Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Liposome Dispersion
2.2.2. Preparation of the Creams and Emulgels
2.2.3. Physico-Chemical Characterization of the Liposome Dispersion
Evaluation of Encapsulation Efficiency
2.2.4. Physico-Chemical Characterization of Creams and Emulgels
2.2.5. Texture Profile Analysis (TPA) of Creams and Emulgels
2.2.6. Examination of Sensory Properties
2.2.7. Tape Stripping
2.2.8. HPLC Analysis
The Chromatographic Conditions
Sample Extraction
2.2.9. Ethical Standards
2.2.10. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caritá, A.C.; Santos, B.F.; Shultz, J.D.; Kohn, B.M.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomedicine 2020, 24, 102117. [Google Scholar] [CrossRef]
- Pouillot, A.; Polla, L.A.; Tacchini, P. Natural antioxidants and their effects on the skin. Formul. Packag. Mark. Nat. Cosmet. Prod. 2011, 13, 239–257. [Google Scholar]
- Humbert, P.G.; Haftek, M.; Creidi, P. Topical ascorbic acid on photoaged skin. Clinical, topographical and ultrastructural evaluation: Double-blind study vs. placebo. Exp. Dermatol. 2003, 12, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Fitzpatrick, R.E.; Rostan, D. Double blind, half-face study comparing topical vitamin C vehicle for rejuvenation of photodamage. Dermatol. Surg. 2002, 28, 231–238. [Google Scholar]
- Hinek, A.; Kim, H.J.; Wang, Y.; Wang, A.; Mitts, T.F. Sodium L-ascorbate enhances elastic fibers deposition by fibroblasts from normal and pathologic human skin. J. Dermatol. Sci. 2014, 75, 173–182. [Google Scholar] [CrossRef]
- Kishimoto, Y.; Saito, N.; Kurita, K.; Shimokado, K.; Maruyama, N.; Ishigami, A. Ascorbic acid enhances the expression of type 1 and type 4 collagen and SVCT2 in cultured human skin fibroblasts. Biochem. Biophys. Res. Commun. 2013, 430, 579–584. [Google Scholar] [CrossRef] [PubMed]
- Hwang, S.W.; Oh, D.J.; Lee, D.; Kim, J.W.; Park, S.W. Clinical efficacy of 25% L-ascorbic acid (C’ensil) in the treatment of melisma. J. Cutan. Med. Surg. 2009, 13, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Stamford, N.P. Stability, transdermal penetration, and cutaneous effects of ascorbic acid and its derivatives. J. Cosmet. Dermatol. 2012, 11, 310–317. [Google Scholar] [CrossRef]
- Farris, K. Topical vitamin C for photoaging and other conditions. Dermatol. Surg. 2005, 31, 814–818. [Google Scholar] [CrossRef]
- Sorice, A.; Guerriero, E.; Capone, F.; Colonna, G.; Castello, G.; Costantini, S. Ascorbic acid: Its role in immune system and chronic inflammation diseases. Mini Rev. Med. Chem. 2014, 14, 444–452. [Google Scholar] [CrossRef]
- Stolić Jovanović, A.; Martinović, M.; Žugić, A.; Nešić, I.; Tosti, T.; Blagojević, S.; Tadić, V.M. Derivatives of L-Ascorbic Acid in Emulgel: Development and Comprehensive Evaluation of the Topical Delivery System. Pharmaceutics 2023, 15, 813. [Google Scholar] [CrossRef] [PubMed]
- Dini, I. Contribution of Nanoscience Research in Antioxidants Delivery Used in Nutricosmetic Sector. Antioxidants 2022, 11, 563. [Google Scholar] [CrossRef] [PubMed]
