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Abstract: Immunotherapy has transformed cancer treatment. Nevertheless, given the heterogeneity
of clinical efficacy, the multiplicity of treatment options available and the possibility of serious adverse
effects, selecting the most effective treatment has become the greatest challenge. Molecular imaging
offers an attractive way for this purpose. ImmunoPET provides specific imaging with positron
emission tomography (PET) using monoclonal antibodies (mAb) or its fragments as vector. By
combining the high targeting specificity of mAb and the sensitivity of PET technique, immunoPET
could noninvasively and dynamically reveal tumor antigens expression and provide theranostic tools
of several types of malignancies. Because of their slow kinetics, mAbs require radioelements defined
by a consistent half-life. Zirconium 89 (89Zr) and Copper 64 (64Cu) are radiometals with half-lives
suitable for mAb labeling. Radiolabeling with a radiometal requires the prior use of a bifunctional
chelate agent (BFCA) to functionalize mAb for radiometal chelation, in a second step. There are a
number of BFCA available and much research is focused on antibody functionalization techniques or
on developing the optimum chelating agent depending the selected radiometal. In this manuscript,
we present a critical account of radiochemical techniques with radionuclides 89Zr and 64Cu and their
applications in preclinical and clinical immuno-PET imaging.
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1. Introduction

Over the last 30 years, monoclonal antibodies (mAbs) have allowed major advances in
the treatment of cancers. These improvements have been mainly possible by advances in
understanding of immune mechanisms and technological developments in the production
of mAb [1,2]. Immune checkpoint blockade and Fc-mediated antibody-dependent cellular
cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-
dependent cytotoxicity (CDC) are the main mechanisms of antibody-based immunotherapy.
Many new immune checkpoint molecules have been identified, such as PD-1/PD-L1 or
CTLA-4, conducting to interesting target. Technological advances allowing production of
chimeric, humanized or human antibodies have reduced mAb immunogenicity. In addition
to the traditional mAbs, optimized mAbs have been developed to enhance their therapeutic
properties. By improving the interactions between the Fc fragment and the FcRs and by
optimizing the glycosylation and amino acid sequence of the Fc, more efficient ADCC
can be achieved. To overcome the limitations of mAbs size, including slow kinetics and
potentially low penetration into large tumors, Ab fragments, defined by the absence of the
Fc moiety and by their smaller size and high affinity, have been developed [3]. More recently,
development of bispecific mAbs has opened up new opportunities in immunotherapy, such
as the recruitment of cytotoxic effector cells from the immune system to target pathogenic
cells to enhance effector cell activation and anti-tumor immunotherapy [4]. Additional
properties can be added to mAbs by coupling them to agents such as drugs, enzymes
(abzymes) or radioisotopes [5].
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The main advantage of immunotherapy is its specific action and its use in a wide range
of potential indications [3]. Approximately 1200 mAbs are currently in clinical trials and
approximately 200 are under regulatory review or approval [6]. Nevertheless, given the
heterogeneity of clinical responses to immunotherapy and the wide range of therapeutic
options available, a major challenge has emerged: personalizing patient care [7,8]. In recent
years, the notion of theranostic has gained ground in the literature. This concept lies at
the frontier diagnosis and therapy with the aim of selecting patients who will respond
to specific treatments and improving patient care through personalized medicine. The
theranostic concept has two aspects. The first involves using a vector, initially coupled to
a radionuclide for diagnostic purposes, to study the molecular expression of the disease.
Once this expression has been documented and validated, the same vector can be used, this
time coupled with a therapeutic radionuclide, to provide targeted treatment of the tumor.
The second aspect of theranostics is a broader concept. It is based on the radiolabeling of
a molecule of interest in order to image its biodistribution and binding to its target, and
thus to predict individual therapeutic efficacy. Such theranostic approaches are necessary
to improve treatment efficiency, but also necessary in view of the high cost of this type
of treatment.

Non-invasive imaging represents a powerful tool to investigate mAbs behavior and
potency. Positron emission tomography (PET) is a widely used molecular imaging tech-
nology, particularly developed in clinical oncology. Thanks to vectors radiolabeled with
β+ emitting radionuclide, PET allows non-invasive study of the expression of molecular
targets. Different vectors can be used to deliver the radionuclide to the target of interest,
allowing the visualization of organ function or the molecular expression on the surface
of cells [9]. Among the radiotracers used for PET imaging, the most widely used ra-
diotracers is 2-Deoxy-2-(18F)fluoro-D-glucose or fluorodeoxyglucose (18F-FDG), which is
indicated in staging, restaging, detecting recurrences, and predicting the prognosis of
various cancers [10,11]. Although 18F-FDG is still a key radiotracer in oncology, due to
its high sensitivity and a wide range of indications, 18F-FDG is not specific to tumor cells,
and 18F-FDG uptake is also observed in inflammatory or infectious lesions. More specific
radiotracer could be interesting to investigate treatment responses and efficacy.

In this way, mAbs, which specifically recognize antigens on pathologic cells, represent
promising vectors. ImmunoPET is a paradigm-shifting molecular imaging modality com-
bining the specific targeting ability of mAb and the inherent sensitivity of PET technique.
This non-invasive method could quantitatively assess in vivo the target expression and
distribution in the whole-body. ImmunoPET imaging enables the study of drug target
expression by quantifying tracer uptake into the tumor, provides data to support drug
development [12] and can help with patient selection, stratification and response monitor-
ing [9]. This technique may allow the development of new theranostic tools, i.e., patient
stratification, diagnosis, selection of targeted therapies, assessment and prediction of treat-
ment response and adverse effects [12,13]. Based on immunoPET, treatment strategies
could be tailored for individual patients before administering expensive and potentially
toxic therapies. A large number of preclinical and clinical studies highlight the growing
importance of immunoPET as a diagnostic and theranostic tool in oncology. Furthermore,
immunoPET can be used in preclinical studies for biomolecule development (Figure 1).

Vector radiolabeling for molecular imaging requires a good match between the vector
kinetics and the half-life of the radioelement. When using whole mAb, characterized
by a high molecular weight (150 kDa) and a slow kinetic, it is necessary to use radioele-
ments with a relatively long half-life. Radioisotopes with short half-lives, such as 18F
(t1/2 = 110 min) or 68Ga (t1/2 = 67.7 min), which are common in clinical practice, have the
advantage of low radiation exposure. However, they are not optimal for long circulating
probes, such as mAbs. Therefore, radiolabeling with long-lived radioisotopes such as 124I
(t1/2 = 4.2 days), 64Cu (t1/2 = 12.7 h), and 89Zr (t1/2 = 3.3 days) is required for the better
assessment of the biodistribution of such tracers [14]. In this review, we focus on 64Cu and
89Zr, both of which are radiometals and involve chelation chemistry. 64Cu and 89Zr are
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gradually becoming the gold standard for immunoPET. As 64Cu and 89Zr are radiometals,
radiolabeling involve mainly indirect techniques with a bifunctional chelate agent (BFCA)
which need to be conjugated to the biomolecule before radiolabeling. BFCA are composed
of a chemical function enable to coupling an antibody and a prosthetic group to coordinate
a radiometal (Figure 2).
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Chemical function of the BFCA must allow conjugation to the biomolecule under
reaction conditions compatible with the latter (e.g., pH and temperatures) [15]. The choice
of chelating group depends on the radioactive metal and its coordination properties. In par-
ticular, the denticity of a ligand, which is defined by its ability to complex a central atom via
a number of bonds, influences the stability of the metal complex. Moreover, complexes are
situations of chemical equilibrium, meaning that the association can be reversible. Several
factors influence stability. First, the thermodynamic factor, which represents the strength of
the Lewis acid/base combination, characterizes the equilibrium of the system. Secondly,
the kinetic factor, which is proportional to the energy required to dissociate the complex.
Another factor, lability, is defined by the rate of complexation-decomplexation. It is charac-
terized by the rate at which the water molecules in the complexes are exchanged. Metal
contamination, pH and temperature of the reactive environment can also influence the
stability of the complex. Some chelating agents can be used in combination with different ra-
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diometals as DOTA (2,2′,2′′,2′′′-(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic
acid), but there are often optimized chelating systems tailored to specific radiometals. Much
research has been devoted to the development of functionalization techniques and to opti-
mization of chelating agents. Recently, the major challenge has been to propose site-specific
bioconjugation to prevent mAb affinity impairment. In vivo pre-targeting strategies are
also in development. The idea is that mAb and radioelement are separately injected and
will combine within the body. These techniques need system allowing recognition of both
entities in vivo. These strategies are mainly used for radiotherapy or with short-lived
radionuclides because they decrease the circulation time of the radioactivity, reduce the
uptake of the radionuclide in healthy nontarget tissues, and facilitate the use of short-lived
radionuclides [16]. In this review, pre-targeting strategies will not be discussed, because
they are not widely used for immunoPET with 64Cu and 89Zr.

