb00156.x
https://go.drugbank.com/drugs/DB01001
https://go.drugbank.com/drugs/DB01001
https://doi.org/10.5603/ARM.a2020.0132
https://www.ncbi.nlm.nih.gov/pubmed/33169817
https://doi.org/10.1007/s002040050059
https://www.ncbi.nlm.nih.gov/pubmed/8067892
https://doi.org/10.2165/00003495-198938010-00004
https://www.ncbi.nlm.nih.gov/pubmed/2670512
https://doi.org/10.1165/rcmb.2017-0315LE
https://www.ncbi.nlm.nih.gov/pubmed/29286858
https://doi.org/10.1183/13993003.02223-2018
https://www.ncbi.nlm.nih.gov/pubmed/30948504
https://doi.org/10.1053/rmed.2000.0820
https://www.ncbi.nlm.nih.gov/pubmed/10955752
https://doi.org/10.1164/ajrccm.156.6.96-08042
https://www.ncbi.nlm.nih.gov/pubmed/9412549
https://doi.org/10.1016/0140-6736(93)92695-P
https://www.ncbi.nlm.nih.gov/pubmed/8104272
https://doi.org/10.1183/13993003.01046-2019
https://www.astrazeneca.com/media-centre/medical-releases/sabina-programme-demonstrates-saba-reliever-overuse-is-a-global-issue-in-asthma-management.html
https://www.astrazeneca.com/media-centre/medical-releases/sabina-programme-demonstrates-saba-reliever-overuse-is-a-global-issue-in-asthma-management.html
https://doi.org/10.1093/fampra/cmab013
https://doi.org/10.1016/j.imu.2022.100862
https://www.ncbi.nlm.nih.gov/pubmed/35079621
https://doi.org/10.1007/978-1-0716-3449-3_4
https://www.ncbi.nlm.nih.gov/pubmed/37702936


Pharmaceutics 2024, 16, 881 17 of 18

26. Pappalardo, F.; Russo, G.; Tshinanu, F.M.; Viceconti, M. In Silico Clinical Trials: Concepts and Early Adoptions. Brief. Bioinform.
2019, 20, 1699–1708. [CrossRef] [PubMed]

27. Modelling and Simulation: Questions and Answers|European Medicines Agency. Available online: https://www.ema.
europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-and-
pharmacokinetics/modelling-and-simulation-questions-and-answers (accessed on 22 March 2024).

28. Skottheim Rusten, I.; Musuamba, F.T. Scientific and Regulatory Evaluation of Empirical Pharmacometric Models: An Application
of the Risk Informed Credibility Assessment Framework. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1281–1296. [CrossRef]
[PubMed]

29. Population Pharmacokinetics|FDA. Available online: http://www.fda.gov/regulatory-information/search-fda-guidance-
dolcuments/population-pharmacokinetics (accessed on 23 March 2024).

30. Mould, D.; Upton, R. Basic Concepts in Population Modeling, Simulation, and Model-Based Drug Development—Part 2:
Introduction to Pharmacokinetic Modeling Methods. CPT Pharmacomet. Syst. Pharmacol. 2013, 2, e38. [CrossRef]

31. Hu, X.; Yang, F.-F.; Liao, Y.-H. Pharmacokinetic Considerations of Inhaled Pharmaceuticals for Systemic Delivery. Curr. Pharm.
Des. 2016, 22, 2532–2548. [CrossRef] [PubMed]

32. Irby, D.J.; Ibrahim, M.E.; Dauki, A.M.; Badawi, M.A.; Illamola, S.M.; Chen, M.; Wang, Y.; Liu, X.; Phelps, M.A.; Mould, D.R.
Approaches to Handling Missing or “Problematic” Pharmacology Data: Pharmacokinetics. CPT Pharmacomet. Syst. Pharmacol.
2021, 10, 291–308. [CrossRef] [PubMed]

33. O’Hara, K.; Martin, J.H.; Schneider, J.J. Barriers and Challenges in Performing Pharmacokinetic Studies to Inform Dosing in the
Neonatal Population. Pharmacy 2020, 8, 16. [CrossRef]

34. Wang, Y.; Liu, X. Handling Missing Dosing History in Population Pharmacokinetic Modeling: An Extension to MDM Method.
CPT Pharmacomet. Syst. Pharmacol. 2019, 8, 39–49. [CrossRef]

35. Marques, L.; Vale, N. Salbutamol in the Management of Asthma: A Review. Int. J. Mol. Sci. 2022, 23, 14207. [CrossRef]
36. Shamsuddin, R.; Maweu, B.M.; Li, M.; Prabhakaran, B. Virtual Patient Model: An Approach for Generating Synthetic Healthcare