- Baek, J.; Ramasamy, M.; Willis, N.C.; Kim, D.S.; Anderson, W.A.; Tam, K.C. Encapsulation and controlled release of vitamin C in modified cellulose nanocrystal/chitosan nanocapsules. Curr. Res. Food Sci. 2021, 4, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Fraj, J.; Petrović, L.; Ðekić, L.; Budinčić, J.M.; Bučko, S.; Katona, J. Encapsulation and release of vitamin C in double W/O/W emulsions followed by complex coacervation in gelatin-sodium caseinate system. J. Food Eng. 2021, 292, 110353. [Google Scholar] [CrossRef]
- Kaur, I.P.; Kapila, M.; Agrawal, R. Role of novel delivery systems in developing topical antioxidants as therapeutics to combat photoageing. Ageing Res. Rev. 2007, 6, 271–288. [Google Scholar] [CrossRef] [PubMed]
- Nielloud, F.; Marti-Mestres, G. Pharmaceutical Emulsions and Suspensions, 2nd ed.; Marcel Dekker, Inc.: New York, NY, USA, 2000. [Google Scholar]
- Savary, G.; Gilbert, L.; Grisel, M.; Picard, C. Instrumental and sensory methodologies to characterize the residual film of topical products applied to skin. Skin. Res. Tech. 2019, 25, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Haneefa, K.M.; Mohanta, G.P.; Nayar, C. Emulgel: An Advanced Review. J. Pharm. Sci. Res. 2013, 5, 254–258. [Google Scholar]
- Asija, R.; Sharma, R.; Gupta, A. Emulgel: A novel approach to topical drug delivery. J. Biomed. Pharm. Res. 2013, 2, 91–94. [Google Scholar]
- Sushma, G.; Pravalika, T.; Sri, B.R.; Priyanaka, P.; Priya, P.V.; Sharma, J.V.C. Emulgels-A Novel Approach for Topical Drug Delivery. Int. J. Pharm. Sci. Rev. Res. 2021, 67, 142–147. [Google Scholar] [CrossRef]
- Panchal, B.; Rathi, S. Topical emulgel: A review on state of art. PSM 2018, 9, 253–264. [Google Scholar]
- Ajazuddin, A.; Alexander, A.; Khichariya, A.; Gupta, S.; Patel, R.; Giri, T.K.; Tripathi, D. Recent expansions in an emergent novel drug delivery technology: Emulgel. J. Control. Release 2013, 171, 122–132. [Google Scholar] [CrossRef] [PubMed]
- Austria, R.; Semenzato, A.; Bettero, A. Stability of vitamin C derivatives in solution and topical formulations. J. Pharm. Biomed. Anal. 1997, 15, 795–801. [Google Scholar] [CrossRef] [PubMed]
- Špiclin, P.; Gašperlin, M.; Kmetec, V. Stability of ascorbylpalmitate in topical microemulsions. Int. J. Pharm. 2001, 222, 271–279. [Google Scholar] [CrossRef]
- Carstensen, J.T. Oxidation in solution. In Drug Stability, Principles and Practices; Carstensen, J.T., Rhodes, C.T., Eds.; Dekker: New York, NY, USA, 2000; pp. 113–131. [Google Scholar]
- Gosenca, M.; Obreza, A.; Pečar, S.; Gašperlin, M. A new approach for increasing ascorbyl palmitate stability by addition of non-irritant co-antioxidant. AAPS PharmSciTech 2010, 11, 1485–1492. [Google Scholar] [CrossRef] [PubMed]
- Khan, H.; Akhtar, N. Synergistic effects of ascorbyl palmitate and sodium ascorbyl phosphate loaded in multiple emulsions on facial skin melanin and erythema content. Biomed. Res. 2016, 27, 570–576. [Google Scholar]
- Lee, S.; Lee, J.; Choi, Y.W. Characterization and evaluation of freeze-dried liposomes loaded with ascorbyl palmitate enabling anti-aging therapy of the skin. Bull.-Korean Chem. Soc. 2007, 28, 99. [Google Scholar]
- Lee, S.; Lee, J.; Choi, Y.W. Skin permeation enhancement of ascorbyl palmitate by liposomal hydrogel (lipogel) formulation and electrical assistance. Biol. Pharm. Bull. 2007, 30, 393–396. [Google Scholar] [CrossRef] [PubMed]