In this review, we will firstly, describe developments in 64Cu and 89Zr radiochemistry,
including antibody bioconjugation methods and chelators available. We will focus on
antibody-based radiotracers, but the developments described are also relevant to other
types of vectors, notably antibody fragments, nanobodies or affibody molecules. Finally,
we will highlight recent preclinical and clinical applications of radiolabeling of mAb with
89Zr and 64Cu.

2. Antibody Bioconjugation Methods

Indirect antibodies radiolabeling with radiometals requires BFCA, which consist of
a ligand that allows metal chelation and a functional group that allows covalent binding
to the vector. Functionalization techniques can be separated in random labeling methods
and site-specific techniques like cys engineering and click chemistry. The description of the
different bioconjugation strategies is not exhaustive, as there are many different ways of
labeling mAb.

Before describing the different techniques, it should be noted that some precautions
are required for antibodies bioconjugation. Firstly, the conjugation conditions must re-
spect the tertiary and quaternary antibody structure, e.g., the reaction temperature must
not exceed 50 ◦C to avoid antibody denaturation or the pH must be kept between 7 and
9 [17,18]. The covalent bond between chelator and protein must be stable in vivo. In addi-
tion, the antibody-chelating agent complex must have the same in vivo properties as the
antibody alone [19]. As chelator fixation on antibody can alter antibody pharmacokinetics
and affinity, it is important to study the chelator-antibody molar ratio (average number
of chelators per antibody). It is typically assessed using a radiometric isotopic dilution
assay [20], spectrometry based UV/Vis absorption [21,22], or matrix-assisted laser desorp-
tion/ionization mass spectrometry (MALDI-TOF MS/MS) [23]. Furthermore, during a
new chelator development, stability of chelator on antibody must be validated. Finally, the
chelator-radionuclide complex must have sufficient thermodynamic stability and kinetic
inertia to withstand possible transchelation and transmetallation in vivo [17].

2.1. Non-Site-Specific Bioconjugation

Conjugation is mainly performed on amine groups through a covalent bond on the
vector to allow subsequent molecule radiolabeling. This is very advantageous as amines are
very abundant on the antibody surface (cysteine or lysine residues). Several functionalities
can react with amines, the most commonly used being N-hydroxysuccinimide esters (NHS)
and isothiocyanates (NCS) [24] (Figure 3).

One of the main drawbacks of this method is that the probe can be conjugated to
amino acid residues present on the CDR of the antibody, particularly if the number of
chelating agent per antibody is important, which can lead to stoichiometric congestion and
consequently to a reduction in affinity and immunoreactivity towards the antigen [19]. A
second problem is the lack of control over the number of chelating agents grafted onto
an antibody (chelator-antibody ratio), which leads to a lack of homogeneity among the
immunoconjugates, which is a limitation particularly in the use of radiolabeled antibodies in
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radioimmunotherapy. More precisely, while the average number of chelators per antibody
can be determined, the number of chelator molecules coupled per antibody molecule is
heterogeneous and can be represented by the Poisson distribution. Impaired affinity and
conjugate heterogeneity, both in terms of chelator/antibody ratio and conjugation site, can
lead to less efficient in vivo behavior of the conjugate with reduced immunoreactivity. This
limitation opened the door to the development of site-specific bioconjugation, which we
will develop in the next section.
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A second, less common method is non-site-specific cysteine conjugation. Cysteine
is less common than lysine residues. A monoclonal antibody naturally contains several
dozens cysteines, potential binding sites via the thiol function, which are released after a
reduction step. So, it is relatively unlikely that the pharmacokinetics of proteins will be
altered by limiting the number of BFCAs grafted. Nevertheless, the oxidized state of the
cysteines is important for the formation of disulphide bridges that help to maintain the
three-dimensional structure of the antibody. To prevent the protein from losing its structure
and therefore its biological activity, gentle reduction techniques have been developed to
control the number of cysteines reduced. This method focuses on the sulfhydryl (-SH) or
thiol groups present on the cysteines of the antibody disulfide bridges [25]. The moieties
capable of binding to thiols are generally maleimides and haloacetyls (Figure 4). As these
are at the level of the disulfide bridges and variable parts of the antibody, reduction of
cysteines can lead to a reduction in immunoreactivity and modify distribution profiles of
radiolabeled mAb [26].
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2.2. Site-Specific Bioconjugation

Efficient site-specific bioconjugation strategies have been developed using various
methods to achieve chemoselectivity [27–30]. Precise control of the number and loca-
tion of chelators on the antibody is expected to lead to more efficient immunoconjugates.
Much progress has been made in recent years in the development of site-specific conju-
gates and click chemistry, as evidenced by numerous articles and reviews in the litera-
tures [27–29,31,32].

2.2.1. Cys Engineering

To overcome the reduction required for non-site specific cysteine technic, a method
was developed to add a new cysteine to create a new labeling site [19]. Cysteine conjugation
allows the reversible attachment of a cysteine-maleimide moiety in a relatively simple and
straightforward manner without the need for specific reagents or enzymes. Although
there is potential instability in vivo depending on the location of the modified Cys residue,
this is a widely used method for site-specific radiolabeling of mAb. New methods allow
irreversible Cys bioconjugation [33]. Nevertheless, the reaction is possibly reversible in
cysteine-rich environments, and experience shows that such conjugates are prone to being
unstable in vivo [34]. However, this method requires modified antibody vectors and may
raise issues with regard to regulatory aspects and immunogenicity.

2.2.2. Enzymatic and Chemoenzymatic Methods

Conjugation by chemoenzymatic modification methods was studied using several tech-
niques: glycan modification with multi-step transformations using α-2,6-sialyltransferase,
β-1,4-galactosidase and mutant β-1,4-galactosyltransferase, and sortase A-mediated conju-
gation [35,36]. Enzymatic methods can also allow site-specific conjugation of the chelating
agent to the antibody. Enzymatic methods can be used to modify the degree of glycan
functionality on the Fc fragment of a whole antibody. This modification allows the chelating
agent to be specifically grafted onto the Fc fragment, thereby avoiding clogging of the
Fab fragment. This preserves the immunoreactivity and affinity of the antibody. Enzyme
pairs are involved: the β-1,4-galactosidase enzyme/β-1,4-galactosyltransferase enzyme
(Y289L) or the PNGaseF/translutaminase couple. Several examples have been found in
the literature, including antibody radiolabeling with DFO-89Zr and CPTA-64Cu [19]. A
monovalent antibody fragment targeting EGFR was developed with a sequence recog-
nized by sortase A. Two different metal chelators, H3DFOQSqOEt and MeCOSarNHS, for
89Zr and 64Cu respectively, were modified with an N-terminal glycine to allow binding
with the antibody fragment by the enzyme [37]. This type of conjugation is often used to
functionalize nanobodies as it reduces the impact on the affinity and immunoreactivity of
the nanobody. This method produces more homogeneous immunoconjugates. A recent
study demonstrated that the 89Zr-DFO-trastuzumab developed using this chemoenzy-
matic strategy outperformed its counterpart developed using the random conjugation
method because the site-specifically modified 89Zr-DFO-trastuzumab showed increased
immunoreactivity and stability in immunoPET imaging studies [38].

