A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Animals
2.2. Preparation of DASA+ATO@PLT
2.3. Characterization of DASA+ATO@PLT
2.4. Western Blot Analysis (WB)
2.5. Changes in Mitochondrial Membrane Potential
2.6. Cell Apoptosis Assay
2.7. DNA Damage Assessment
2.8. Establishment of the Model
2.9. In Vivo Imaging
2.10. Evaluation of Therapeutic Efficacy
2.11. TUNEL Staining
2.12. Inflammatory Reaction Test
2.13. Statistical Analysis
3. Results
3.1. Construction and Characterization of DASA+ATO@PLT
3.2. Liver Tumor—Responsive Targeting and Release Behaviors of DASA+ATO@PLT
3.3. Remodeling of the Tumor Microenvironment by DASA+ATO@PLT
3.4. Therapeutic Efficacy In Vivo
3.5. Safety Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Yan, Q.; Fan, C.; Mo, Y.; Wang, Y.; Li, X.; Liao, Q.; Guo, C.; Li, G.; Zeng, Z.; et al. Overview and countermeasures of cancer burden in China. Sci. China Life Sci. 2023, 66, 2515–2526. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Wang, Z.; Ren, S.; Wang, W.; Duan, L.; Zhu, D.; Zhang, C.; Duan, Y. Prognostic biomarker MITD1 and its correlation with immune infiltrates in hepatocellular carcinoma (HCC). Int. Immunopharmacol. 2020, 81, 106222. [Google Scholar] [CrossRef]
- Yao, Q.; Chen, W.; Yu, Y.; Gao, F.; Zhou, J.; Wu, J.; Pan, Q.; Yang, J.; Zhou, L.; Yu, J.; et al. Human Placental Mesenchymal Stem Cells Relieve Primary Sclerosing Cholangitis via Upregulation of TGR5 in Mdr2(-/-) Mice and Human Intrahepatic Cholangiocyte Organoid Models. Research 2023, 6, 0207. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Yan, H.; Tang, Y.; Yuan, F.; Cao, M.; Ren, Y.; Li, Y.; He, Z.; Su, X.; Yao, Z.; et al. Advancements in understanding mechanisms of hepatocellular carcinoma radiosensitivity: A comprehensive review. Chinese J. Cancer Res. 2023, 35, 266–282. [Google Scholar]
- Seehawer, M.; Heinzmann, F.; D’Artista, L.; Harbig, J.; Roux, P.; Hoenicke, L.; Dang, H.; Klotz, S.; Robinson, L.; Doré, G.; et al. Necroptosis microenvironment directs lineage commitment in liver cancer. Nature 2018, 562, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Kritfuangfoo, T.; Rojanaporn, D. Update on chemotherapy modalities for retinoblastoma: Progress and challenges. Asia-Pac. J. Ophthalmol. 2024, 13, 100061. [Google Scholar] [CrossRef] [PubMed]
- Bai, R.; Li, Y.; Jian, L.; Yang, Y.; Zhao, L.; Wei, M. The hypoxia-driven crosstalk between tumor and tumor-associated macrophages: Mechanisms and clinical treatment strategies. Mol. Cancer 2022, 21, 177. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Dong, X.L.; Zhu, C.Y.; Zhang, Y.; Fang, C.; Zhou, X.L.; Zhang, K.; Zhou, H. DNA damage-encouraged Mn-As-based nanoreactors reshape intratumoral cell phenotypes to recover immune surveillance and potentiate anti-tumor immunity. Chem. Eng. J. 2023, 474, 145556. [Google Scholar] [CrossRef]
- Girigoswami, A.; Girigoswami, K. Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment. Genes 2023, 14, 1370. [Google Scholar] [CrossRef]