- van Hoogevest, P.; Fahr, A. Nanocosmetics; Cornier, J., Keck, C.M., Van de Voorde, M., Eds.; Springer: Cham, Switzerland, 2019; p. 95. [Google Scholar]
- Verma, D.D.; Verma, S.; Blume, G.; Fahr, A. Liposomes increase skin penetration of entrapped and non-entrapped hydrophilic substances into human skin: A skin penetration and confocal laser scanning microscopy study. Eur. J. Pharm. Biopharm. 2003, 55, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioanal. Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Rapalli, V.K.; Singhvi, G. Dermato-pharmacokinetic: Assessment tools for topically applied dosage forms. Expert Opin. Drug Deliv. 2021, 18, 423–426. [Google Scholar] [CrossRef]
- Pensado, A.; Chiu, W.S.; Cordery, S.F.; Rantou, E.; Bunge, A.L.; Delgado-Charro, M.B. Stratum corneum sampling to assess bioequivalence between topical acyclovir products. Pharm. Res. 2019, 36, 180. [Google Scholar] [CrossRef] [PubMed]
- N’Dri-Stempfer, B.; Navidi, W.C.; Guy, R.H.; Bunge, A.L. Improved bioequivalence assessment of topical dermatological drug products using dermatopharmacokinetics. Pharm. Res. 2009, 26, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Petrović, S.; Tačić, A.; Savić, S.; Nikolić, V.; Nikolić, L.; Savić, S. Sulfanilamide in solution and liposome vesicles; in vitro release and UV-stability studies. SPJ 2017, 25, 1194–1200. [Google Scholar] [CrossRef] [PubMed]
- Ohsawa, T.; Miura, H.; Harada, K. Improvement of encapsulation efficiency of water-soluble drugs in liposomes formed by the freeze-thawing method. Chem. Pharm. Bull. 1985, 33, 3945–3952. [Google Scholar] [CrossRef] [PubMed]
- Rupp, C.; Steckel, H.; Müller, B.W. Mixed micelle formation with phosphatidylcholines: The influence of surfactants with different molecule structures. Int. J. Pharm. 2010, 387, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Zhang, N.; Li, A.; Zou, W.; Xu, W. Preparation and evaluation of N3-O-toluyl-fluorouracil-loaded liposomes. Int. J. Pharm. 2008, 353, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Tadić, V.M.; Žugić, A.; Martinović, M.; Stanković, M.; Maksimović, S.; Frank, A.; Nešić, I. Enhanced Skin Performance of Emulgel vs. Cream as Systems for Topical Delivery of Herbal Actives (Immortelle Extract and Hemp Oil). Pharmaceutics 2021, 13, 1919. [Google Scholar] [CrossRef]
- Tadić, V.M.; Nešić, I.; Martinović, M.; Rój, E.; Brašanac-Vukanović, S.; Maksimović, S.; Žugić, A. Old plant, new possibilities: Wild bilberry (Vacciniummyrtillus L., Ericaceae) in topical skin preparation. Antioxidants 2021, 10, 465. [Google Scholar] [CrossRef] [PubMed]
- Đurašević, S.; Stojković, M.; Sopta, J.; Pavlović, S.; Borković-Mitić, S.; Ivanović, A.; Jasnić, N.; Tosti, T.; Đurović, S.; Đorđević, J.; et al. The effects of meldonium on the acute ischemia/reperfusion liver injury in rats. Sci. Rep. 2021, 11, 1305. [Google Scholar] [CrossRef]
- Ly SuwYoung, L.S.; Chae JungIk, C.J.; Jung YoungSam, J.Y.; Jung WoonWon, J.W.; Lee HyeJeong, L.H.; Lee SeongHo, L.S. Electrochemical detection of ascorbic acid (vitamin C) using a glassy carbon electrode. Nahrung/Food 2004, 48, 201–204. [Google Scholar]
