Enhanced Stability and Compatibility of Montelukast and Levocetirizine in a Fixed-Dose Combination Monolayer Tablet
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Compatibility Study between Montelukast and Levocetirizine
2.3. Compatibility Study of Excipients
2.4. Preparation of Montelukast–Levocetirizine FDC Monolayer Tablets
2.5. Stability Testing of the Prepared Montelukast–Levocetirizine FDC Monolayer Tablets
2.6. SEM-EDS Mapping of the Tablet
2.7. Drug Content Uniformity Test
2.8. Impurity Test
2.9. The Dissolution Test
2.10. Stability Testing
3. Results
3.1. Compatibility Study between Montelukast and Levocetirizine
3.2. Compatibility Study of Excipients
3.3. Montelukast–Levocetirizine FDC Monolayer Tablets
3.4. Distribution of Montelukast and Levocetirizine inside the Tablet
3.5. Comparative Dissolution Study
3.6. Stability Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sampath, V.; Aguilera, J.; Prunicki, M.; Nadeau, K.C. Mechanisms of climate change and related airo pollution on the immune system leading to allergic disease and asthma. Semin. Immunol. 2023, 67, 101765. [Google Scholar] [CrossRef] [PubMed]
- Baiardini, I.; Braido, F.; Brandi, S.; Canonica, G.W. Allergic diseases and their impact on quality of life. Ann. Allergy Asthma Immunol. 2006, 97, 419–429. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.A. Allergic rhinitis and asthma: Epidemiology and common pathophysiology. Allergy Asthma Proc. 2014. [Google Scholar] [CrossRef]
- Papi, A.; Blasi, F.; Canonica, G.W.; Morandi, L.; Richeldi, L.; Rossi, A. Treatment strategies for asthma: Reshaping the concept of asthma management. Allergy Asthma Clin. Immunol. 2020, 16, 75. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Fujieda, S.; Gotoh, M.; Kurono, Y.; Matsubara, A.; Ohta, N.; Kamijo, A.; Yamada, T.; Nakamaru, Y.; Asako, M. Executive summary: Japanese guidelines for allergic rhinitis 2020. Allergol. Int. 2023, 72, 41–53. [Google Scholar] [CrossRef]
- Egan, M.; Bunyavanich, S. Allergic rhinitis: The “Ghost Diagnosis” in patients with asthma. Asthma Res. Pract. 2015, 1, 8. [Google Scholar] [CrossRef]
- Bourdin, A.; Gras, D.; Vachier, I.; Chanez, P. Upper airway 1: Allergic rhinitis and asthma: United disease through epithelial cells. Thorax 2009, 64, 999–1004. [Google Scholar] [CrossRef]
- Ciebiada, M.; Gorska-Ciebiada, M.; Barylski, M.; Kmiecik, T.; Gorski, P. Use of montelukast alone or in combination with desloratadine or levocetirizine in patients with persistent allergic rhinitis. Am. J. Rhinol. Allergy 2011, 25, e1–e6. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.-C.; Chu, Y.-H.; Kao, C.-H.; Wu, C.-C.; Wang, H.-W. Steroids and antihistamines synergize to inhibit rat’s airway smooth muscle contractility. Eur. Arch. Oto-Rhino-Laryngol. 2015, 272, 1443–1449. [Google Scholar] [CrossRef]
- Nayak, A.; Langdon, R.B. Montelukast in the treatment of allergic rhinitis: An evidence-based review. Drugs 2007, 67, 887–901. [Google Scholar] [CrossRef]
- Ciebiada, M.; Górska-Ciebiada, M.; DuBuske, L.M.; Górski, P. Montelukast with desloratadine or levocetirizine for the treatment of persistent allergic rhinitis. Ann. Allergy Asthma Immunol. 2006, 97, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-K.; Lee, S.Y.; Park, H.-S.; Yoon, H.J.; Kim, S.-H.; Cho, Y.J.; Yoo, K.-H.; Lee, S.-K.; Kim, H.-K.; Park, J.-W. A randomized, multicenter, double-blind, phase III study to evaluate the efficacy on allergic rhinitis and safety of a combination therapy of montelukast and levocetirizine in patients with asthma and allergic rhinitis. Clin. Ther. 2018, 40, 1096–1107.e1091. [Google Scholar] [CrossRef] [PubMed]
