Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study
Abstract
:1. Introduction
1.1. The Dihydropyrimidine Dehydrogenase Gene (DPYD)
1.2. Pharmacogenetics of Fluoropyrimidines
1.3. Hypothesis and Objectives
2. Materials and Methods
2.1. Study Design
2.2. Procedures for the Inclusion of DPYD Variants in the Study
2.3. Management of Patients
2.4. Data Management, Statistical Analysis, and Genotyping
2.5. DNA Extraction and Genotyping
3. Results
3.1. Association Study of DPYD Variants with the Response
3.1.1. Association with Response of Dose Tailoring Based on DPYD
3.1.2. Association with the Response of New DPYD Variants
3.1.3. Multivariate Analysis
3.2. DPYD Characterization
4. Discussion
4.1. Association of Genetic Variants with Response to Fluoropyrimidines
4.2. Insights on Clinical Practice
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mikhail, S.E.; Sun, J.F.; Marshall, J.L. Safety of capecitabine: A review. Expert. Opin. Drug Saf. 2010, 9, 831–841. [Google Scholar] [CrossRef] [PubMed]
- Henricks, L.M.; Lunenburg, C.A.T.C.; de Man, F.M.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.J.; Baars, A.; Dezentjé, V.O.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [Google Scholar] [CrossRef] [PubMed]
- Henricks, L.M.; Opdam, F.L.; Beijnen, J.H.; Cats, A.; Schellens, J.H.M. DPYD genotype-guided dose individualization to improve patient safety of fluoropyrimidine therapy: Call for a drug label update. Ann. Oncol. 2017, 28, 2915–2922. [Google Scholar] [CrossRef]
- Van Cutsem, E.; Twelves, C.; Cassidy, J.; Allman, D.; Bajetta, E.; Boyer, M.; Bugat, R.; Findlay, M.; Frings, S.; Jahn, M.; et al. Oral capecitabine compared with intravenous fluorouracil plus leucovorin in patients with metastatic colorectal cancer: Results of a large phase III study. J. Clin. Oncol. 2001, 19, 4097–4106. [Google Scholar] [CrossRef]
- White, C.; Scott, R.J.; Paul, C.; Ziolkowski, A.; Mossman, D.; Fox, S.B.; Michael, M.; Ackland, S. Dihydropyrimidine Dehydrogenase Deficiency and Implementation of Upfront DPYD Genotyping. Clin. Pharmacol. Ther. 2022, 112, 791–802. [Google Scholar] [CrossRef]
- Miwa, M.; Ura, M.; Nishida, M.; Sawada, N.; Ishikawa, T.; Mori, K.; Shimma, N.; Umeda, I.; Ishitsuka, H. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5 fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur. J. Cancer 1998, 34, 1274–1281. [Google Scholar] [CrossRef]
- van Kuilenburg, A.B.; Meinsma, R.; Zonnenberg, B.A.; Zoetekouw, L.; Baas, F.; Matsuda, K.; Tamaki, N.; van Gennip, A.H. Dihydropyrimidinase deficiency and severe 5-fluorouracil toxicity. Clin. Cancer Res. 2003, 9, 4363–4367. [Google Scholar]
- Meinsma, R.; Fernandez Salguero, P.; Van Kuilenburg, A.B.P.; Van Gennip, A.H.; Gonzalez, F.J. Human polymorphism in drug metabolism: Mutation in the dihydropyrimidine dehydrogenase gene results in exon skipping and thymine uracilurea. DNA Cell Biol. 1995, 14, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Van Kuilenburg, A.B.P.; Blom, M.J.; Van Lenthe, H.; Mul, E.; Van Gennip, A.H. The activity of dihydropyrimidine dehydrogenase in human blood cells. J. Inherit. Metab. Dis. 1997, 20, 331–334. [Google Scholar] [CrossRef]