- Đurašević, S.; Jasnić, N.; Prokić, M.; Grigorov, I.; Martinović, V.; Đorđević, J.; Pavlović, S. The protective role of virgin coconut oil on the alloxan-induced oxidative stress in liver, kidney and heart of diabetic rats. Food Funct. 2019, 10, 2114–2124. [Google Scholar] [CrossRef] [PubMed]
- Pugliese, P.T. The skin’s antioxidant systems. Dermatol. Nurs. 1998, 10, 116–401; quiz 17–18. [Google Scholar]
- Al-Niaimi, F.; Chiang, N.Y.Z. Topical vitamin C and the skin: Mechanisms of action and clinical applicabhtions. J. Clin. Aesthetic Dermatol. 2017, 10, 14. [Google Scholar]
- Meščić Macan, A.; Gazivoda Kraljević, T.; Raić-Malić, S. Therapeutic perspective of vitamin C and its derivatives. Antioxidants 2019, 8, 247. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, R.; Singh, B.; Bisht, S.S.; Pandey, J. L-ascorbic acid in organic synthesis: An overview. Curr. Org. Chem. 2009, 13, 99–122. [Google Scholar] [CrossRef]
- Weber, V.; Coudert, P.; Rubat, C.; Duroux, E.; Leal, F.; Couquelet, J. Antioxidant properties of novel lipophilic ascorbic acid analogues. J. Pharm. Pharmacol. 2000, 52, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Patravale, V.B.; Mandawgade, S.D. Novel cosmetic delivery systems: An application update. Int. J. Cosmet. Sci. 2008, 30, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Reva, T.; Vaseem, A.A.; Satyaprakash, S.; Md Khalid, J.A. Liposomes: The novel approach in cosmaceuticals. World J. Pharm. Pharm. Sci. 2015, 4, 1616–1640. [Google Scholar]
- Wu, Y.; Zheng, X.; Xu, X.G.; Li, Y.H.; Wang, B.; Gao, X.H.; Chen, H.D.; Yatskayer, M.; Oresajo, C. Protective effects of a topical antioxidant complex containing vitamins C and E and ferulic acid against ultraviolet irradiation-induced photodamage in Chinese women. J. Drugs Dermatol. 2013, 12, 464–468. [Google Scholar]
- Xu, T.H.; Chen, J.Z.; Li, Y.H.; Wu, Y.; Luo, Y.J.; Gao, X.H.; Chen, H.D. Split-face study of topical 23.8% L-ascorbic acid serum in treating photo-aged skin. J. Drugs Dermatol. 2012, 11, 51–56. [Google Scholar]
- Serrano, G.; Almudever, P.; Serrano, J.M.; Milara, J.; Torrens, A.; Exposito, I.; Cortijo, J. Phosphatidylcholine liposomes as carriers to improve topical ascorbic acid treatment of skin disorders. Clin. Cosmet. Investig. Dermatol. 2015, 8, 591–599. [Google Scholar] [PubMed]
- Gosenca, M.; Bešter-Rogač, M.; Gašperlin, M. Lecithin based lamellar liquid crystals as a physiologically acceptable dermal delivery system for ascorbylpalmitate. Eur. J. Pharm. Sci. 2013, 50, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Z.; Wang, X.; Yin, Y.; Xia, J.; Mei, Y. Preparation and evaluation of a chitosan-coated antioxidant liposome containing vitamin C and folic acid. J. Microencapsul. 2018, 35, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Liu, W.; Zou, L.; Liu, W.; Liu, C.; Liang, R.; Chen, J. Storage stability and skin permeation of vitamin C liposomes improved by pectin coating. Colloids Surf. B Biointerfaces 2014, 117, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Yoo, J.; Shanmugam, S.; Song, C.K. Skin penetration and retention of L-ascorbic acid 2-phosphate using multilamellar vesicles. Arch. Pharm. Res. 2008, 31, 1652–1658. [Google Scholar] [CrossRef] [PubMed]