2.2.3. Peptide Tags

In order to achieve site-specific modifications, antibodies can be produced with short
peptide tags using standard protein engineering and recombinant expression protocols.
Peptide tags can be used as recognition sites for enzymes to facilitate the creation of
specifically modified conjugates. Peptide tags can also act as chelators themselves [32]. For
example, the incorporation of the His6 tag is typically at the C-terminus of the target protein,
although N-terminal incorporation is also possible. Recent examples include an anti-HER2
sdAb [39], an αvβ6 integrin-directed diabody [40]. Modifications using this technique
generate payload-coupled antibody conjugates with high selectivity and stability, although
the potential immunogenicity of the introduced peptide tags is currently unknown.
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2.2.4. Click Chemistry

More recently, a functionalization approach based on “click chemistry” has emerged [41]:
these reactions are bioorthogonal, rapid, stereospecific, and enable very good yields to be
obtained under optimal conditions for antibodies [42]. Click chemistry reactions use chemical
functions that are not found naturally in the biological environment, giving a directed func-
tionalization reaction. Click chemistry has been designed for different applications [39]: radio-
labeling reactions with prosthetic groups, creation of new chelation architectures, site-specific
bioconjugation, in vivo pre-targeting. Among the various reactions, the Cu(I)-catalyzed cy-
cloaddition between azides and alkynes (CuAAC) is widely used in the development of
radiopharmaceuticals. The first studies began with Fluorine 18 (18F). Marik and Sutcliffe
first described the preparation of 18F-labeled peptides using the CuAAC reaction in 2006 [43].
Therefore, for the design and synthesis of radiotracers for molecular imaging, 18F-CuAAC is a
very attractive strategy and several radiotracers have been developed [44–46].

A recent study showed that it was possible to radiolabel antibodies by CuAAC click
reaction using a chelator (PCB-TE2A-alkyne) [47]. Tumor models are used to evaluate
the feasibility of targeting tumors with radiolabeled antibodies. Results show that the
64Cu-PCB-TE2A-Trastuzumab conjugate has excellent in vivo stability and binding affinity
to HER2-positive cells. Bioorthogonal chemistry involving azide-alkyne cycloaddition
(SPAAC) may therefore prove to be an interesting alternative [48]. The SPAAC reaction,
which stands for strain-promoted azide-alkyne cycloaddition, involves the cycloaddition
of azides with alkynes of the cyclooctyne or dibenzocyclooctyne (DBCO) type. DBCO is
readily available in industry, avoiding the necessity for complex synthesis.

Click chemistry offers two main advantages. Click reactions are generally fast and
highly selective, allowing efficient production. A second advantage is that click reactions
occur under mild conditions, such as room temperature and aqueous environments, mini-
mizing the need for stringent reaction conditions. However, one limitation is that some
click chemistry reactions require metal catalysts, such as copper, which can pose com-
patibility problems in biological systems and competition with radiometals. Especially,
the radioactive copper ions are used with nanomolar or picomolar proportions, whereas
the copper catalyst is introduced in microgram to milligram quantities, overflowing all
coordination sites in the BFCA. In addition, the commercial availability of the necessary
reagents can still be a challenge for researchers.

3. ImmunoPET Radiometals: Zirconium 89 and Copper 64

As there have ideal properties for radiolabeled antibodies, 89Zr and 64Cu are used for
immunoPET. Table 1 shows the main characteristics of these 2 radiometals.

Table 1. Comparison of Zirconium 89 and Copper 64. EC: electronic capture; Emax: maximum energy.

89Zr 64Cu

Period 78.4 h
Optimal for intact mAb

12.7 h
Optimal for mAb fragment

Broadcast

β+ (23%)
EC (77%)

Emax β+ 897 keV
Eγ 909 keV

β+ (19%)/β− (40%)
EC (41%)

Emax β+ 656 keV
Eγ 1346 keV

Biodistribution
Affinity of Zr4+ for bone (epiphysis) in

preclinical studies
Transchelation in vivo

Affinity of copper for the liver
Transchelation in vivo

Radiochemistry

High marking efficiency with macromolecules
GMP production

Risk of metallic contamination
Associated high-energy gamma radiation

Low energy β+

High marking efficiency with macromolecules
Less than 1% associated gamma radiation
Emission β− associated with therapy (in

preclinical studies)
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3.1. Zirconium 89
3.1.1. Nuclear Properties and Production

Of the various zirconium isotopes, 89Zr has attracted the most attention for radiophar-
maceutical development due to its favorable nuclear decay characteristics, which make
it useful for PET. 89Zr is neutron deficient, with 49 neutrons and 40 protons, and has a
physical half-life of 78.4 h. Its decay pattern split between electron capture (77%) and
positron emission (23%) (Figure 5).
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Figure 5. Zirconium 89 decay diagram.

Both decay pathways lead to the formation of metastable 89Y, which de-excites with
the emission of a 909 keV gamma ray. 89Zr emits two important types of radiation: the
511 keV radiation resulting from the annihilation of the positron, and the 909 keV radiation
from the de-excitation of 99mY.

89Zr is produced by a cyclotron using the reactions 89Y(p,n)89Zr and 89Y(d,2n)89Zr.
89Zr can be obtained by proton bombardment on 89Y, the isotopic abundance of the target is
100%, which makes production less costly [49]. It has been shown that the most favorable
proton energy for bombarding the yttrium target is 14 MeV [50]. Beyond 13 MeV, an
isotopic impurity is produced, 88Zr, with a half-life of 83.4 days, whose daughter isotope is
88Y with a half-life of 106 days, which can be problematic in terms of dosimetry and waste
management. The second possible reaction to obtain 89Zr is to use a deuteron beam with a
minimum energy of 5.6 MeV on an 89Y target. This method limits contamination by 88Zr,
as the threshold energy for obtaining this radioisotope is 15.5 MeV [51].

3.1.2. Zirconium Complexation Properties

Zirconium belongs to the family of transition metals [52]. There are various oxidation
states of zirconium, Zr(II), Zr(III) and Zr(IV), but it is generally found as the +IV ion in
aqueous solution [49]. It is generally available in solution as either zirconium-89 oxalate
(89Zr(ox)2) or zirconium-89 chloride (89ZrCl4), thus influencing the chemistry for the
development of effective immunoPET agents [53].

The cation Zr4+ is an ion characterized by a high charge, forming complexes with
a high number of coordination bonds (up to 8 bonds), preferably with anionic oxygen.
So, Zr4+ requires a polydentate ligand with 6 to 8 donor atoms. Currently, experimental
results show that due to its high charge and small radius, Zr(IV) exists as a monomeric
and polynuclear species in aqueous solution at low pH. Indeed, the high charge density
on the Zr4+ favors the deprotonation of H2O molecules to form coordinated hydroxide
which acts as a ligand. However, when solutions of the tetramer are acidified, monomeric
species of Zr4+ are formed by protonation of the bridging hydroxo groups. The nature and
abundance of these species can change as a function of pH, e.g., increasing pH favors the
formation and precipitation of zirconium hydroxide species. This makes it more difficult to
determine accurate stability constants with chelating agents [51].
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3.1.3. Zirconium Metabolism

The behavior of free Zr4+ in biological systems has been studied in order to assess
the safety of using 89Zr as a PET tracer and to better understand the fate of radiopharma-
ceutical in the body. This is particularly important for zirconium because of its high bone
affinity [54]. In its basal state, the body contains small amounts of zirconium in fat, liver
and gallbladder, and traces in the brain. Excretion of exogenous zirconium from the diet
involves the hepatobiliary system, resulting in fecal rather than urinary excretion. There
are still questions about the fate of zirconium within the body. One study showed that
Zr-chloride accumulates in the liver, suggesting that it is in colloidal form, while another
study using a different preparation method for Zr-chloride showed no accumulation in
soft tissues. Zr-DFO is eliminated very rapidly by the kidneys and can be excreted in the
urine within minutes [52]. Zirconium has a strong affinity for bone, so when it is not tightly
bound to a chelate or is transchelated, it preferentially accumulates in this tissue, which has
been observed in rats and mice. This behavior is particularly important to consider in the
clinic, as its accumulation in bone can be problematic in practice. In addition, a comparison
of bone absorption from different zirconium species shows that bone absorption is highest
when Zr-chloride is injected, followed by Zr-oxalate, then Zr-citrate, and finally Zr-DFO
with significantly less bone absorption. It should be noted that early clinical trials with 89Zr
do not demonstrate the extent of bone absorption shown in the preclinical images [54].

3.1.4. Zirconium 89 Chelation

We will particularly focus on chelating agents that may be useful for chelating 89Zr to
enable radiolabeling antibody. Some chelators are already used clinically: DFO derivatives
and hydroxypyridinones [55], but research on chelators is still very dynamic in order to
increase in vivo stability.