- Zheng, S.; Jiang, F.; Ge, D.; Tang, J.; Chen, H.; Yang, J.; Yao, Y.; Yan, J.; Qiu, J.; Yin, Z.; et al. LncRNA SNHG3/miRNA-151a-3p/RAB22A axis regulates invasion and migration of osteosarcoma. Biomed. Pharmacother. 2019, 112, 108695. [Google Scholar] [CrossRef]
- Li, L.; He, S.; Liao, B.; Wang, M.; Lin, H.; Hu, B.; Lan, X.; Shu, Z.; Zhang, C.; Yu, M.; et al. Orally Administrated Hydrogel Harnessing Intratumoral Microbiome and Microbiota-Related Immune Responses for Potentiated Colorectal Cancer Treatment. Research 2024, 7, 7. [Google Scholar] [CrossRef]
- Keating, G.M. Dasatinib: A Review in Chronic Myeloid Leukaemia and Ph plus Acute Lymphoblastic Leukaemia. Drugs 2017, 77, 85–96. [Google Scholar] [CrossRef]
- Sesumi, Y.; Suda, K.; Mizuuchi, H.; Kobayashi, Y.; Sato, K.; Chiba, M.; Shimoji, M.; Tomizawa, K.; Takemoto, T.; Mitsudomi, T. Effect of dasatinib on EMT-mediated-mechanism of resistance against EGFR inhibitors in lung cancer cells. Lung Cancer 2017, 104, 85–90. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.L.; Zhang, Y.W.; Xu, X.; Chen, Z.; Ma, L.L.; Wang, Y.S.; Guo, X.L.; Li, J.C.; Wang, X. Construction of pH-sensitive targeted micelle system co-delivery with curcumin and dasatinib and evaluation of anti-liver cancer. Drug Deliv. 2022, 29, 792–806. [Google Scholar] [CrossRef] [PubMed]
- Alanazi, A.; Alhazzani, K.; Alrewily, S.; Aljerian, K.; Algahtani, M.; Alqahtani, Q.; Haspula, D.; Alhamed, A.; Alqinyah, M.; Raish, M. The Potential Protective Role of Naringenin against Dasatinib-Induced Hepatotoxicity. Pharmaceuticals 2023, 16, 921. [Google Scholar] [CrossRef] [PubMed]
- Xiang, H.; Tang, H.; He, Q.; Sun, J.; Yang, Y.; Kong, L.; Wang, Y. NDUFA8 is transcriptionally regulated by EP300/H3K27ac and promotes mitochondrial respiration to support proliferation and inhibit apoptosis in cervical cancer. Biochem. Bioph. Res. Commun. 2024, 693, 149374. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhai, X.; Liu, Y.; Xia, Z.; Xia, T.; Du, G.; Zhou, H.; Strohmer, D.F.; Bazhin, A.V.; Li, Z.; et al. NOP2-mediated m5C Modification of c-Myc in an EIF3A-Dependent Manner to Reprogram Glucose Metabolism and Promote Hepatocellular Carcinoma Progression. Research 2023, 6, 0184. [Google Scholar] [CrossRef]
- Fu, C.; Xiao, X.; Xu, H.; Lu, W.; Wang, Y. Efficacy of atovaquone on EpCAMCD44 HCT-116 human colon cancer stem cells under hypoxia. Exp. Ther. Med. 2020, 20, 286. [Google Scholar] [CrossRef] [PubMed]
- Coates, J.; Skwarski, M.; Higgins, G. Targeting tumour hypoxia: Shifting focus from oxygen supply to demand. Br. J. Radiol. 2019, 92, 20170843. [Google Scholar] [CrossRef]
- Zhong, C.; Yang, J.; Zhang, Y.; Fan, X.; Fan, Y.; Hua, N.; Li, D.; Jin, S.; Li, Y.; Chen, P.; et al. TRPM2 Mediates Hepatic Ischemia-Reperfusion Injury via Ca(2+)-Induced Mitochondrial Lipid Peroxidation through Increasing ALOX12 Expression. Research 2023, 6, 0159. [Google Scholar] [CrossRef]