- Khatibi, S.A.; Misaghi, A.; Moosavy, M.H.; Amoabediny, G.; Basti, A.A. Effect of preparation methods on the properties of Zatariamultifloraboiss. essential oil loaded nanoliposomes: Characterization of size, encapsulation efficiency and stability. Pharm. Sci. 2015, 20, 141–148. [Google Scholar]
- Poudel, A.; Gachumi, G.; Wasan, K.M.; DallalBashi, Z.; El-Aneed, A.; Badea, I. Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics 2019, 11, 185. [Google Scholar] [CrossRef] [PubMed]
- Betz, G.; Imboden, R.; Imanidis, G. Interaction of liposome formulations with human skin in vitro. Int. J. Pharm. 2001, 229, 117–129. [Google Scholar] [CrossRef]
- Contreras, M.F.; Soriano, M.J.; Diéguez, A.R. In vitro percutaneous absorption of all-trans retinoic acid applied in free form or encapsulated in stratum corneum lipid liposomes. Int. J. Pharm. 2005, 297, 134–145. [Google Scholar] [CrossRef]
- Doi, N.; Yamada, Y.; Toyoshima, M.; Kondo, Y.; Nakaoji, K.; Hamada, K.; Tatsuka, M. Facial Treatment with 3-O-Cetyl Ascorbic Acid for Improvement of Skin Texture: Uptake, Effectiveness, and In Vitro Carcinogenicity Assessment. Cosmetics 2021, 8, 38. [Google Scholar] [CrossRef]
- Shirata, M.M.F.; Maia Campos, P.M.B.G. Importance of texture and sensorial profile in cosmetic formulations development. Surg. Cosmet. Dermatol. 2016, 187, 223. [Google Scholar] [CrossRef]
Ingredients (INCI Name) | %, (w/w) |
---|---|
Phosal 40IP | 10.00 |
Ascorbyl palmitate | 5.00 |
Propylene glycol | 10.00 |
Phenoxyethanol (and) Ethylhexylglycerin | 1.00 |
Aqua (Water) | ad 100.00 |
Ingredients (INCI Name) | LipoEmulgel (LE) | Emulgel (E) | LipoCream (LC) | Cream (C) | Function in the Formulation |
---|---|---|---|---|---|
Oil Phase | |||||
Caprylic/capric triglycerides | 11.00 | 11.00 | 11.00 | 11.00 | Emollient |
Isopropyl myristate | 7.50 | 7.50 | 7.50 | 7.50 | Emollient |
Olive oil | 3.00 | 3.00 | 3.00 | 3.00 | Emollient |
Cetearyl alcohol (and) Coco-glucoside | 7.00 | 7.00 | 7.00 | 7.00 | O/W emulsifier |
Myristyl alcohol (and) Myristyl glucoside | 1.50 | 1.50 | 1.50 | 1.50 | O/W emulsifier |
Ascorbylpalmitate | - | 2.00 | - | 2.00 | Active substance |
Ascorbylpalmitatedispersion | 40.00 | - | 40.00 | - | Active substance |
Water phase | |||||
Hydroxyethyl cellulose (HEC) | 1.00 | 1.00 | - | - | Thickener/ Gelling agent |
Propylene glycol | 10.00 | 10.00 | 10.00 | 10.00 | Humectant |
Phenoxyethanol (and) Ethylhexylglycerin | 1.00 | 1.00 | 1.00 | 1.00 | Preservative |
Aqua (Water) | ad 100.00 | ad 100.00 | ad 100.00 | ad 100.00 | Solvent |
Parameter | Value |
---|---|
Test Speed | 2 mm/s |
Target Value | 2 mm |
Trigger load | 10 g |
Probe | Cone probe, TA-STF |
Measured parameters | Hardness cycle 1 Hardness cycle 2 Cohesiveness Adhesiveness |
pH | ||||
Before Centrifuge Assay | After Centrifuge Assay | After Accelerated Stability Test | After 30 Days (21 ± 2 °C) | |
LE | 4.50 | 4.55 | 4.51 | 4.53 |
E | 4.66 | 4.65 | 4.59 | 4.56 |
LC | 4.39 | 4.31 | 4.35 | 4.35 |
C | 4.90 | 4.93 | 4.91 | 4.87 |
Electrical Conductivity (μS/cm) | ||||