- Wei, X.; McLeod, H.L.; McMurrough, J.; Gonzalez, F.J.; Fernandez-Salguero, P. Molecular basis of the human dihydropyrimidine dehydrogenase deficiency and 5-fluorouracil toxicity. J. Clin. Investig. 1996, 98, 610–615. [Google Scholar] [CrossRef]
- Deenen, M.J.; Meulendijks, D.; Cats, A.; Sechterberger, M.K.; Severens, J.L.; Boot, H.; Smits, P.H.; Rosing, H.; Mandigers, C.M.; Soesan, M.; et al. Upfront Genotyping of DPYD*2A to Individualize Fluoropyrimidine Therapy: A Safety and Cost Analysis. J. Clin. Oncol. 2016, 34, 227–234. [Google Scholar] [CrossRef]
- Sharma, B.B.; Rai, K.; Blunt, H.; Zhao, W.; Tosteson, T.D.; Brooks, G.A. Pathogenic DPYD Variants and Treatment-Related Mortality in Patients Receiving Fluoropyrimidine Chemotherapy: A Systematic Review and Meta-Analysis. Oncologist 2021, 26, 1008–1016. [Google Scholar] [CrossRef] [PubMed]
- Meulendijks, D.; Henricks, L.M.; Sonke, G.S.; Deenen, M.J.; Froehlich, T.K.; Amstutz, U.; Largiadèr, C.R.; Jennings, B.A.; Marinaki, A.M.; Sanderson, J.D.; et al. Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: A systematic review and meta-analysis of individual patient data. Lancet Oncol. 2015, 16, 1639–1650. [Google Scholar] [CrossRef] [PubMed]
- Whirl-Carrillo, M.; Huddart, R.; Gong, L.; Sangkuhl, K.; Thorn, C.F.; Whaley, R.; Klein, T.E. An Evidence-Based Framework for Evaluating Pharmacogenomics Knowledge for Personalized Medicine. Clin. Pharmacol. Ther. 2021, 110, 563–572. [Google Scholar] [CrossRef]
- 1000 Genomes Project Consortium; Abecasis, G.R.; Auton, A.; Brooks, L.D.; DePristo, M.A.; Durbin, R.M.; Handsaker, R.E.; Kang, H.M.; Marth, G.T.; McVean, G.A. An integrated map of genetic variation from 1,092 human genomes. Nature 2012, 491, 56–65. [Google Scholar] [CrossRef]
- European Public Assessment Report (EPAR) for Capecitabine. 16 February 2012. Available online: https://www.ema.europa.eu/en/documents/assessment-report/capecitabine-teva-epar-public-assessment-report_en.pdf (accessed on 1 March 2024).
- Food and Drug Administration (FDA) Table of Pharmacogenetic Associations. 26 October 2022. Available online: https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations (accessed on 1 March 2024).
- Amstutz, U.; Henricks, L.M.; Offer, S.M.; Barbarino, J.; Schellens, J.H.M.; Swen, J.J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef]
- Lunenburg, C.A.T.C.; van der Wouden, C.H.; Nijenhuis, M.; Crommentuijn-van Rhenen, M.H.; de Boer-Veger, N.J.; Buunk, A.M.; Houwink, E.J.F.; Mulder, H.; Rongen, G.A.; van Schaik, R.H.N.; et al. Dutch Pharmacogenetics Working Group (DPWG) guideline for the gene-drug interaction of DPYD and fluoropyrimidines. Eur. J. Hum. Genet. 2020, 28, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, R.M.; Kirkham, J.J.; Mason, J.R.; Bird, K.A.; Williamson, P.R.; Nunn, A.J.; Turner, M.A.; Smyth, R.L.; Pirmohamed, M. Development and inter-rater reliability of the Liverpool adverse drug reaction causality assessment tool. PLoS ONE 2011, 6, e28096. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Common Terminology Criteria for Adverse Events (CTCAE). 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/ctcae_v5_quick_reference_5x7.pdf (accessed on 1 March 2024).