Non-Hydroxamate Chelating Agents

In early studies of 89Zr in PET imaging, common metal chelators such as ethylene-
diaminetetraacetic acid (EDTA) or diethylenetriaminepentaacetic acid (DTPA) were used
(Figure 6). DTPA is able of saturating the zirconium coordination sphere. Nevertheless,
DTPA-89Zr provides a reduced stability compared to desferrioxamine (DFO) [56].
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pentaacetic acid (DTPA).

Among non-hydroxamate ligands, it is important to mention macrocyclic ligands.
In PET imaging, the chelating agent DOTA is considered the gold standard for 64Cu and
68Ga. It is characterized by 4 oxygens and acetate groups that act as strong electron
donors, which is not relevant for Zr4+ chelation (Figure 7). Pandya et al. have shown that
tetraazamacrocycles such as DOTA, and its derivatives (DOTAM, DOTP) are capable of
forming very stable complexes with 89Zr [53].
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Figure 7. DOTA structure.

Initial attempts with 89Zr in oxalate form were unsuccessful, but the use of the chloride
or acetylacetonate form of 89Zr was successful. However, the use of these chelating agents
requires working at a high temperature (90 ◦C) for radiolabeling, which makes it impossible
to apply them to a mAb. In a recent paper, the same group evaluated small macrocyclic
chelatants such as 2,2′,2′′-(1,4,7-triazacyclononane-1,4,7-triyl)triacetic acid (NOTA) and
3,6,9,15-Tetraazabicyclo [9.3.1]pentadeca-1(15),11,13-triene-3,6,9-triacetic acid (PCTA) to
overcome the high temperature barrier. In fact, NOTA and PCTA could be radiolabeled
under mild conditions (37 ◦C), and the zirconium chloride radiolabeled conjugate showed
good in vitro and in vivo characteristics [53].

Hydroxamate Chelating Agents: Desferrioxamine and Its Derivatives

DFO is also known as deferoxamine, desferrioxamine B, desferoxamine B, MPO-
B, DFOA, DFB or Desferal, and is the most widely used chelator for 89Zr-immunoPET
(Figure 8). DFO is hexadentate and has superior chelating properties for zirconium com-
pared to non-hydroxamate chelators such as DTPA. The most likely explanation lies in
the Pearson concept (HSAB theory). DTPA coordinates via three nitrogen atoms and five
oxygen atoms, whereas DFO offers six oxygen donors, 3 anionic and 3 neutral.
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For the introduction of DFO into two different mAb (E48 and 323/A3), Meijs et al.
used a two-step procedure [56]. In the first step, maleimide groups were introduced into
mAb by reaction of lysines and DFO was converted to its S-acetyl protected thiol derivative
(DFO-Sac) by reaction with N-succinimidyl-S-acetylthioacetate. The bioconjugates were
radiolabeled with 89Zr with a specific activity of 185 MBq/mg and a yield of 95%. Biodistri-
bution studies in tumor-bearing mice showed a high tumor uptake of the conjugates, but
also a high background accumulation of 89Zr in other tissues. This is thought to be due
to poor in vivo stability, releasing free zirconium from the chelator, which has an affinity
for bone. Moreover, Verel et al. also showed that linker instability could release DFO-89Zr
complex [57]. To improve stability and facilitate bio-conjugation, DFO derivatives have
been developed. A DFO derivative grafted with an activated ester (DFO-N-Suc-TFP) was
synthesized [58] with a multistep protocol requiring chelator protection with Fe3+. Removal
of the iron after conjugation is necessary but requires working under acidic conditions,
which can have deleterious effects on certain biomolecules.

Vosjan et al. have developed a second derivative, which is currently widely used
in clinical indications, with an isothiocyanate function (DFO-pPhe-NCS). This method
gave good results: optimized conjugation with high radiochemical purity, conservation
of immunoreactivity and antibody stability [58]. The development of this new derivative
of desferrioxamine B has enabled simpler and faster preparation of mAb conjugates. This
process involves the initial coupling of Df-Bz-NCS to the lysine-NH2 groups of an mAb
under alkaline conditions (pH 8.9–9.1) followed by radiolabeling with 89Zr in oxalate form
(Figure 9). This method is currently the most widely used in the literature. Compared to
DFO-N-Suc, in vitro stability of both conjugates was similar, with less than 4.7% release
after 7 days storage in human serum. Biodistribution and PET imaging data for the two
conjugates showed similar accumulation of 89Zr in organs and tissues.

More recently, a second team, Sharma et al. [23], worked on optimizing radiolabeling
with this derivative. This new protocol allowed yields of over 98% (for a molar ratio of 5)
with an immunoreactive fraction of over 92%, while saving time (60 min for conjugation
and 60 min for radiolabeling at 37 ◦C). For comparison, at a molar ratio of 5, Sharma et al.
found the number of chelates per antibody to be 1.4 ± 0.5 (by MALDI-TOF), whereas at a
molar ratio of 1.5, Vosjan et al. [58] obtained a number of chelates per mAb between 0.3
and 0.9. This may explain the difference in yield between these two protocols. It should
also be noted that Sharma et al. chose to work under metal-free conditions, i.e., conditions
that minimize possible metal contamination [23]. They also investigated the effect of the
number of chelators on affinity and found that a high molar ratio of chelator leads to a
decrease in affinity.

As mentioned above, it is also possible to functionalize the antibody with cysteine func-
tions, allowing site-specific conjugation. Several chelators have been developed: DFO deriva-
tive bromoacetamido-desferrioxamine (DFO-Bac) with a thiol function, iodoacetamido-
desferrioxamine (DFO-Iac), and maleimidocyclohexyl-desferrioxamine (DFO-Chx-Mal) [52].
The first two chelators are conjugated to the antibody via a nucleophilic substitution reaction
on a non-active site, whereas DFO-Chx-Mal requires a Michael reaction. The antibodies ob-
tained showed good stability after radiolabeling. However, despite site-specific conjugation,
no improvement in immunoreactivity was reported [59].

More recently, an ethylenediamine platinum(II) moiety was attached to the DFO via a
linker to create DFO-Lx. Using this chelating agent, trastuzumab was radiolabeled with
89Zr by Sijbrandi et al. [60]. This radiolabeled antibody was compared with its 89Zr-DFO-
trastuzumab counterpart. No major differences in pharmacokinetics were observed, except
for a greater hepatic accumulation of the Lx conjugate.

From DFO, a second derivative was synthesized, DFO* (Figure 8), which is distin-
guished by the incorporation of an extra hydroxylamine function by a coupling reaction
between the DFO salt and a carboxylate function [61]. DFO* was studied with radiolabeled
trastuzumab. DFO*-mAb showed superior properties in vitro and in vivo, including a
biodistribution less intense in the bones than DFO-trastuzumab at 144h post-injection [62].
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Furthermore, DFO*-trastuzumab enabled more accurate detection of bone metastases,
illustrating the importance of stable chelation [63]. It should be noted that trastuzumab-
DFO*-89Zr is being studied in a clinical trial (NCT05955833).
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A squaramide ester derivative of DFO (DFO-Sq) was proposed by Donnelly et al.
for conjugation to trastuzumab, similar to the DFO* approach [64]. When injected into
SK-OV-3 xenograft-bearing mice, the new conjugate improved PET imaging and resulted
in a higher tumor-to-bone ratio. Other DFO derivatives have been developed, such as
DFO-Cyclo* [65].

Some of the chelators derived from DFO are already used clinically: Fe-DFO-N-suc-
TFP ester, p-NCS-Bz-DFO, Mal-DFO, p-NCS-Bz-DFO*, Mal-DFO*, Sq-DFO* [55].

HOPO-Based Ligands

Historically, White et al., for the chelation of plutonium (IV), investigated octadentate
hydroxypyridinonate (HOPO) ligand. HOPO are another family of chelating agents suitable
for zirconium. They are characterized by a high pKa, which gives them the ability to ionize
at neutral and acidic pH. A bifunctional version of HOPO with a benzyl NCS group have
been developed to bioconjugate trastuzumab. However, in vivo studies in BT474 xenograft-
bearing mice confirmed the superiority of the new conjugate, particularly with respect to
bone uptake [64]. The chelator 1,2 HOPO allows to complex 89Zr, developed by Deri et al.
showed a superiority to DFO [66]: complex was eliminated by renal excretion and bone
fixation of free zirconium was reduced. These results encouraged the same team to work
on a bifunctionalized version, p-SCNBn-HOPO (Figure 10), with good tumor and low bone
uptake [67]. This chelator has been used clinically.