Before Centrifuge Assay | After Centrifuge Assay | After Accelerated Stability Test | After 30 Days (21 ± 2 °C) | |
LE | 50.20 | 51.10 | 51.44 | 51.41 |
E | 52.90 | 50.40 | 52.95 | 52.47 |
LC | 39.60 | 37.80 | 40.11 | 39.87 |
C | 59.10 | 57.10 | 56.15 | 58.65 |
Organoleptic Properties (Color, Smell, Appearance) | ||||
LE | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy |
E | white, no odor, glossy | white, no odor, glossy | white, no odor, glossy | white, no odor, glossy |
LC | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy |
C | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy | yellowish-white, no odor, glossy |
Adhesiveness (mJ) | Cohesiveness | Hardness Cycle 1 (g) | Hardness Cycle 2 (g) | |
---|---|---|---|---|
LE | 0.43 ± 0.06 | 1.54 ± 0.18 | 27.67 ± 3.79 | 25.67 ± 4.04 |
E | 0.43 ± 0.06 | 1.78 ± 0.15 | 25.33 ± 1.53 | 24.33 ± 1.53 |
LC | 0.50 ± 0.20 | 1.48 ± 0.28 | 25.67 ± 4.51 | 24.33 ± 5.03 |
C | 0.33 ± 0.06 | 1.74 ± 0.24 | 23.33 ± 2.52 | 22.00 ± 2.65 |
Before Application | ||||
---|---|---|---|---|
LE | E | LC | C | |
Consistency | 10.00 | 9.71 | 9.71 | 9.71 |
Gloss level | 6.95 | 6.12 | 6.59 | 6.12 |
LE | E | LC | C | ||
---|---|---|---|---|---|
Physico-chemical characteristics) | Organoleptic properties | Acceptable | Acceptable | Acceptable | Acceptable |
pH | Within the range suggested for topical preparations | Within the range suggested for topical preparations | Within the range suggested for topical preparations | Within the range suggested for topical preparations | |
Tape stripping | Total percentage of penetrated ascorbyl palmitate | >90% | <90% | >90% | <90% |
+ | |||||
Sensory analysis | Consistency | + | |||
Gloss | + | ||||
Spreadability | + | ||||
Residual film | + | ||||
Fast absorption | + | + | + | ||
Slow absorption | + | ||||
The least sticky | + | ||||
The least greasy feeling on the skin | + | + | |||
Texture analysis | Hardness | + | |||
Consistency | + | ||||
Cohesiveness | + | + | |||
Adhesiveness | + | ||||
Spreadability | + | ||||
Deformity after pressure | Stable structure | Stable structure | Stable structure | Stable structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stolić Jovanović, A.; Tadić, V.M.; Martinović, M.; Žugić, A.; Nešić, I.; Blagojević, S.; Jasnić, N.; Tosti, T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics 2024, 16, 962. https://doi.org/10.3390/pharmaceutics16070962
Stolić Jovanović A, Tadić VM, Martinović M, Žugić A, Nešić I, Blagojević S, Jasnić N, Tosti T. Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics. 2024; 16(7):962. https://doi.org/10.3390/pharmaceutics16070962
Chicago/Turabian StyleStolić Jovanović, Aleksandra, Vanja M. Tadić, Milica Martinović, Ana Žugić, Ivana Nešić, Stevan Blagojević, Nebojša Jasnić, and Tomislav Tosti. 2024. "Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance" Pharmaceutics 16, no. 7: 962. https://doi.org/10.3390/pharmaceutics16070962
APA StyleStolić Jovanović, A., Tadić, V. M., Martinović, M., Žugić, A., Nešić, I., Blagojević, S., Jasnić, N., & Tosti, T. (2024). Liposomal Encapsulation of Ascorbyl Palmitate: Influence on Skin Performance. Pharmaceutics, 16(7), 962. https://doi.org/10.3390/pharmaceutics16070962