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Solé, X.; Guinó, E.; Valls, J.; Iniesta, R.; Moreno, V. SNPStats: A web tool for the analysis of association studies. Bioinformatics 2006, 22, 1928–1929. [Google Scholar] [CrossRef]
- Freeman, B.; Smith, N.; Curtis, C.; Huckett, L.; Mill, J.; Craig, I.W. DNA from buccal swabs recruited by mail: Evaluation of storage effects on long-term stability and suitability for multiplex polymerase chain reaction genotyping. Behav. Genet. 2003, 33, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martín, A.; Hernández, A.F.; Martínez-González, L.J.; González-Alzaga, B.; Rodríguez-Barranco, M.; López-Flores, I.; Aguilar-Garduno, C.; Lacasana, M. Polymorphisms of pesticide-metabolizing genes in children living in intensive farming communities. Chemosphere 2015, 139, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Deenen, M.J.; Tol, J.; Burylo, A.M.; Doodeman, V.D.; de Boer, A.; Vincent, A.; Guchelaar, H.J.; Smits, P.H.; Beijnen, J.H.; Punt, C.J.; et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin. Cancer Res. 2011, 17, 3455–3468. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Guchelaar, H.J.; Boven, E. The role of pharmacogenetics in capecitabine efficacy and toxicity. Cancer Treat. Rev. 2016, 50, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Seck, K.; Riemer, S.; Kates, R.; Ullrich, T.; Lutz, V.; Harbeck, N.; Schmitt, M.; Kiechle, M.; Diasio, R.; Gross, E. Analysis of the DPYD gene implicated in 5-fluorouracil catabolism in a cohort of Caucasian individuals. Clin. Cancer Res. 2005, 11, 5886–5892. [Google Scholar] [CrossRef] [PubMed]
- Madi, A.; Fisher, D.; Maughan, T.S.; Colley, J.P.; Meade, A.M.; Maynard, J.; Humphreys, V.; Wasan, H.; Adams, R.A.; Idziaszczyk, S.; et al. Pharmacogenetic analyses of 2183 patients with advanced colorectal cancer; potential role for common dihydropyrimidine dehydrogenase variants in toxicity to chemotherapy. Eur. J. Cancer 2018, 102, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Kuilenburg, A.B.P.V.; Meijer, J.; Tanck, M.W.T.; Dobritzsch, D.; Zoetekouw, L.; Dekkers, L.L.; Roelofsen, J.; Meinsma, R.; Wymenga, M.; Kulik, W.; et al. Phenotypic and clinical implications of variants in the dihydropyrimidine dehydrogenase gene. Biochim. Biophys. Acta 2016, 1862, 754–762. [Google Scholar] [CrossRef]
- Lee, A.M.; Shi, Q.; Pavey, E.; Alberts, S.R.; Sargent, D.J.; Sinicrope, F.A.; Berenberg, J.L.; Goldberg, R.M.; Diasio, R.B. DPYD variants as predictors of 5-fluorouracil toxicity in adjuvant colon cancer treatment (NCCTG N0147). J. Natl. Cancer Inst. 2014, 106, dju298. [Google Scholar] [CrossRef]
- Díaz-Villamarín, X.; Fernández-Varón, E.; Rojas Romero, M.C.; Callejas-Rubio, J.L.; Cabeza-Barrera, J.; Rodríguez-Nogales, A.; Gálvez, J.; Morón, R. Azathioprine dose tailoring based on pharmacogenetic information: Insights of clinical implementation. Biomed. Pharmacother. 2023, 168, 115706. [Google Scholar] [CrossRef]