Pharmaceutics 2024, 16, x FOR PEER REVIEW 14 of 30 
 

 

 
Figure 10. Structure of p-SCNBn-HOPO. 

The 2,3HOPO was also studied, but unfortunately these bioconjugates did not offer 
any reduction in bone accumulation compared to DFO [59]. Other ligands have shown 
excellent in vivo chelating properties, with rapid complex elimination and no evidence of 
transmetallation, such as the tetrapod ligand 3-hydroxy-4-pyridinone (THPN). Based on 
four 3-hydroxy-4-pyridinone (3,4-HOPO) coordinating groups, in an attempt to fully sat-
isfy the octadentate coordination sphere preferred by the 89Zr4+ ion [68]. 

Di-macrocyclic hydroxyisophthalamide ligands (IAM-1, IAM-2) and di-macrocyclic 
terephthaphthamide ligands (TAM-1, TAM-2) have been developed for the complexation 
of 89Zr (Figure 11). 

 
Figure 11. Structure of IAM-1 (A), IAM-2 (B), TAM-1 (C), TAM-2 (D). 

These octadentate ligands can be radiolabeled quantitatively and show good in vitro 
stability. The team led by Pandya et al. focused on the molecules TAM-1and TAM-2 and 
demonstrated, using in vitro studies and PET imaging, the high stability of this type of 
complex with bone fixation comparable to that of DFO [69]. 

Figure 10. Structure of p-SCNBn-HOPO.

The 2,3HOPO was also studied, but unfortunately these bioconjugates did not offer
any reduction in bone accumulation compared to DFO [59]. Other ligands have shown
excellent in vivo chelating properties, with rapid complex elimination and no evidence
of transmetallation, such as the tetrapod ligand 3-hydroxy-4-pyridinone (THPN). Based
on four 3-hydroxy-4-pyridinone (3,4-HOPO) coordinating groups, in an attempt to fully
satisfy the octadentate coordination sphere preferred by the 89Zr4+ ion [68].

Di-macrocyclic hydroxyisophthalamide ligands (IAM-1, IAM-2) and di-macrocyclic
terephthaphthamide ligands (TAM-1, TAM-2) have been developed for the complexation
of 89Zr (Figure 11).

These octadentate ligands can be radiolabeled quantitatively and show good in vitro
stability. The team led by Pandya et al. focused on the molecules TAM-1and TAM-2 and
demonstrated, using in vitro studies and PET imaging, the high stability of this type of
complex with bone fixation comparable to that of DFO [69].

Other Hydroxamate Ligands Not Derived from DFO

An initial study was carried out using fusarinin C (FSC), derived from natural
siderophores, to perform radiolabeling with 89Zr. In addition, FSC contains three primary
amines that allow more functionalization, for example to increase its denticity. Deriva-
tives such as triacetylfusarinin C (TAFC) have been developed from this FSC. In vitro
experiments have shown greater stability to trans-chelation and transmetallation.
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3.2. Copper 64
3.2.1. Nuclear Properties and Production

There are 29 isotopes of copper, including 64Cu. 64Cu has 29 protons and 35 neutrons
and has a physical half-life of 12.7 h. Its decay is complex, with 20% β+ emission (giving
nickel 64), 40% β− emission and 40% electron capture. The gamma emission of 511 keV
is emitted after the β+ emission, and the high energy gamma emission (1346 keV) from
electron capture is very low (0.47%) (Figure 12). These characteristics make them suitable
for clinical use in PET, but also for theranostic applications.
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Copper 64 is produced either in a reactor by irradiating copper 63 with neutrons
(63Cu(n,γ)64Cu), or using an accelerator from the reaction 68Zn(p,2n)67Ga. However, the
latter production method is not very favorable for the production of copper 64 because
gallium 67 is the main product of the reaction and has a long half-life (72 h). A second
accelerator method is based on the use of deuterons on a nickel 64 target. After the
production of copper, there may be impurities in the solution like Zn2+, Ni2+ (from the
decomposition of 64Cu), Co2+ (from target irradiation) and Fe3+ (from the environment).
The presence of these metals can interfere with the complexation reaction with the ligand
present on the vector.

We cannot describe 64Cu without mentioning another Cu isotope, 67Cu, which, with a
half-life of 2.58 days, is known for its potential in both therapy and Single Photon Emission
Computed Tomography (SPECT) imaging. It decays by β− (Eβ-max: 562 keV) and γ

(93 keV and 185 keV).

3.2.2. Copper Complexation Properties

Copper is a chemical element with atomic number 29 and belongs to the family of
transition metals. It can be found in solution in three oxidation states (+I, +II and +III)
and is most commonly found in the +I and +II forms. These different states can modify
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the kinetics and stability of copper complexes [70]. In particular, Cu(I) can form relatively
unstable complexes due to its saturated 3d orbital. Cu(I) forms complexes with compounds
that are not very polarizable (cyanides, thiolates or nitriles) and not very soluble in water.
In aqueous solution, the +II oxidation state is the most common and forms stable complexes
with amines, imines or pyridines. It is important to note that the redox potential of the
Cu(II)/Cu(I) pair is rather low (0.153 V/Standard Hydrogen Electrode), so this pair is easily
reduced or oxidized physiologically [71].

3.2.3. Copper Metabolism

Copper is absorbed from food into the digestive tract, mainly in the duodenum. This
exogenous Cu(II) must be reduced to Cu(I) by reductases present in cell membrane. After
reduction, copper is transported intracellularly by copper transporter 1 (Ctr1) proteins,
whose expression is regulated by the level of intracellular copper. A chaperone protein,
Antioxidant 1 copper chaperone (Atox1), captures the copper and delivers it to an ATPase
enzyme (ATP7A), which releases the copper into systemic circulation. Blood distribution
is mediated by albumin and α2-macroglobulins such as transcuprein or ceruleoplasmin.
Proteins present in hepatocytes, including Atox1, bind excess copper to excrete it in bile.
Copper is involved in the proper functioning of many enzymes and proteins, such as
Superoxide Dismutase (SOD), which plays an antioxidant role, or protein CCO (cytochrome
oxidase), which plays a role in the synthesis of ATP or ATPases. After hepatic metabolism,
copper is taken up by ceruleoplasmin, an α2-glycoprotein capable of complexing 6 copper
atoms. It is then called holoceruleoplasmin and enters the circulation to act as a cofactor
for transferrin.

3.2.4. Copper Chelation

Some copper chelators are already used clinically as ATSM (diacetyl bis(N-4-methylthi-
osemicarbazone)), DOTA, NOTA [72].

Acyclic Ligands

The first ligand systems used were acyclic carboxylate polyamine ligands such as
EDTA, DTPA and their derivatives (Figure 6). Despite good thermodynamic stability,
serum stability studies using 67Cu-labelled ligands showed that the complexes were not
stable in human serum. This may be due to reduction of Cu(II) to Cu(I) or transchelation
reactions [73]. Other acyclic ligands that have enjoyed moderate success as chelators of
64Cu include thiosemicarbazone ligands, in particular ATSM [74] which is generally used
to study cellular hypoxia [75].

Azamacrocyclic Ligands

To improve in vivo 64Cu complexes stability, the researchers turned to tetraazamacro-
cyclic ligands. Since Cu2+ is a Lewis acid with a preference for strong donors, polyaza-
macrocyclic ligands have dominated its complexation. Within this family, there are tetraaza-
macrocyclic chelating agents such as cyclam and cyclen. The main ligands found are
DOTA, NOTA, 1,4,8,11-tetraazacyclotecedecane-1,4,8,11-tetraacetic acid (TETA) and their
derivatives (Figure 13).
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The improved stability is undoubtedly due to a more suitable geometry with the
macrocyclic ligand, which improves the kinetic inertia and thermodynamic stability of
64Cu complexes. However, in vivo, the radiometal is released and accumulated in the liver
and kidneys of murine models [76].

DOTA is the chelating agent most frequently found in literature for mAb radiolabeling
with 64Cu. DOTA is functionalized to give p-SCN-Bn-DOTA (isothiocyanate activated
form) and NHS-DOTA (activated mono-ester form). DOTA is relatively poorly selective for
copper, potentially leading to transmetallation. TETA ligand and its derivatives improve
in vivo stability, but remain susceptible to transchelation mechanisms, particularly in
liver [77]. Finally, NOTA has been shown to complex copper rapidly and in several studies
to increase in vivo stability [78].