Time Series Data. In Proceedings of the 2018 IEEE International Conference on Healthcare Informatics (ICHI), New York, NY,
USA, 4–7 June 2018; pp. 208–218. [CrossRef]

37. D’Amico, S.; Dall’Olio, D.; Sala, C.; Dall’Olio, L.; Sauta, E.; Zampini, M.; Asti, G.; Lanino, L.; Maggioni, G.; Campagna, A.; et al.
Synthetic Data Generation by Artificial Intelligence to Accelerate Research and Precision Medicine in Hematology. JCO Clin.
Cancer Inform. 2023, 7, 1–22. [CrossRef] [PubMed]

38. Giuffrè, M.; Shung, D.L. Harnessing the Power of Synthetic Data in Healthcare: Innovation, Application, and Privacy. Npj Digit.
Med. 2023, 6, 186. [CrossRef]

39. Jacobs, F.; D’Amico, S.; Benvenuti, C.; Gaudio, M.; Saltalamacchia, G.; Miggiano, C.; Sanctis, R.D.; Porta, M.G.D.; Santoro, A.;
Zambelli, A. Opportunities and Challenges of Synthetic Data Generation in Oncology. JCO Clin. Cancer Inform. 2023, 7, e2300045.
[CrossRef]

40. Subbiah, V. The next Generation of Evidence-Based Medicine. Nat. Med. 2023, 29, 49–58. [CrossRef] [PubMed]
41. Sharma, A.; Palaniappan, L. Improving Diversity in Medical Research. Nat. Rev. Dis. Prim. 2021, 7, 74. [CrossRef] [PubMed]
42. Porzsolt, F.; Wiedemann, F.; Becker, S.I.; Rhoads, C.J. Inclusion and Exclusion Criteria and the Problem of Describing Homogeneity

of Study Populations in Clinical Trials. BMJ Evid.-Based Med. 2019, 24, 92–94. [CrossRef]
43. Husain, S.; Srijithesh, P.R. Homogeneity and the Outcome of Clinical Trials: An Appraisal of the Outcome of Recent Clinical

Trials on Endovascular Intervention in Acute Ischemic Stroke. Ann. Indian Acad. Neurol. 2016, 19, 21–24. [CrossRef]
44. Srijithesh, P.R.; Husain, S. Influence of Trial Design, Heterogeneity and Regulatory Environment on the Results of Clinical Trials:

An Appraisal in the Context of Recent Trials on Acute Stroke Intervention. Ann. Indian Acad. Neurol. 2014, 17, 365–370. [CrossRef]
45. Batchelor, H.K.; Marriott, J.F. Paediatric Pharmacokinetics: Key Considerations. Br. J. Clin. Pharmacol. 2015, 79, 395–404.

[CrossRef]
46. Salbutamol-Mechanism, Indication, Contraindications, Dosing, Adverse Effect, Interaction, Renal Dose, Hepatic Dose|Drug

Index|Pediatric Oncall. Available online: https://www.pediatriconcall.com/drugs/salbutamol/934 (accessed on 23 March 2024).
47. Haghi, M.; Traini, D.; Bebawy, M.; Young, P.M. Deposition, Diffusion and Transport Mechanism of Dry Powder Microparticulate

Salbutamol, at the Respiratory Epithelia. Mol. Pharm. 2012, 9, 1717–1726. [CrossRef]
48. Lipworth, B.J. Pharmacokinetics of Inhaled Drugs. Br. J. Clin. Pharmacol. 1996, 42, 697–705. [CrossRef] [PubMed]
49. U.S. Food & Drug Administration. 2015–2019 Drug Trials Snapshots Summary Report. Available online: https://www.fda.gov/

media/143592/download (accessed on 23 March 2024).
50. Mangoni, A.A.; Jackson, S.H.D. Age-Related Changes in Pharmacokinetics and Pharmacodynamics: Basic Principles and Practical

Applications. Br. J. Clin. Pharmacol. 2004, 57, 6–14. [CrossRef] [PubMed]
51. Ijaz, S.; Yang, W.; Winslet, M.C.; Seifalian, A.M. Impairment of Hepatic Microcirculation in Fatty Liver. Microcirculation 2003, 10,

447–456. [CrossRef] [PubMed]
52. Hanley, M.J.; Abernethy, D.R.; Greenblatt, D.J. Effect of Obesity on the Pharmacokinetics of Drugs in Humans. Clin. Pharmacokinet.