- Jha, A.; Kumar, M.; Bharti, K.; Manjit, M.; Mishra, B. Biopolymer-based tumor microenvironment-responsive nanomedicine for targeted cancer therapy. Nanomedicine 2024, 19, 633–651. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Zhang, H.; Tie, C.; Yan, C.; Deng, Z.; Wan, Q.; Liu, X.; Yan, F.; Zheng, H. MR imaging tracking of inflammation-activatable engineered neutrophils for targeted therapy of surgically treated glioma. Nat. Commun. 2018, 9, 4777. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Wang, X.; Kraatz, H.B.; Ahmadi, S.; Gao, J.; Lv, Y.; Sun, X.; Huang, Y. A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomater. Sci. 2019, 8, 1181. [Google Scholar] [CrossRef]
- Yang, H.; Song, Y.; Chen, J.; Pang, Z.; Zhang, N.; Cao, J.; Wang, Q.; Li, Q.; Zhang, F.; Dai, Y.; et al. Platelet Membrane-Coated Nanoparticles Target Sclerotic Aortic Valves in ApoE Mice by Multiple Binding Mechanisms Under Pathological Shear Stress. Int. J. Nanomed. 2020, 15, 901–912. [Google Scholar] [CrossRef] [PubMed]
- Xiao, G.Z.; Zhang, Z.K.; Chen, Q.Y.; Wu, T.; Shi, W.; Gan, L.; Liu, X.L.; Huang, Y.; Lv, M.Y.; Zhao, Y.X.; et al. Platelets for cancer treatment and drug delivery. Clin. Transl. Oncol. 2022, 24, 1231–1237. [Google Scholar] [CrossRef] [PubMed]
- Mayorova, O.A.; Gusliakova, O.I.; Prikhozhdenko, E.S.; Verkhovskii, R.A.; Bratashov, D.N. Magnetic Platelets as a Platform for Drug Delivery and Cell Trapping. Pharmaceutics 2023, 15, 214. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Sun, W.; Qian, C.; Wang, C.; Bomba, H.; Gu, Z. Anticancer Platelet-Mimicking Nanovehicles. Adv. Mater. 2015, 27, 7043–7050. [Google Scholar] [CrossRef]
- Xia, D.; Hang, D.; Li, Y.; Jiang, W.; Zhu, J.; Ding, Y.; Gu, H.; Hu, Y. Au-Hemoglobin Loaded Platelet Alleviating Tumor Hypoxia and Enhancing the Radiotherapy Effect with Low-Dose X-ray. ACS Nano 2020, 14, 15654–15668. [Google Scholar] [CrossRef]
- Gonzalo, R.-B.; Rathi, P.; Nicole, M.; Alessandro, B.; Remko, P.; Martin, M.; Francesca, M.B.; Kevin, J.H.; Geoff, S.H. Antitumour effect of the mitochondrial complex III inhibitor Atovaquone in combination with anti-PD-L1 therapy in mouse cancer models. Cell Death Dis. 2024, 15, 32. [Google Scholar]
- Khorshid, M.; Varshosaz, J.; Rostami, M.; Haghiralsadat, F.; Akbari, V.; Khorshid, P. Anti HER-2 aptamer functionalized gold nanoparticles of dasatinib for targeted chemo-radiotherapy in breast cancer cells. Biomater. Adv. 2023, 154, 213591. [Google Scholar] [CrossRef]
- Tan, X.; He, F.Y.; Shang, Y.B.; Yin, W.Z. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl-2-octenyl) phosphonic acid to cassiterite. Trans. Nonferrous Met. Soc. China 2016, 26, 2469–2478. [Google Scholar] [CrossRef]
- Xu, P.P.; Zuo, H.Q.; Chen, B.; Wang, R.J.; Ahmed, A.; Hu, Y.; Ouyang, J. Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci. Rep. 2017, 7, 44974. [Google Scholar] [CrossRef] [PubMed]
- Li, S.P.; Lu, Z.F.; Wu, S.Y.; Chu, T.J.; Li, B.Z.; Qi, F.L.; Zhao, Y.L.; Nie, G.J. The dynamic role of platelets in cancer progression and their therapeutic implications. Nat. Rev. Cancer 2024, 24, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, H.; Sugawara, M.; Tsuda, H.; Hirose, S. Lipo PEG1 Therapy for Vascular Disturbances in SLE. Jpn. J. Clin. Immunol. 2009, 9, 157–164. [Google Scholar] [CrossRef]