NOTA forms a 6-coordinate complex with copper through coordination of three nitro-
gen atoms and three carboxyl groups of the chelator (Figure 14). In a study, trastuzumab
was conjugated with SCN-Bn-NOTA to be radiolabeled with 64Cu. The 64Cu-NOTA-
trastuzumab obtained a high radiolabeling yield and radiochemical purity (≥98%), verified
by instant thin layer chromatography. In vitro stability of the 64Cu-NOTA-trastuzumab
in PBS, mouse and human serum at 37 ◦C showed an highly stability in PBS, mouse and
human serum for 48 h at 37 ◦C and a decrease of <3% and <2% for 24 h at 4 ◦C. 64Cu-NOTA-
trastuzumab immunoreactivity was conserved (0.92 In vivo stability was demonstrated in
a xenograft model of HER2-positive breast cancer (BT-474) [79].
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To evaluate chelator/antibody ratio, UV/visible assay techniques based on the method
of Brady et al. can be used for azamacrocyclic ligands [21].

Sarcopagin-like Ligands

The hexaazamacrobicyclic or sarcophagine (Sar) ligands are another class of TETA-
derived ligands that have attracted attention as potential copper chelators (Figure 15).
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These chelators were initially described by Bartolo et al. and have shown excellent
thermodynamic stability and good selectivity for 64Cu [80]. Several studies have indicated
that Sar ligands are able to form extremely stable complexes with copper with good in vivo
stability [78,81–84]. However, the complexation kinetics are slower at room temperature.
Bartolo et al. investigated Sar derivatives with different functions and showed a high
stability of 67Cu-Sar complex in human plasma, with 98% of activity complexed after
7 days. Biodistribution studies were also performed with 64Cu-Sar, 64Cu-diam-Sar and
64Cu-SarAr in Balb/c mice. Uptake in bone, heart, stomach, spleen, muscle, lung and
gastrointestinal tract was low. Hepatic clearance was observed over 30 min, indicating that
64Cu complex is initially stable in vivo [85].

Bridged Cyclam and Cyclen Ligands

More recently, the cyclam and cyclen ligands and their derivatives have attracted
attention for complexing copper. They are composed of an ethyl bridge that links the amine
functions N1 and N4, which is also called “cross-bridged” (Figure 16).
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These macrobicyclic chelating agents were synthesized to chelate metal cations such
as Li+, Cu2+ and Zn2+. Among these bridged ligands, derivatives of DOTA and TETA
have been developed, which are B-DO2A and CB-TE2A respectively. These ligands are
obtained by introducing an ethylene group between two opposite nitrogen atoms, which
enabled complete envelopment of a six-coordinate Cu(II). The addition of this function
increased the thermodynamic stability and inertia of the copper complexes, particularly



Pharmaceutics 2024, 16, 882 18 of 29

with TE2A [86]. In addition, Cu-CB-TE2A showed excellent resistance to the reduction of
copper from its Cu(II) form to the Cu(I) form [87]. However, due to severe functionalization
conditions, including heating to 95 ◦C, the use of CB-TE2A for mAb labeling is limited [86].

It should be noted that a more recent derivative, CB-TE1A1P [(1,4,8,11-tetraazacyclote-
tradecane-1-(methanephosphonic acid)-8 (methane carboxylic acid) can chelate 64Cu at
room temperature. Meanwhile, the TE1A1P complex with copper shows a low in vivo
stability. CB-TE1K1P, was developed for copper-based radiopharmaceuticals, and this
chelator can be labeled with 64Cu under mild conditions in high specific activity and an
improved in vivo stability [88].

4. Applications

Once the mAb has been radiolabeled, its characteristics need to be verified. Firstly, to
determine radiochemical purity and antibody integrity, quality controls of radiolabeled
antibodies are usually performed by HPLC (size exclusion chromatography) or SDS-PAGE.
TLC is also used to assess radiochemical purity by molecular weight separation. Moreover,
binding assays must be developed to evaluate immunoreactivity and affinity of the radioim-
munoconjugate. These tests can be performed by binding cell studies [89], or by surface
plasmon analysis [23]. In addition, if clinical use is envisaged, production must follow
Good Manufacturing Practice (GMP) guidelines, in a clean and controlled environment,
respecting a reproducible and validated manufacturing process and well-defined release
criteria [17].

Before a clinical application, preclinical studies are necessary to verify the specificity
and the in vivo stability of the vector. Antibodies can bind specifically to antigens located at
other sites than the target (tumor), phenomenon called “antigen sink effect” [90,91]. Further-
more, non-specific interaction could also exist in vivo. These phenomena are responsible
of a target-background ratio diminution and reduced image quality. To optimize mAb
biodistribution to target, cold mAb could be injected before radiolabeled mAb injection or
the dose of mAb injected can be increased. Furthermore, the optimum image acquisition
time must be determined [92]. Nevertheless, extrapolation of preclinical data to the clinical
depends on the cross-reactivity of antibodies between murine and human antigens, and
the similarity of antigen expression profiles between these two species.

In this section, we describe a number of recent studies. The major developments in the
chemistry and techniques of zirconium and copper chelation are evidence of the growing
interest in their application in immunoPET and of their usefulness.

4.1. Preclinical Studies

Two main types of preclinical applications for immunoPET can be identified in litera-
ture. Firstly, immunoPET is the method of choice for imaging tumor and evaluating specific
tumor markers, immune cells, immune checkpoints, and inflammatory processes for ther-
anostic applications. Secondly, immunoPET imaging can be useful in the development
of antibody-based drugs as it allows, by visualizing the antibody, to evaluate targeting
abilities and distribution profiles. Furthermore, some studies are being carried out into the
development of new chelating agents to improve radiolabeling.

4.1.1. Zirconium
89Zr radiolabeled mAb in immunoPET are even more numerous in the literature.

Several studies have turned to immunoPET as a tool for quantifying antigen expression
in tumors to predict mAb efficacy or to help drug development. Various immune check-
point targets have been evaluated, like PD-L1. To overcome the heterogeneity of certain
tumors and the invasive nature of biopsy required for immunohistochemistry, Kelly et al.
radiolabeled an anti-PD-L1 Ab (REGN3504) with 89Zr using DFO chelator to study PD-L1
expression [93]. Biodistribution study was assessed in humanized mice with human tumor
xenografts and pharmacokinetics has been investigated in monkeys. More intense uptake
of 89Zr-REGN3504 in human tumor xenografts was observed by immunoPET. Ex vivo
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biodistribution studies demonstrated high tumor:blood ratio. Following depletive treat-
ment of PD-L1-positive cells, 89Zr-REGN3504 accurately detected a significant reduction in
PD-L1-positive splenic cells. This work demonstrates the ability of 89Zr-REGN3504 to track
PD-L1 expression and suggests that this antibody could predict and monitor response to
anti-PD-1 therapy. Other studies have confirmed the value of PD1/PD-L1 mapping using
immunoPET. The preclinical study of 89Zr-DFO-anti-PDL1 in an orthotopic lung cancer
murine model established a pharmacokinetic, biodistribution and dosimetric profile for
the antibody [94]. Tumor uptake is visible 24 h after injection, with optimal imaging 48 h
after antibody injection. 89Zr-DFO-anti-PD-L1 was shown to specifically target PD-L1 in
CMT167 lung tumors in an in vivo blocking study. Compared to other 89Zr radiolabeled
mAb, the predicted dosimetry was similar or lower. Thanks to this type of preclinical
studies, theranostic applications of PD1/PD-L1 or other immune checkpoint targets are
now being explored in the clinic (Table 2).

Ab radiolabeling for diagnostic and mapping purposes can be performed for multiple
antigens such as VEGF-R, as illustrated by Novy et al. study with ramucirumab-89Zr [95].
One of the limitations of 89Zr radiolabeling using a DFO-type chelating agent is the size
of the cage and the steric hindrance it can cause. It is therefore reasonable to assume
that Ab fragment radiolabeling may be affected. Gosh et al. study the radiolabeling of
89Zr-miltuximab and its fragments in glioblastoma [96]. Authors use glypican-1 (GPC-1) as
a target of 89Zr-miltuximab and generating fragments of this Ab (Fab’2, Fab, and single-
chain variable fragment (scFv) formats) to investigate its immunoPET potential in pre-
clinical models. This investigation showed improved tumor uptake as well as a better
tumor/background ratio with the whole antibody compared to the fragments. In this study
the whole antibody format is more effective and 89Zr-DFO miltuximab has potential for
glioblastoma diagnosis in immunoPET.