- Fragoulakis, V.; Roncato, R.; Bignucolo, A.; Patrinos, G.P.; Toffoli, G.; Cecchin, E.; Mitropoulou, C. Cost-utility analysis and cross-country comparison of pharmacogenomics-guided treatment in colorectal cancer patients participating in the U-PGx PREPARE study. Pharmacol. Res. 2023, 197, 106949. [Google Scholar] [CrossRef]
- Koufaki, M.I.; Fragoulakis, V.; Díaz-Villamarín, X.; Karamperis, K.; Vozikis, A.; Swen, J.J.; Dávila-Fajardo, C.L.; Vasileiou, K.Z.; Patrinos, G.P.; Mitropoulou, C. Economic evaluation of pharmacogenomic-guided antiplatelet treatment in Spanish patients suffering from acute coronary syndrome participating in the U-PGx PREPARE study. Hum. Genom. 2023, 17, 51. [Google Scholar] [CrossRef] [PubMed]
*Allele | DPYD Variant | Major Nucleotide Variation | MAF | Molecules | Toxicity ^ | ||
---|---|---|---|---|---|---|---|
Ibs | Europe | Global | |||||
- | rs115232898 | c.557A>G | 100/0 | 100/0 | 99/1 | Fluorouracil | x |
- | rs148994843 | c.1543G>A | No data | 100/0 | 100/0 | Fluorouracil | |
- | rs17376848 | c.1896T>C | 98/2 | 96/4 | 94/5 | Capecitabine/fluorouracil | x |
*4 | rs1801158 | c.1601G>A | 94/6 | 97/3 | 99/1 | Capecitabine/fluorouracil | x |
*5 | rs1801159 | c.1627A>G | 79/21 | 81/19 | 82/18 | Capecitabine/fluorouracil | x |
*6 | rs1801160 | c.2194G>A | 95/5 | 95/5 | 96/4 | Capecitabine/fluorouracil | x |
*9A | rs1801265 | c.85T>C | 79/21 | 79/21 | 74/26 | Capecitabine/fluorouracil | x |
*8 | rs1801266 | c.703C>T | No data | 100/0 | 100/0 | Fluorouracil | |
*10 | rs1801268 | c.2983G>T | No data | 100/0 | 100/0 | Fluorouracil | |
- | rs2297595 | c.496A>G | 88/12 | 88/12 | 94/6 | Capecitabine/fluorouracil | x |
*2A | rs3918290 | c.1905+1G>A | 100/0 | 99/1 | 99/1 | Capecitabine/fluorouracil/tegafur | x |
*13 | rs55886062 | c.1679T>G | 100/0 | 100/0 | 100/0 | Capecitabine/fluorouracil/tegafur | x |
- | rs56005131 | c.2303C>A | 100/0 | 100/0 | 100/0 | Fluorouracil | |
*HapB3 | rs56038477 | c.1236G>A | 98/2 | 98/2 | 99/1 | Capecitabine/fluorouracil | x |
- | rs59086055 | c.1774C>T | 100/0 | 100/0 | 100/0 | Fluorouracil | x |
- | rs67376798 | c.2846A>T | 100/0 | 99/1 | 99/1 | Capecitabine/fluorouracil/tegafur | x |
*3 | rs72549303 | c.1898del | No data | 100/0 | 100/0 | Fluorouracil | |
*11 | rs72549306 | c.1003G>T | No data | 100/0 | 100/0 | Fluorouracil | |
*7 | rs72549309 | c.299_302del | No data | 100/0 | 100/0 | Fluorouracil | |
*HapB3 | rs75017182 | c.1129-5923C>G | 98/2 | 98/2 | 99/1 | Capecitabine/fluorouracil | x |
*12 | rs78060119 | c.1156G>T | No data | 100/0 | 100/0 | Fluorouracil | x |
DPYD Allele | Wild-Type | DPYD*2A | DPYD*13 | DPYD*HapB3 | c.2846A>T |
Wild-type | GAS = 2 | GAS = 1 | GAS = 1 | GAS = 1.5 | GAS = 1.5 |
DPYD*2A | GAS = 0 | GAS = 0 | GAS = 0.5 | GAS = 0.5 | |
DPYD*13 | GAS = 0 | GAS = 0.5 | GAS = 0.5 | ||
DPYD*HapB3 | GAS = 1 | GAS = 1 | |||
c.2846A>T | GAS = 1 |
PGx Guideline | DPYD Variant | Phenotype | Recommendation |
---|---|---|---|
CPIC | *2A c.2846A>T *13 *HapB3 Others ^ | GAS = 2 (NM) | Use the standard dose |