2010, 49, 71–87. [CrossRef] [PubMed]
53. Brill, M.J.E.; Diepstraten, J.; Van Rongen, A.; Van Kralingen, S.; Van Den Anker, J.N.; Knibbe, C.A.J. Impact of Obesity on Drug

Metabolism and Elimination in Adults and Children. Clin. Pharmacokinet. 2012, 51, 277–304. [CrossRef] [PubMed]
54. Anderson, G.D. Gender Differences in Pharmacological Response. Int. Rev. Neurobiol. 2008, 83, 1–10. [CrossRef]

https://doi.org/10.1093/bib/bby043
https://www.ncbi.nlm.nih.gov/pubmed/29868882
https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-and-pharmacokinetics/modelling-and-simulation-questions-and-answers
https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-and-pharmacokinetics/modelling-and-simulation-questions-and-answers
https://www.ema.europa.eu/en/human-regulatory-overview/research-and-development/scientific-guidelines/clinical-pharmacology-and-pharmacokinetics/modelling-and-simulation-questions-and-answers
https://doi.org/10.1002/psp4.12708
https://www.ncbi.nlm.nih.gov/pubmed/34514745
http://www.fda.gov/regulatory-information/search-fda-guidance-dolcuments/population-pharmacokinetics
http://www.fda.gov/regulatory-information/search-fda-guidance-dolcuments/population-pharmacokinetics
https://doi.org/10.1038/psp.2013.14
https://doi.org/10.2174/1381612822666160128150005
https://www.ncbi.nlm.nih.gov/pubmed/26818873
https://doi.org/10.1002/psp4.12611
https://www.ncbi.nlm.nih.gov/pubmed/33715307
https://doi.org/10.3390/pharmacy8010016
https://doi.org/10.1002/psp4.12374
https://doi.org/10.3390/ijms232214207
https://doi.org/10.1109/ICHI.2018.00031
https://doi.org/10.1200/CCI.23.00021
https://www.ncbi.nlm.nih.gov/pubmed/37390377
https://doi.org/10.1038/s41746-023-00927-3
https://doi.org/10.1200/CCI.23.00045
https://doi.org/10.1038/s41591-022-02160-z
https://www.ncbi.nlm.nih.gov/pubmed/36646803
https://doi.org/10.1038/s41572-021-00316-8
https://www.ncbi.nlm.nih.gov/pubmed/34650078
https://doi.org/10.1136/bmjebm-2018-111115
https://doi.org/10.4103/0972-2327.173308
https://doi.org/10.4103/0972-2327.143984
https://doi.org/10.1111/bcp.12267
https://www.pediatriconcall.com/drugs/salbutamol/934
https://doi.org/10.1021/mp200620m
https://doi.org/10.1046/j.1365-2125.1996.00493.x
https://www.ncbi.nlm.nih.gov/pubmed/8971424
https://www.fda.gov/media/143592/download
https://www.fda.gov/media/143592/download
https://doi.org/10.1046/j.1365-2125.2003.02007.x
https://www.ncbi.nlm.nih.gov/pubmed/14678335
https://doi.org/10.1038/sj.mn.7800206
https://www.ncbi.nlm.nih.gov/pubmed/14745457
https://doi.org/10.2165/11318100-000000000-00000
https://www.ncbi.nlm.nih.gov/pubmed/20067334
https://doi.org/10.2165/11599410-000000000-00000
https://www.ncbi.nlm.nih.gov/pubmed/22448619
https://doi.org/10.1016/S0074-7742(08)00001-9


Pharmaceutics 2024, 16, 881 18 of 18

55. Olafuyi, O.; Parekh, N.; Wright, J.; Koenig, J. Inter-Ethnic Differences in Pharmacokinetics—Is There More That Unites than
Divides? Pharmacol. Res. Perspect. 2021, 9, e00890. [CrossRef] [PubMed]

56. Cazzola, M.; Page, C.P.; Calzetta, L.; Matera, M.G. Pharmacology and Therapeutics of Bronchodilators. Pharmacol. Rev. 2012, 64,
450–504. [CrossRef]

57. Chung, L.P.; Waterer, G.; Thompson, P.J. Pharmacogenetics of B2 Adrenergic Receptor Gene Polymorphisms, Long-Acting
β-Agonists and Asthma. Clin. Exp. Allergy 2011, 41, 312–326. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/prp2.890
https://www.ncbi.nlm.nih.gov/pubmed/34725944
https://doi.org/10.1124/pr.111.004580
https://doi.org/10.1111/j.1365-2222.2011.03696.x

	Introduction 
	Materials and Methods 
	Virtual Patient Data Collection 
	Noncompartmental Analysis of PK Data 
	Population Pharmacokinetic Modeling 
	Model Evaluation and Covariate Selection 
	External Validation 

	Results and Discussion 
	Demographic Characteristics 
	Final popPK Model 
	External Validation of the Final Structural popPK Model 
	Impact of Covariates on Salbutamol PK Parameters 

	Conclusions 
	References