4.1.2. Copper

MAb radiolabeled with 64Cu have a wide range of applications, starting with diag-
nostics. 64Cu-radiolabeled mAb were used in the diagnosis of multiple myeloma [97].
Anti-murine CD138 mAb were grafted withTE1PA chelate, which reduces transchelation.
Radiolabeled mAb was injected into an orthotopic and ectotopic immunocompetent mouse
model of multiple. Imaging with 64Cu-TE1PA-9E7.4 provided high-resolution images. The
mAb biodistribution and dosimetry study showed a favorable concentration of radioactivity
in the tumor compared with healthy tissue.

In addition to diagnostic applications, theranostic applications are also possible. As
presented in the previous section, 64Cu, a β+ emitter, has a β− emission which offers a
possible therapeutic application. So, the anti-tumor efficacy of different activities of 64Cu-
TE1PA-9E7.4 were studied and have shown to have an anti-tumor effect in certain doses,
with a significant improvement in survival in several cohorts [97]. This anti-tumor effect
demonstrates the theranostic characteristic of 64Cu itself.

A growing number of preclinical studies have focused on the therapeutic properties
of copper, such as the study by Milot et al. In a first study, they verified the diagnostic
potential of copper radiolabeled PSMA in prostate cancer [98], then, they investigated
its therapeutic efficacy [99]. Overall survival was prolonged with 64Cu-DOTHA2-PSMA
compared to control. Mice showed no signs of radiation exposure, but developed non-
pathological fibrosis.

In addition to various theranostic applications of 64Cu-radiolabeled mAb, Yoshii et al.
showed that 64Cu-PCTA-cetuximab can be a therapeutic and surgical tool in pancreatic
cancer [100]. First, they observed a therapeutic effect of radiolabeled mAb (by intraperi-
toneal administration) with an increase of survival in mice, without acute toxicity. In
addition, 64Cu-PCTA-cetuximab has demonstrated its imaging potential, allowing PET-
guided microsurgery of disseminated tumor. These results demonstrate that the same
radiopharmaceutical can be used to both locate tumor lesions and guide ablative surgery,
and to confirm the absence of tumor remnants after surgery.
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Some studies have investigated mAb prediction and monitoring potential in im-
munoPET. The team of Kristensen et al. proposed a study of Ab fragment targeting CD8,
conjugated to NOTA and radiolabeled with 64Cu [101]. They investigate radiolabeled
mAb capacity to predict immunotherapy response in CT26 tumor-bearing mice. They
identified responders and non-responders in tumors treated with a combination of radio-
therapy and CTLA-4 inhibition. Compared to non-responders, responder mice showed an
increase in the ratio of 64Cu-NOTA-CD8a in the tumor to the heart. These results suggest
that 64Cu-NOTA-CD8a could be used to predict response and monitor patients during
immunotherapy protocols. A second study examined the 64Cu-NOTA-pertuzumab F(ab′)2
in trastuzumab response monitoring by PET/CT [102]. Study shows that 64Cu-Ab imaging
can detect changes in HER2 expression in response to trastuzumab.

4.2. Clinical Studies

Many clinical applications are available in the literature. For the purposes of this
review, we have focused on recent publications from the last 3 years from PubMED, as well
as ongoing clinical trials from the ClinicalTrials.gov website (Table 2).

Table 2. Review of recent publications and ongoing clinical trial from the last 3 years.

Radionuclide Antibody Target Indication References
89Zr Girentuximab CAIX Metastatic clear-cell renal cell carcinoma [103]

Daratumumab CD38 Multiple myeloma [104]

CED88004S CD8 Advanced or metastatic solid cancer [105]

AMG 757 DLL3 small-cell/neuroendocrine cancer [106]

Panitumumab EGFR Head and neck squamous cell carcinoma [107]

Trastuzumab HER2 Metastatic oesophago-gastric cancer [108]

Trastuzumab HER2 Metastatic breast cancer patients [109]

Trastuzumab HER2 Metastatic esophagogastric cancer [110]

Pembrolizumab PD-1 Metastatic melanoma and non-small cell
lung cancer [111]

KN035 PD-L1 Primary and metastatic PD-L1 positive
tumors [112]

BI 754091/BI 754111 PD-1/LAG3 Non-small cell lung cancer, head and
neck squamous cell carcinomas [113]

IAB2M PSMA Prostate cancer [114]

Crefmirlimab Berdoxam CD8

Advanced or metastatic melanoma,
merkel cell carcinoma,
renal cell carcinoma,

or non-small cell lung cancer

Clinical trial—
NCT05013099

Crefmirlimab Berdoxa CD8 Melanoma Clinical trial—
NCT05279027

Anti-CD147 CD147

Advanced solid tumors: non-small cell
lung cancer (NSCLC); Gastric
adenocarcinoma; Colorectal

adenocarcinoma . . .

Clinical trial—
NCT04841421

CB307
CD137; PSMA; and

human serum albumin
(HSA)

Solid tumor: PSMA+ and PSMA−
Tumour Lesions

Clinical trial—
NCT05836623

ClinicalTrials.gov
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Table 2. Cont.

Radionuclide Antibody Target Indication References
64Cu αCD19 CD19 Lymphoma [115]

Daratumumab CD38 Multiple myeloma [116]

M5A Carcinoembryonic
Antigen (CEA) Rectal cancer, medullary thyroid cancer [117]

GD2-antibody Disialoganglioside GD2 Neuroblastoma, Osteosarcoma, Ewing’s
sarcoma [118]

Trastuzumab HER2 Breast cancer [119]

Trastuzumab HER2 Breast cancer [120]

Trastuzumab HER2 Gastric tumor [121]

M5A CEA
CEA positive cancers: gastrointestinal,

lung, medullary thyroid and breast
cancers

Clinical trial—
NCT02293954

Trastuzumab HER2 Metastatic HER2 Positive Breast Cancer Clinical trial—
NCT02226276

4.2.1. Zirconium

The first clinical trial using a radiolabeled mAb to 89Zr dates back to 2006, in primary
carcinoma of the head and neck by the team of Börjesson et al. [122]. This first study
demonstrated the feasibility and safety of radiolabeled mAb to 89Zr in diagnosis [120].
More recently, a the study of radiolabeled daratumumab in multiple myeloma diagnosis,
which makes it possible to localize and quantify the expression of the disease [104].

However, in addition to diagnostic applications, an increasing number of studies have
focused on monitoring patient response during treatment. The study by Kok et al. looked
at the potential of 89Zr-pembrolizumab for monitoring patients treated with anti-PD-1 for
metastatic melanoma or non-small cell lung cancer [111]. This study began by optimizing
the protocol, they injected radiolabeled antibody with free antibody to optimize the tracer’s
biodistribution. and an ideal acquisition at 7 days post-injection. Patients were treated with
different immune-checkpoint inhibitor (ICI) (pembrolizumab; nivolumab; pembrolizumab
and nivolumab combination; ipilimumab-nivolumab) and with radiotherapy for patients
with brain metastases. At the end of treatment, response was assessed using RECIST
v1.1 criteria and patients were imaged using radiolabeled antibody. Tumor uptake of
89Zr-pembrolizumab correlated with tumor response to treatment, progression-free and
overall survival.

A study looked at the assessment of CD8+ T lymphocyte biodistribution by PET
imaging in cancer patients pre- and post-therapy with checkpoint inhibitors. Authors
showed that the presence of CD8+ T cells in tumor lesions imaged by the Ab, prior to
ICI, could be predictive of overall survival. This criterion highlights the potential of CD8
imaging as a predictive biomarker for personalizing patient treatment. Nevertheless, this
study raises a limitation in the application of immunoPET: the choice of target. Despite
its great potential, the target is questionable because it is difficult to distinguish between
inflammatory and tumor phenomena [105].