- Cattaneo, M.; Cerletti, C.; Harrison, P.; Hayward, C.P.M.; Kenny, D.; Nugent, D.; Nurden, P.; Rao, A.K.; Schmaier, A.H.; Watson, S.P.; et al. Recommendations for the standardization of light transmission aggregometry: A consensus of the working party from the platelet physiology subcommittee of SSC/ISTH. J. Thromb. Haemost. 2013, 11, 1183–1189. [Google Scholar] [CrossRef]
- Emmanuel Boadi, A.; Philomena, E.; Samara, A.; Glenn, P.D.; Satya, P.K.; Laurie, E.K.; Elisabetta, L. Sex-related differences in the response of anti-platelet drug therapies targeting purinergic signaling pathways in sepsis. Front. Immunol. 2022, 13, 1015577. [Google Scholar]
- Bambace, N.M.; Levis, J.E.; Holmes, C.E. The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010, 21, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Qi, C.L.; Wei, B.; Zhou, W.J.; Yang, Y.; Li, B.; Guo, S.M.; Li, J.L.; Ye, J.; Li, J.C.; Zhang, Q.Q.; et al. P-selectin-mediated platelet adhesion promotes tumor growth. Oncotarget 2015, 6, 6584–6596. [Google Scholar] [CrossRef]
- Subedi, L.; Lee, S.E.; Madiha, S.; Gaire, B.P.; Jin, M.; Yumnam, S.; Kim, S.Y. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int. J. Mol. Sci. 2020, 21, 764. [Google Scholar] [CrossRef]
- Wang, Y.X.; Zhou, Y.; Lin, H.; Chen, H.Y.; Wang, S. Paeoniflorin Inhibits the Proliferation and Metastasis of Ulcerative Colitis-Associated Colon Cancer by Targeting EGFL7. J. Oncol. 2022, 2022, 7498771. [Google Scholar] [CrossRef]
- Chu, P.Y.; Tsai, S.C.; Ko, H.Y.; Wu, C.C.; Lin, Y.H. Co-Delivery of Natural Compounds with a Dual-Targeted Nanoparticle Delivery System for Improving Synergistic Therapy in an Orthotopic Tumor Model. ACS Appl. Mater. Interfaces 2019, 11, 23880–23892. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.L.; Bojmar, L.; Chen, H.Y.; Li, Z.; Tobias, G.C.; Hu, M.Y.; Homan, E.A.; Lucotti, S.; Zhao, F.B.; et al. Tumour extracellular vesicles and particles induce liver metabolic dysfunction. Nature 2023, 618, 374. [Google Scholar] [CrossRef]
- Liu, G.X.; Wen, Z.F.; Liu, F.Y.; Xu, Y.Q.; Li, H.J.; Sun, S.G. Multisubcellular organelle-targeting nanoparticle for synergistic chemotherapy and photodynamic/photothermal tumor therapy. Nanomedicine 2023, 18, 613–631. [Google Scholar] [CrossRef] [PubMed]
- Qi, F.; Li, J.; Qi, Z.; Zhang, J.; Zhou, B.; Yang, B.; Qin, W.; Cui, W.; Xia, J. Comprehensive Metabolic Profiling and Genome-wide Analysis Reveal Therapeutic Modalities for Hepatocellular Carcinoma. Research 2023, 6, 0036. [Google Scholar] [CrossRef]
- Zhang, C.; Jing, X.; Guo, L.; Cui, C.; Hou, X.; Zuo, T.; Liu, J.; Shi, J.; Liu, X.; Zuo, X.; et al. Remote Photothermal Control of DNA Origami Assembly in Cellular Environments. Nano Lett. 2021, 21, 5834–5841. [Google Scholar] [CrossRef]
- Zhang, J.; Song, Q.; Wu, M.; Zheng, W. The Emerging Roles of Exosomes in the Chemoresistance of Hepatocellular Carcinoma. Curr. Med. Chem. 2021, 28, 93–109. [Google Scholar] [CrossRef]