- Bylappa, K.; Wilma, D.S.C.R. Evaluation of efficacy of fixed dose combination of montelukast and levocetirizine compared to monotherapy of montelukast and levocetirizine in patients with seasonal allergic rhinitis. Int. J. Otorhinolaryngol. Head. Neck Surg. 2018, 4, 467. [Google Scholar] [CrossRef]
- Kim, M.-H.; Sohn, K.-H.; Park, H.J.; Nam, Y.H.; Kim, M.-H.; Jung, J.-W.; Kwon, J.-W.; Shin, Y.S.; Park, J.-S.; Cho, Y.-J. Multicenter prospective observational study to evaluate the therapeutic effect and safety of a combination of montelukast and levocetirizine for allergic rhinitis when administered to patients with allergic rhinitis and asthma. Int. Arch. Allergy Immunol. 2022, 183, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Ashrafa, S.; Kumar, B.P.; Khan, S.A. Formulation and in-vitro evaluation of Levocetirizine dihydrochloride and Montelukast sodium bilayered tablet for bi-modal drug release. Indian J. Res. Pharm. Biotechnol. 2014, 2, 1460. [Google Scholar]
- Mohammed, M.; Maringanti, P.S.; Mamidi, S. Formulation and evaluation of bilayered tablets of montelukast and levocetrizine dihydrochloride using natural and synthetic polymers. Int. J. Drug Deliv. 2011, 3, 597. [Google Scholar]
- Kang, S.-J.; Kim, J.-E. Development of clinically optimized sitagliptin and dapagliflozin complex Tablets: Pre-Formulation, Formulation, and Human Bioequivalence Studies. Pharmaceutics 2023, 15, 1246. [Google Scholar] [CrossRef]
- Wu, Y.; Levons, J.; Narang, A.S.; Raghavan, K.; Rao, V.M. Reactive impurities in excipients: Profiling, identification and mitigation of drug–excipient incompatibility. AAPS Pharmscitech 2011, 12, 1248–1263. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, R.; Naveen, Y. Pharmaceutical processing–A review on wet granulation technology. Int. J. Pharm. Front. Res. 2011, 1, 65–83. [Google Scholar]
- Kim, Y.H.; Kim, D.W.; Kwon, M.S.; Kwon, T.K.; Park, J.H.; Jin, S.G.; Kim, K.S.; Kim, Y.I.; Park, J.-H.; Kim, J.O. Novel montelukast sodium-loaded clear oral solution prepared with hydroxypropyl-β-cyclodextrin as a solubilizer and stabilizer: Enhanced stability and bioequivalence to commercial granules in rats. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 479–487. [Google Scholar] [CrossRef]
- Park, H.-R.; Seok, S.H.; Park, E.-S. Complexation of levocetirizine with ion-exchange resins and its effect on the stability of powder mixtures containing levocetirizine and montelukast. J. Pharm. Investig. 2023, 53, 377–388. [Google Scholar] [CrossRef]
- Araujo-Fernandez, A.S.; Uribe-Villarreal, J.C.; Perez-Chauca, E.; Alva-Plasencia, P.M.; Caballero-Aquiño, O.E.; Ganoza-Yupanqui, M.L. Validation of a UV spectrophotometric method to quantify losartan potassium in tablets from the dissolution test at pH 1.2, 4.5 and 6.8. J. Pharm. Pharmacogn. Res. 2022, 10, 310–317. [Google Scholar] [CrossRef]
- Mahesh, E.; Kumar, G.K.; Ahmed, M.G.; Kumar, P. Formulation and evaluation of montelukast sodium fast dissolving tablets. Asian J. Biomed. Pharm. Sci. 2012, 2, 75–82. [Google Scholar]
- Ali, M.S.; Alam, M.S.; Alam, N.; Anwer, T.; Safhi, M.M.A. Accelerated stability testing of a clobetasol propionate-loaded nanoemulsion as per ICH guidelines. Sci. Pharm. 2013, 81, 1089–1100. [Google Scholar] [CrossRef] [PubMed]