GAS = 1.5 (IM) | 50% dose reduction followed by dose titration, based on clinical judgment and ideally on therapeutic drug monitoring | ||
GAS = 1 (IM) | 50% dose reduction followed by dose titration, based on clinical judgment and ideally on therapeutic drug monitoring. In patients homozygous for c.2846A>T, a dose reduction of more than 50% may be required | ||
GAS = 0.5 (PM) | Alternative drug. If no other therapeutic option is available, strongly reduce the dose with early therapeutic drug monitoring | ||
GAS = 0 (PM) | Alternative drug | ||
DPWG | *2A c.2846A>T *13 *HapB3 | GAS = 2 | Use the standard dose |
GAS = 1.5 | Start with 50% of the standard dose or avoid fluorouracil and capecitabine. Adjust the subsequent doses guided by toxicity and effectiveness | ||
GAS = 1 | Start with 50% of the standard dose or avoid fluorouracil and capecitabine. Adjust the subsequent doses guided by toxicity and effectiveness | ||
GAS = 0 | Avoid fluorouracil and capecitabine. If not possible, determine DPD activity and adjust the dose |
Parameter | N = 167 n (%) or Mean ± sd |
---|---|
Women | 62 (37.13) |
Age | 64.26 ± 10.89 |
BMI | 26.69 ± 4.92 |
BS | 1.80 ± 0.19 |
Ethnicity (European) | 167 (100) |
Tumor Location | |
Colorectal | 126 (75.45) |
Gastric | 13 (7.78) |
Pancreas | 10 (5.99) |
Breast | 12 (7.19) |
Others | 6 (3.59) |
Tumor stage | |
I | 3 (1.80) |
II | 29 (17.36) |
III | 64 (38.32) |
IV | 71 (42.51) |
Chemotherapy treatment | |
Capecitabine (monotherapy) | 72 (43.11) |
XELOX | 39 (23.35) |
FOLFOX | 40 (23.95) |
FLOT | 6 (3.59) |
FOLFIRINOX | 10 (5.99) |
Initial doses (1000 mg/m2)% | |
100 | 143 (85.63) |
<100 and >50 | 18 (10.78) |
50 | 6 (3.59) |
Associated antibody | 16 (9.58) |
Toxicity endpoint | 48 (28.74) |
Efficacy endpoint | 127 (71.86) |
DPYD genotype | |
DPYD*1/*1 | 161 (96.40) |
DPYD*1/*HapB3 | 3 (1.80) |
DPYD*1/rs67376798 | 2 (1.20) |
DPYD*1/*13 | 1 (0.60) |
DPD phenotype | |
NM (GAS: 2) | 161 (96.40) |
IM (GAS: 1.5 or GAS:1) | 6 (3.60) |
PM (GAS: 0) | 0 (0.00) |
ADE Severity ≥ 3 | OR (95% CI) | p-Value | |||
Yes n (%) | NO n (%) | ||||
DPYD GAS < 2 | YES n (%) | 2 (4.3) | 4 (3.3) | 1.29 (0.11–9.34) | 0.674 |
NO n (%) | 45 (95.7) | 116 (96.7) | |||
Efficacy | OR (95% CI) | p-Value | |||
Yes n (%) | NO n (%) | ||||
DPYD GAS < 2 | YES n (%) | 3 (2.3) | 3 (7.9) | 0.28 (0.04–2.19) | 0.132 |
NO n (%) | 126 (97.7) | 35 (92.1) |
ADE Severity ≥ 3 | OR (95% CI) | p-Value | |||
Yes n (%) | NO n (%) | ||||
DPYD rs1801265 | A/G–G/G | 15 (31.9) | 38 (31.9) | 1.00 (0.48–2.06) | 1 |
A/A | 32 (68.1) | 81 (68.1) | |||
DPYD rs17376848 | A/G | 0 (0) | 6 (5) | 0.00 (0–NA) | 0.043 |
A/A | 47 (100) | 113 (95) | |||
DPYD rs1801159 | C/T–T/T | 18 (38.3) | 53 (44.5) | 0.77 (0.39–1.54) | 0.46 |
C/C | 29 (61.7) | 66 (55.5) | |||
DPYD rs1801160 | C/T | 6 (12.8) | 15 (12.6) | 1.01 (0.37–2.80) | 0.98 |
C/C | 41 (87.2) | 104 (87.4) | |||
DPYD rs1801158 | C/T | 6 (12.8) | 3 (2.5) | 5.66 (1.35–23.67) | 0.014 |
C/C | 41 (87.2) | 116 (97.5) | |||
DPYD rs2297595 | C/T | 11 (23.4) | 24 (20.2) | 1.21 (0.54–2.72) | 0.65 |