- Xia, D.; Zhang, X.; Hao, H.; Jiang, W.; Chen, C.; Li, H.; Feng, L.; Li, J.; Wu, Y.; Zhang, L.; et al. Strategies to prolong drug retention in solid tumors by aggregating Endo-CMC nanoparticles. J. Control. Release 2023, 360, 705–717. [Google Scholar] [CrossRef]
- Dong, Y.; Liang, C.; Zhang, B.; Ma, J.; He, X.; Chen, S.; Zhang, X.; Chen, W. Bortezomib enhances the therapeutic efficacy of dasatinib by promoting c-KIT internalization-induced apoptosis in gastrointestinal stromal tumor cells. Cancer Lett. 2015, 361, 137–146. [Google Scholar] [CrossRef]
- Li, W.; Wang, Z.; Su, Q.; Chen, J.; Wu, Q.; Sun, X.; Zhu, S.; Li, X.; Wei, H.; Zeng, J.; et al. A Reconfigurable DNA Framework Nanotube-Assisted Antiangiogenic Therapy. JACS Au 2024, 4, 1345–1355. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Yuan, Y.; Wu, K.; Wang, Y.; Zhu, S.; Shi, J.; Wang, L.; Li, Q.; Zuo, X.; Fan, C.; et al. Driving DNA Origami Assembly with a Terahertz Wave. Nano Lett. 2021, 22, 468–475. [Google Scholar] [CrossRef]
- Gao, J.; Qiao, Z.; Liu, S.; Xu, J.; Wang, S.; Yang, X.; Wang, X.; Tang, R. A small molecule nanodrug consisting of pH-sensitive ortho ester-dasatinib conjugate for cancer therapy. Eur. J. Pharm. Biopharm. 2021, 163, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Hekim, C.; Ilander, M.; Yan, J.; Michaud, E.; Smykla, R.; Vähä-Koskela, M.; Savola, P.; Tähtinen, S.; Saikko, L.; Hemminki, A.; et al. Dasatinib Changes Immune Cell Profiles Concomitant with Reduced Tumor Growth in Several Murine Solid Tumor Models. Cancer Immunol. Res. 2017, 5, 157–169. [Google Scholar] [CrossRef]
- Sara, A.E.; Julia, M.D.; Lukas, S.; Moritz, P.; Ute, N.; Uwe, K.; Giuliano, C. Interaction of the chemotherapeutic agent oxaliplatin and the tyrosine kinase inhibitor dasatinib with the organic cation transporter 2. Arch. Toxicol. 2024, 98, 2131–2142. [Google Scholar]
- Li, W.; Xiao, X.; Qi, Y.; Lin, X.; Hu, H.; Shi, M.; Zhou, M.; Jiang, W.; Liu, L.; Chen, K.; et al. Host-Defense-Peptide-Mimicking β-Peptide Polymer Acting as a Dual-Modal Antibacterial Agent by Interfering Quorum Sensing and Killing Individual Bacteria Simultaneously. Research 2023, 6, 0051. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Yu, Y.; Xie, E.; Wu, Q.; Yin, X.; Zhao, B.; Min, J.; Wang, F. Hepatic HDAC3 Regulates Systemic Iron Homeostasis and Ferroptosis via the Hippo Signaling Pathway. Research 2023, 6, 0281. [Google Scholar] [CrossRef] [PubMed]
- Ashton, T.; Fokas, E.; Kunz-Schughart, L.; Folkes, L.; Anbalagan, S.; Huether, M.; Kelly, C.; Pirovano, G.; Buffa, F.; Hammond, E.; et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. Nat. Commun. 2016, 7, 12308. [Google Scholar] [CrossRef]
- Kapur, A.; Mehta, P.; Simmons, A.; Ericksen, S.; Mehta, G.; Palecek, S.; Felder, M.; Stenerson, Z.; Nayak, A.; Dominguez, J.; et al. Atovaquone: An Inhibitor of Oxidative Phosphorylation as Studied in Gynecologic Cancers. Cancers 2022, 14, 2297. [Google Scholar] [CrossRef]