- Somvanshi, Y.; Satbhai, P. ICH guidelines and Main focus on stability guidelines for new formulation and dosage forms. World J. Pharm. Rese 2015, 4, 561–578. [Google Scholar]
- Liltorp, K.; Larsen, T.G.; Willumsen, B.; Holm, R. Solid state compatibility studies with tablet excipients using non thermal methods. J. Pharm. Biomed. Anal. 2011, 55, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Flavier, K.; McLellan, J.; Botoy, T.; Waterman, K.C. Accelerated shelf life modeling of appearance change in drug products using ASAP prime®. Pharm. Dev. Technol. 2022, 27, 740–748. [Google Scholar] [CrossRef]
- Sims, J.L.; Carreira, J.A.; Carrier, D.J.; Crabtree, S.R.; Easton, L.; Hancock, S.A.; Simcox, C.E. A new approach to accelerated drug-excipient compatibility testing. Pharm. Dev. Technol. 2003, 8, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, S.K.; Singh, D.K.; Ladumor, M.K.; Chakraborti, A.K.; Singh, S. Study of degradation behaviour of montelukast sodium and its marketed formulation in oxidative and accelerated test conditions and prediction of physicochemical and ADMET properties of its degradation products using ADMET Predictor™. J. Pharm. Biomed. Anal. 2018, 158, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Hartauer, K.J.; Arbuthnot, G.N.; Baertschi, S.W.; Johnson, R.A.; Luke, W.D.; Pearson, N.G.; Rickard, E.C.; Tingle, C.A.; Tsang, P.K.; Wiens, R.E. Influence of peroxide impurities in povidone and crospovidone on the stability of raloxifene hydrochloride in tablets: Identification and control of an oxidative degradation product. Pharm. Dev. Technol. 2000, 5, 303–310. [Google Scholar] [CrossRef]
- Hiremath, P.; Nuguru, K.; Agrahari, V. Material attributes and their impact on wet granulation process performance. In Handbook of Pharmaceutical Wet Granulation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 263–315. [Google Scholar]
- Narang, A.S.; Desai, D.; Badawy, S. Impact of excipient interactions on solid dosage form stability. Excip. Appl. Formul. Des. Drug Deliv. 2015, 10, 93–137. [Google Scholar]
- Mutta, K.S.; Mondal, P.; Ashvini, H. Formulation and Evaluation of Montelukast and Levocetirizine Bilayer Tablets. RGUHS J. Pharm. Sci. 2015, 5, 3–8. [Google Scholar]
- Okumu, A.; DiMaso, M.; Löbenberg, R. Dynamic dissolution testing to establish in vitro/in vivo correlations for montelukast sodium, a poorly soluble drug. Pharm. Res. 2008, 25, 2778–2785. [Google Scholar] [CrossRef] [PubMed]
- Zaid, A.N.; Natour, S.; Qaddomi, A.; Abu Ghoush, A. Formulation and in vitro and in vivo evaluation of film-coated montelukast sodium tablets using Opadry® yellow 20A82938 on an industrial scale. Drug Des. Dev. Ther. 2013, 7, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Sholapur, H.P.N.A.; Dasankoppa, F.S.; Channabasavaraja, M.; Sagare, R.D.; Abbas, Z.; Swamy, N.G.N.; Sai, L.S.; Kshatriya, K. Quality by Design Approach for Design, Development and Optimization of Orally Disintegrating Tablets of Montelukast Sodium. Int. J. Pharm. Investig. 2021, 11, 288. [Google Scholar] [CrossRef]
- González-González, O.; Ramirez, I.O.; Ramirez, B.I.; O’Connell, P.; Ballesteros, M.P.; Torrado, J.J.; Serrano, D.R. Drug stability: ICH versus accelerated predictive stability studies. Pharmaceutics 2022, 14, 2324. [Google Scholar] [CrossRef]