C/C | 36 (76.6) | 95 (79.8) | |||
Efficacy | OR (95% CI) | p-Value | |||
Yes n (%) | NO n (%) | ||||
DPYD rs1801265 | A/G–G/G | 41 (31.8) | 12 (32.4) | 0.97 (0.44–2.12) | 0.94 |
A/A | 88 (68.2) | 25 (67.6) | |||
DPYD rs17376848 | A/G | 6 (4.7) | 0 (0) | NA (0.00-NA) | 0.079 |
A/A | 123 (95.3) | 37 (100) | |||
DPYD rs1801159 | C/T–T/T | 56 (43.4) | 15 (40.5) | 1.13 (0.54–2.37) | 0.76 |
C/C | 73 (56.6) | 22 (59.5) | |||
DPYD rs1801160 | C/T | 16 (12.4) | 5 (13.5) | 0.91 (0.31–2.66) | 0.86 |
C/C | 113 (87.6) | 32 (86.5) | |||
DPYD rs1801158 | C/T | 6 (4.7) | 3 (8.1) | 0.55 (0.13–2.33) | 0.43 |
C/C | 123 (95.3) | 34 (91.9) | |||
DPYD rs2297595 | C/T | 28 (21.7) | 7 (18.9) | 1.19 (0.47–2.99) | 0.71 |
C/C | 101 (78.3) | 30 (81.1) |
Toxicity Endpoint | ||
Variable | OR (95% CI) | p-Value |
DPYD rs1801158 (CT or TT) | 5.73 (1.41–28.77) | 0.019 |
Irinotecan | 2.32 (0.92–5.81) | 0.071 |
Age | NA | 0.090 |
DPYD rs56038477 (CT or TT) | 6.99 (0.64–155.45) | 0.120 |
Monoclonal antibody | 0.00 (NA–Inf) | 0.990 |
DPYD rs17376848 (AG or GG) | 0.00 (NA–Inf) | 0.992 |
Efficacy Endpoint | ||
Variable | OR (95% CI) | p-Value |
Irinotecan | 0.15 (0.06–0.35) | <0.001 |
DPYD rs56038477 (CT or TT) | 0.096 (0.01–1.05) | 0.062 |
Radiotherapy | 2.31 (0.79–8.48) | 0.16 |
*Allele | DPYD Variant | Major Nucleotide Variation | Genotype N = 190 ^ | H-W | MAF | MAF Ibs | Comparison with 1000 Genomes | ||
---|---|---|---|---|---|---|---|---|---|
Wt | Het | Hom | |||||||
- | rs17376848 | c.1896T>C | 181 (95.77) | 8 (4.23) | 0 (0) | 1 | 0.021 | 98/2 | 1 |
*4 | rs1801158 | c.1601G>A | 177 (93.65) | 12 (6.35) | 0 (0) | 1 | 0.032 | 94/6 | 0.149 |
*5 | rs1801159 | c.1627A>G | 109 (57.67) | 69 (36.51) | 11 (5.82) | 1 | 0.241 | 79/21 | 0.475 |
*6 | rs1801160 | c.2194G>A | 168 (88.89) | 21 (11.11) | 0 (0) | 1 | 0.056 | 95/5 | 0.643 |
*9A | rs1801265 | c.85T>C | 128 (67.73) | 58 (30.69) | 3 (1.59) | 0.3 | 0.169 | 79/21 | 0.170 |
- | rs2297595 | c.496A>G | 152 (80.42) | 37 (10.58) | 0 (0) | 0.2 | 0.098 | 88/12 | 0.470 |
*2A | rs3918290 | c.1905+1G>A | 190 (100) | 0 (0) | 0 (0) | - | 0 | 100/0 | 1 |
*13 | rs55886062 | c.1679T>G | 189 (99.47) | 1 (0.53) | 0 (0) | 1 | 0.003 | 100/0 | 1 |
*HapB3 | rs56038477 | c.1236G>A | 185 (97.37) | 5 (2.63) | 0 (0) | 1 | 0.013 | 98/2 | 0.729 |
- | rs67376798 | c.2846A>T | 188 (98.95) | 2 (1.05) | 0 (0) | 1 | 0.011 | 100/0 | 0.538 |
Linkage Disequilibrium | |||||||||
---|---|---|---|---|---|---|---|---|---|
n = 190 ^ | |||||||||
rs1801265 (*9A) | rs17376848 | rs1801159 (*5) | rs1801160 (*6) | rs1801158 (*4) | rs2297595 | rs55886062 (*13) | rs67376798 | rs56038477 (*HapB3) | |
rs1801265 (*9A) | - | 0.9463 | 0.6052 | 0.0369 | 0.1844 | 0 | 0.0272 | 0.5667 | 1 × 10−4 |
2 × 10−4 | −0.0045 | 0.0103 | −0.0044 | 0.0684 | 0.0024 | −9 × 10−4 | 0.0074 | ||
0.012 | 0.1142 | 0.1943 | 0.9901 | 0.7748 | 0.9751 | 0.9191 | 0.9903 | ||
0.0037 | −0.0284 | 0.1145 | −0.0728 | 0.6035 | 0.1212 | −0.0314 | 0.2139 | ||
rs17376848 | - | - | 0.8753 | 0.5391 | 0.7111 | 0.6804 | 0.9834 | 0.9584 | 0.897 |