- Wang, D.; Gao, C.; Zhou, C.; Lin, Z.; He, Q. Leukocyte Membrane-Coated Liquid Metal Nanoswimmers for Actively Targeted Delivery and Synergistic Chemophotothermal Therapy. Research 2020, 2020, 3676954. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Pang, Y.Z.; Liu, Q.F.; Liang, C.Y.; An, S.X.; Wu, Q.Y.; Zhang, Y.; Huang, G.; Chen, H.J.; Liu, J.J.; et al. Development and Characterization of Novel FAP-Targeted Theranostic Pairs: A Bench-to-Bedside Study. Research 2023, 6, 0282. [Google Scholar] [CrossRef]
- Becker, R.; Dembek, C.; White, L.; Garrison, L. The cost offsets and cost-effectiveness associated with pegylated drugs: A review of the literature. Expert Rev. Pharmacoecon. Outcomes Res. 2012, 12, 775–793. [Google Scholar] [CrossRef]
- Wang, H.; Wu, J.; Williams, G.; Fan, Q.; Niu, S.; Wu, J.; Xie, X.; Zhu, L. Platelet-membrane-biomimetic nanoparticles for targeted antitumor drug delivery. J. Nanobiotechnol. 2019, 17, 60. [Google Scholar] [CrossRef] [PubMed]
- Przygodzki, T.; Talar, M.; Kassassir, H.; Mateuszuk, L.; Musial, J.; Watala, C. Enhanced adhesion of blood platelets to intact endothelium of mesenteric vascular bed in mice with streptozotocin-induced diabetes is mediated by an up-regulated endothelial surface deposition of VWF-In vivo study. Platelets 2018, 29, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, Z.; Hu, C.; Maitz, M.F.; Yang, L.; Luo, R.; Wang, Y. Platelet Membrane-Coated Nanocarriers Targeting Plaques to Deliver Anti-CD47 Antibody for Atherosclerotic Therapy. Research 2022, 2022, 9845459. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Gao, H.; Sun, H.; Ji, Y.; Song, L.; Jia, L.; Wang, C.; Li, C.; Zhang, D.; Xu, Y.; et al. Reconfigurable Vortex-like Paramagnetic Nanoparticle Swarm with Upstream Motility and High Body-length Ratio Velocity. Research 2023, 6, 0088. [Google Scholar] [CrossRef]
- Pattni, B.; Chupin, V.; Torchilin, V. New Developments in Liposomal Drug Delivery. Chem. Rev. 2015, 115, 10938–10966. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, Y.; Han, R.; Li, Y.; Zhai, Y.; Qian, Z.; Gu, Y.; Li, S. A cascade synergetic strategy induced by photothermal effect based on platelet exosome nanoparticles for tumor therapy. Biomaterials 2022, 282, 121384. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Wang, X.; Gao, Z.; Bao, H.; Yuan, X.; Chen, C.; Xia, D.; Wang, X. A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy. Pharmaceutics 2024, 16, 905. https://doi.org/10.3390/pharmaceutics16070905
Huang H, Wang X, Gao Z, Bao H, Yuan X, Chen C, Xia D, Wang X. A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy. Pharmaceutics. 2024; 16(7):905. https://doi.org/10.3390/pharmaceutics16070905
Chicago/Turabian StyleHuang, Hao, Xiaoping Wang, Ziqing Gao, Hongyi Bao, Xiaopeng Yuan, Chao Chen, Donglin Xia, and Xiangqian Wang. 2024. "A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy" Pharmaceutics 16, no. 7: 905. https://doi.org/10.3390/pharmaceutics16070905
APA StyleHuang, H., Wang, X., Gao, Z., Bao, H., Yuan, X., Chen, C., Xia, D., & Wang, X. (2024). A Platelet-Powered Drug Delivery System for Enhancing Chemotherapy Efficacy for Liver Cancer Using the Trojan Horse Strategy. Pharmaceutics, 16(7), 905. https://doi.org/10.3390/pharmaceutics16070905