- Lee, H.R.; Park, H.J.; Park, J.S.; Park, D.W.; Ho, M.J.; Kim, D.Y.; Lee, H.C.; Kim, E.J.; Song, W.H.; Park, J.S. Montelukast microsuspension with hypromellose for improved stability and oral absorption. Int. J. Biol. Macromol. 2021, 183, 1732–1742. [Google Scholar] [CrossRef]
Montelukast Impurity HPLC Method | Levocetirizine Impurity HPLC Method | Drug Content HPLC Method (Simultaneous Quantification) | |
---|---|---|---|
Injection volume | 10 μL | 5 μL | 20 μL |
UVD wavelength | 238 nm | 230 nm | 225 nm |
Column | Zorbax SB-Phenyl, 4.6 mm × 250 mm, 5 μm | Symmetry Shield RP18, 4.6 mm × 250 mm, 5 μm | Hypersil GOLD-Phenyl, 3.0 mm × 100 mm, 5 μm |
Column temperature | 25 °C | 30 °C | Room temperature |
Flow rate | 1.5 mL/min | 1.0 mL/min | 0.9 mL/min |
Mobile phase | A. 0.1% (v/v) trifluoroacetic acid in water | A. Water/acetonitrile/10% trifluoroacetic acid = 690:300:10 (v/v/v) | A. 0.2% (v/v) trifluoroacetic acid in water |
B. 0.1% (v/v) trifluoroacetic acid in acetonitrile | B. Water/acetonitrile/10% trifluoroacetic acid = 290:700:10 (v/v/v) | B. 0.2% (v/v) trifluoroacetic acid in acetonitrile | |
Elution mode | Gradient ((min)/%A, %B) 0/60, 40 20/10, 90 30/10, 90 31/60, 40 35/60, 40 | Gradient ((min)/%A, %B) 0/100, 0 2/100, 0 30/25, 75 40/100, 0 50/100, 0 | Isocratic A:B = 60:40 (v/v) mixture |
Ingredients | Formulation (mg/Tablet) | |||
---|---|---|---|---|
F1 | F2 | F3 | F4 | |
Montelukast Wet Granulation | ||||
Montelukast sodium | 10.4 | 10.4 | 10.4 | 10.4 |
Mannitol 100SD | 114.6 | 111.6 | 111.6 | 111.6 |
Avicel PH 101 | 60.0 | 60.0 | 60.0 | 60.0 |
Croscarmellose sodium | 5.0 | 5.0 | 5.0 | 5.0 |
Sodium citrate | - | - | 5.0 | - |
Montelukast Binder | ||||
HPMC 2910 P645 | 3.0 | 3.0 | 3.0 | 3.0 |
(Water) | q.s | q.s | q.s | q.s |
Levocetirizine Wet Granulation | ||||
Levocetirizine dihydrochloride | 5.0 | 5.0 | 5.0 | 5.0 |
Mannitol 100SD | - | 100.0 | 100.0 | 100.0 |
Avicel PH101 | - | 44.0 | 44.0 | 44.0 |
Meglumine | - | - | - | 5.0 |
Levocetirizine Binder | ||||
HPMC 2910 P645 | - | 3.0 | 3.0 | 3.0 |
(Water) | - | q.s | q.s | q.s |
Final Mixing | ||||
Magnesium stearate | 2.0 | 3.0 | 3.0 | 3.0 |
Total weight (mg) | 200.0 | 345.0 | 350.0 | 350.0 |
Features of formulation | Montelukast granule + Levocetirizine post-blend | Montelukast granule + Levocetirizine granule | Sodium citrate added to montelukast granule | Meglumine added to levocetirizine granule |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yun, T.H.; Kim, M.J.; Lee, J.G.; Bang, K.H.; Kim, K.S. Enhanced Stability and Compatibility of Montelukast and Levocetirizine in a Fixed-Dose Combination Monolayer Tablet. Pharmaceutics 2024, 16, 963. https://doi.org/10.3390/pharmaceutics16070963
Yun TH, Kim MJ, Lee JG, Bang KH, Kim KS. Enhanced Stability and Compatibility of Montelukast and Levocetirizine in a Fixed-Dose Combination Monolayer Tablet. Pharmaceutics. 2024; 16(7):963. https://doi.org/10.3390/pharmaceutics16070963
Chicago/Turabian StyleYun, Tae Han, Moon Jung Kim, Jung Gyun Lee, Kyu Ho Bang, and Kyeong Soo Kim. 2024. "Enhanced Stability and Compatibility of Montelukast and Levocetirizine in a Fixed-Dose Combination Monolayer Tablet" Pharmaceutics 16, no. 7: 963. https://doi.org/10.3390/pharmaceutics16070963
APA StyleYun, T. H., Kim, M. J., Lee, J. G., Bang, K. H., & Kim, K. S. (2024). Enhanced Stability and Compatibility of Montelukast and Levocetirizine in a Fixed-Dose Combination Monolayer Tablet. Pharmaceutics, 16(7), 963. https://doi.org/10.3390/pharmaceutics16070963