In a clinical trial, 89Zr-radiolabeled trastuzumab was used to study HER2 expression
and assess lesions in patients with metastatic oesophago-gastric cancer. 89Zr-Trastuzumab
demonstrated the heterogeneity of tumor HER2 expression and allowed the visualization of
lesions in the brain. However, this study showed that 18F-FDG PET detected more lesions
than the radiolabeled antibody [108].

Another study using PET imaging with an Fc fusion protein of an anti-PD-L1 antibody
first demonstrated the feasibility of labeling an antibody fragment using the chelating agent
DFO [112]. This tracer showed significant binding at primary and metastatic tumor sites
in PD-L1-positive patients. However, there was no correlation between the level of PD-L1
expression in tumor samples and antibody binding. This may be due to biopsy sampling
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bias or the spatial heterogeneity of the tumor, as shown in previous studies [123]. In
contrast to the previous study, this study showed that PET with the radiolabeled antibody
was able to detect many metastatic lesions and showed similar or even higher uptake than
18F-FDG PET. In addition, the antibody was able to predict and assess therapeutic response
in PD-L1-positive patients, but showed less diagnostic potential in PD-L1-negative patients
due to its non-specific binding.

4.2.2. Copper

One of first clinical trials of a 64Cu-radiolabeled mAb was with trastuzumab in HER2+
breast cancer in 2012. This study was carried out in 6 patients with primary or metastatic
breast cancer and showed good images at 48 h post-injection and visualization of metas-
tases in 2 patients. This study demonstrated the feasibility and safety of using radiolabeled
64Cu-mAb in immunoPET [120]. A limitation of this study is that HER2 expression may
change during anti-HER treatment and the authors were unable to confirm HER2 status in
parallel with PET imaging [124]. Nevertheless, this study provides grounds for optimism
about the value of 64Cu-DOTA-trastuzumab in assessing HER2 expression in breast cancer.
A recent study has developed 64Cu-trastuzumab for the diagnosis of HER+ gastric tumors
in 8 patients compared to HER2 non-expressing tumors [121]. They injected radiolabeled
antibody (5 mg) with free antibody (45 mg) to optimize the tracer’s biodistribution. This
study failed to demonstrate the potential of 64Cu radiolabeled trastuzumab with no differ-
ence between HER2 expressing and no expressing tumor. This study highlights the efforts
that need to be made in the development of radiolabeled tracers in terms of antibody dose,
activity and acquisition time for more relevant imaging.

Other clinical trials using 64Cu radiolabeling with DOTA have been reported in the
literature. A study of radiolabeled daratumumab in multiple myeloma diagnosis has been
conducted [116]. This study also raised an interesting question. To reduce uptake in the
liver and spleen, the team injected cold antibody with the radiolabeled antibody. This
co-injection has been done in other trials [121]. They found that 45 mg of cold antibody
reduced liver and spleen uptake, but 95 mg reduced tumor uptake. This raises the question
of the real ability of the radiolabeled antibody to be a therapeutic companion in previously
treated patients. The tumor saturation sites by prior treatment may be a limit to their use.
This phenomenon of cold antibody/radiolabeled antibody balance may explain the failure
of the above-mentioned study [121].

Another potential indication for 64Cu-immunoPET is the prediction of therapeutic
response in patients prior to treatment. The study by Mortimer et al. investigated the
correlation between tumor uptake of 64Cu-radiolabeled trastuzumab and patient response
to trastuzumab emtansine [119]. They conducted this study in patients with HER+ breast
cancer who had not received trastuzumab in the 4 weeks prior to imaging. They showed
a correlation between response to treatment as assessed by 18F-FDG and tumor uptake
of 64Cu-DOTA-trastuzumab. This study demonstrates the potential of immunoPET for
patient selection.

5. Conclusions and Future Directions

ImmunoPET is a very promising tool for non-invasive whole-body visualization of
expression of tumor-associated antigens with high resolution, high specificity, high tumor
uptake and a good signal to noise ratio. ImmunoPET is able to provide very informative
data on the intra-tumor and intra-patient variability on molecular biomarkers expression
and consecutively in phenotypic heterogeneity of the entire disease burden. It is a useful
modality to predict and evaluate the response of therapeutic mAbs in order to tailor treat-
ment for individual patients. A variety of radionuclides and mAbs have been exploited to
develop immunoPET probes, which has been driven by the development and optimization
of radiochemistry and conjugation strategies. However, to fully integrate immunoPET in
the clinic, several hurdles still need to be overcome and appropriate radionuclide must be
defined. 89Zr and 64Cu present numerous advantages for this application.
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First of all, standardized and robust methods for stable conjugation to antibodies
should be available to obtain clinical-grade conjugates. DFO is the most used chelator of
89Zr. Nevertheless, a significant amount of dechelated forms of 89Zr (89Zr-chloride, 89Zr-
citrate, and 89Zr-oxalate) accumulates in the bone marrow when entered into the circulatory
system due to instability of 89Zr-DFO chelation. Recent studies in radiochemistry are paving
the way toward improving stability by changing the structure of DFO or exploiting new
chelators. A decrease in bone marrow uptake is good for increasing sensitivity to lesions,
as well as decreasing bone marrow toxicity for patients. Other promising alternatives
are chelators with hydroxypyridinone moieties, including HOPO and 2,3-HOPO, which
have higher in vitro and in vivo stability compared to DFO. Different chelators are also
developed for improving stability of 64Cu radiolabeling even if variety of well-established
chelates (DOTA, NOTA etc.) can be easily and stably labeled with 64Cu. In 2020, 64Cu-
dotatate was approved by the FDA as a radioactive diagnostic agent for PET-imaging agent
for SSTR-positive NETs in adult patients [125]. A limitation in the use of 64Cu is its hepatic
biodistribution, which can lead to unwanted liver irradiation, as seen in the study by Bailly
et al. comparing the same radiolabeled antibody with 64Cu and 89Zr [126].

Physical properties are also a critical part. 89Zr long half-life is particularly adapted
with mAb kinetic. Nevertheless, this long half-life is not consistent with dosimetry pa-
rameters. Even if new TEP allow to inject less activity, patients generally receive higher
radiation from 89Zr-labeled mAb PET—approximately 0.5 mSv/MBq either 20–40 mSv
for 37–74 MBq 89Zr [127,128]. So, even if 89Zr is particularly interesting for preclinical,
Ab biodistribution studies and long-term studies, 64Cu, which has a more intermediate
period, is more interesting in terms of dosimetry, with a difference of more than a factor of
10 depending on study and antibody [79,129]. Another advantageous property of 64Cu is
for use as both imaging and therapeutic agents. Due to the unique emission properties of
copper isotopes, the use of the theranostic pair copper 64/67 is of great interest due to the
convenient interchangeability of copper ions. Within the scope of theranostic approach,
the use of β+/β− pair radiolabeling, respectively for diagnostic then therapy, with the
same mAb is very promising because the same distribution/pharmacokinetic is expected.
ImmunoPET allows the determination of the patient dosimetry to optimize the cumulated
activity and to predict the therapy response by a quantitative measurement of the tumor-
antibody uptake. Another important physical property is positron range. Even if 64Cu and
98Zr have both interesting properties, the positron range of 64Cu is shorter than that of 89Zr
due to its lower positron energy (Table 1). So, 64Cu-PET has a superior spatial resolution to
89Zr-PET. Whereas spatial resolution was similar between 18F-FDG and 64Cu-HCl [130],
the spatial resolution and image quality of 89Zr PET were inferior to those of 18F PET [131].

Among the parameters to consider, costs and availability of isotopes are also very
important. Both radionuclides can be produced by a medical cyclotron, but 64Cu can also
be produced by nuclear reactor. As a result of the growing interest in these 2 radionuclides,
production capacities for both radionuclides have increased significantly in recent years.

Recent advances in clinical trials provide solid evidence to support the potential role
of radioactive 89Zr and 64Cu as useful radiopharmaceuticals for immunoPET and cancer
imaging. As interest in 89Zr is older, 89Zr was superior in the number of clinical studies.
Nevertheless, taking into account their period and the resulting dosimetry, 89Zr is suitable
for a proof-of-concept study, as its half-life (78.4 h) enables the Ab to be studied over a
longer kinetic period. In more advanced studies involving injection into humans, the use
of 64Cu could be more appropriate in order to optimize patient radiation protection thanks
to its more intermediate half-life.
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