5 × 10−4 | −0.0011 | −4 × 10−4 | −9 × 10−4 | 0 | 0 | −1 × 10−4 | |||
0.0358 | 0.9562 | 0.8977 | 0.4854 | 0.0028 | 0.2721 | 0.5501 | |||
0.0086 | −0.0337 | −0.0203 | −0.0226 | 0.0011 | −0.0029 | −0.0071 | |||
rs1801159 (*5) | - | - | - | 0.9568 | 0.0887 | 0.0141 | 0.0848 | 0.9315 | 0.2636 |
−3 × 10−4 | −0.0065 | −0.0177 | 0.0022 | 2 × 10−4 | 0.0025 | ||||
0.0203 | 0.9933 | 0.6966 | 0.9725 | 0.0342 | 0.3631 | ||||
−0.003 | −0.0934 | −0.1347 | 0.0946 | 0.0047 | 0.0613 | ||||
rs1801160 (*6) | - | - | - | - | 0.4411 | 0.6994 | 0.8619 | 0.0191 | 0.1098 |
0.0017 | 0.0016 | −1 × 10−4 | 0.0024 | 0.002 | |||||
0.9746 | 0.2376 | 0.6704 | 0.4308 | 0.2396 | |||||
−0.0423 | −0.0212 | −0.0095 | 0.1287 | 0.0878 | |||||
rs1801158 (*4) | - | - | - | - | - | 0.3038 | 0.9693 | 0.9033 | 0.8394 |
−0.0028 | 0 | −1 × 10−4 | −2 × 10−4 | ||||||
0.9848 | 0.231 | 0.5147 | 0.7001 | ||||||
−0.0564 | −0.0021 | −0.0067 | −0.0111 | ||||||
rs2297595 | - | - | - | - | - | - | 0.7833 | 0.6709 | 0.4257 |
−3 × 10−4 | −6 × 10−4 | 0.0013 | |||||||
0.8023 | 0.8752 | 0.1577 | |||||||
−0.0151 | −0.0233 | 0.0437 | |||||||
rs55886062 (*13) | - | - | - | - | - | - | - | 0.8471 | 0.8998 |
0 | 0 | ||||||||
0.0149 | 0.012 | ||||||||
0.0106 | 0.0069 | ||||||||
rs67376798 | - | - | - | - | - | - | - | - | 0.95 |
0 | |||||||||
0.0042 | |||||||||
0.0034 | |||||||||
rs56038477 (*HapB3) | - | - | - | - | - | - | - | - | p-value |
D | |||||||||
D’ | |||||||||
r |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Villamarín, X.; Martínez-Pérez, M.; Nieto-Sánchez, M.T.; Ruiz-Tueros, G.; Fernández-Varón, E.; Torres-García, A.; González Astorga, B.; Blancas, I.; Iáñez, A.J.; Cabeza-Barrera, J.; et al. Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study. Pharmaceutics 2024, 16, 956. https://doi.org/10.3390/pharmaceutics16070956
Díaz-Villamarín X, Martínez-Pérez M, Nieto-Sánchez MT, Ruiz-Tueros G, Fernández-Varón E, Torres-García A, González Astorga B, Blancas I, Iáñez AJ, Cabeza-Barrera J, et al. Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study. Pharmaceutics. 2024; 16(7):956. https://doi.org/10.3390/pharmaceutics16070956
Chicago/Turabian StyleDíaz-Villamarín, Xando, María Martínez-Pérez, María Teresa Nieto-Sánchez, Gabriela Ruiz-Tueros, Emilio Fernández-Varón, Alicia Torres-García, Beatriz González Astorga, Isabel Blancas, Antonio J. Iáñez, José Cabeza-Barrera, and et al. 2024. "Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study" Pharmaceutics 16, no. 7: 956. https://doi.org/10.3390/pharmaceutics16070956
APA StyleDíaz-Villamarín, X., Martínez-Pérez, M., Nieto-Sánchez, M. T., Ruiz-Tueros, G., Fernández-Varón, E., Torres-García, A., González Astorga, B., Blancas, I., Iáñez, A. J., Cabeza-Barrera, J., & Morón, R. (2024). Novel Genetic Variants Explaining Severe Adverse Drug Events after Clinical Implementation of DPYD Genotype-Guided Therapy with Fluoropyrimidines: An Observational Study. Pharmaceutics, 16(7), 956. https://doi.org/10.3390/pharmaceutics16070956