An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Model of Lung Cancer
2.2. Experimental Timeline of Perfusion Study
2.3. Tumor Slice Preparation
2.4. Immunofluorescence (IF) Evaluations
2.5. Tumor 2D Imaging and Heatmaps
2.6. Computational Model
2.7. Statistical Analysis
3. Results
3.1. Experimental Results
3.2. Computational Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Area covered by the cells | Acell |
Capillary diameter | |
Capillary internal surface | Acap |
Capillary length | L |
Capillary volumetric fraction | rvcap |
Cell volumetric fraction | rvcell |
Comparative Medicine Program | CMP |
Darcy coefficients | NI,i and NJ,j |
Pressure increments in time step | ΔPK |
Extracellular matrix | ECM |
Finite element | FE |
FE matrix | K |
Filtration coefficient | Kf |
Hydraulic coefficient | |
Immunofluorescence | IF |
Institutional Animal Care and Use Committee | IACUC |
Interstitial fluid pressure | IFP |
Kojic Transport Model | KTM |
Lewis lung carcinoma | LLC |
Nodal pressure vector | PK |
Non-small-cell lung cancer | NSCLC |
Total surface of the cell grid | Atot |
Tumor microenvironment | TME |
Tumor volumes | V |
Volume of the continuum | |
Volumetric fraction | |
Volumetric fraction of the capillary domain | |
Volumetric fraction of the extracellular space | rex |
Volumetric term | |
Wall hydraulic permeability coefficient |
References
- Rodríguez, F.; Caruana, P.; De la Fuente, N.; Español, P.; Gámez, M.; Balart, J.; Llurba, E.; Rovira, R.; Ruiz, R.; Martín-Lorente, C.; et al. Nano-Based Approved Pharmaceuticals for Cancer Treatment: Present and Future Challenges. Biomolecules 2022, 12, 784. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Demarchi, D.; Ruo Roch, M.; Aiassa, S.; Pagana, G. Nanomaterials to Fight Cancer: An Overview on Their Multifunctional Exploitability. J. Nanosci. Nanotechnol. 2021, 21, 2760–2777. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, X. Nanomedicine Solutions to Intricate Physiological-Pathological Barriers and Molecular Mechanisms of Tumor Multidrug Resistance. J. Control. Release 2020, 323, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the Clinic: An Update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.-R.; Stanton-Maxey, K.J.; Stanley, J.K.; Levin, C.S.; Bardhan, R.; Akin, D.; Badve, S.; Sturgis, J.; Robinson, J.P.; Bashir, R.; et al. A Cellular Trojan Horse for Delivery of Therapeutic Nanoparticles into Tumors. Nano Lett. 2007, 7, 3759–3765. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-C.; Viswanath, D.I.; Pesaresi, F.; Xu, Y.; Zhang, L.; Di Trani, N.; Paez-Mayorga, J.; Hernandez, N.; Wang, Y.; Erm, D.R.; et al. Potentiating Antitumor Efficacy through Radiation and Sustained Intratumoral Delivery of Anti-CD40 and Anti-PDL1. Int. J. Radiat. Oncol. Biol. Phys. 2021, 110, 492–506. [Google Scholar] [CrossRef]
- Viswanath, D.I.; Liu, H.-C.; Huston, D.P.; Chua, C.Y.X.; Grattoni, A. Emerging Biomaterial-Based Strategies for Personalized Therapeutic in Situ Cancer Vaccines. Biomaterials 2022, 280, 121297. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Ho, J.; Susnjar, A.; Lolli, G.; Di Trani, N.; Pesaresi, F.; Zhang, M.; Nance, E.; Grattoni, A. Intratumoral Nanofluidic System for Enhancing Tumor Biodistribution of Agonist CD40 Antibody. Adv. Therap. 2020, 3, 2000055. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Jain, P.; Susnjar, A.; Rhudy, J.; Folci, M.; Ballerini, A.; Gilbert, A.; Singh, S.; Bruno, G.; Filgueira, C.S.; et al. Nanofluidic Drug-Eluting Seed for Sustained Intratumoral Immunotherapy in Triple Negative Breast Cancer. J. Control. Release 2018, 285, 23–34. [Google Scholar] [CrossRef]
- Tomasetti, L.; Breunig, M. Preventing Obstructions of Nanosized Drug Delivery Systems by the Extracellular Matrix. Adv. Healthc. Mater. 2018, 7, 1700739. [Google Scholar] [CrossRef]
- Lee, B.J.; Cheema, Y.; Bader, S.; Duncan, G.A. Shaping Nanoparticle Diffusion through Biological Barriers to Drug Delivery. JCIS Open 2021, 4, 100025. [Google Scholar] [CrossRef]
- Nizzero, S.; Ziemys, A.; Ferrari, M. Transport Barriers and Oncophysics in Cancer Treatment. Trends Cancer 2018, 4, 277–280. [Google Scholar] [CrossRef] [PubMed]
- van de Ven, A.L.; Wu, M.; Lowengrub, J.; McDougall, S.R.; Chaplain, M.A.J.; Cristini, V.; Ferrari, M.; Frieboes, H.B. Integrated Intravital Microscopy and Mathematical Modeling to Optimize Nanotherapeutics Delivery to Tumors. AIP Adv. 2012, 2, 11208. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Frontiers in Cancer Nanomedicine: Directing Mass Transport through Biological Barriers. Trends Biotechnol. 2010, 28, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, K.; Kojic, M.; Milosevic, M.; Tanei, T.; Ferrari, M.; Ziemys, A. Capillary-Wall Collagen as a Biophysical Marker of Nanotherapeutic Permeability into the Tumor Microenvironment. Cancer Res. 2014, 74, 4239–4246. [Google Scholar] [CrossRef] [PubMed]
- Heldin, C.-H.; Rubin, K.; Pietras, K.; Ostman, A. High Interstitial Fluid Pressure—An Obstacle in Cancer Therapy. Nat. Rev. Cancer 2004, 4, 806–813. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Zhu, J.; Li, Y.; Shi, H.; Gong, Y.; Li, R.; Huo, Q.; Ma, T.; Liu, Y. Size Shrinkable Drug Delivery Nanosystems and Priming the Tumor Microenvironment for Deep Intratumoral Penetration of Nanoparticles. J. Control. Release 2018, 277, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Zhang, A.; Butler, E.B.; Demarchi, D.; Hafner, J.H.; Grattoni, A.; Filgueira, C.S. Effects of Surface Protein Adsorption on the Distribution and Retention of Intratumorally Administered Gold Nanoparticles. Pharmaceutics 2021, 13, 216. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Sprouse, M.L.; Wang, D.; Ricchetti, S.; Hirsch, M.; Ferrante, N.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Intratumoral Gold Nanoparticle-Enhanced CT Imaging: An in Vivo Investigation of Biodistribution and Retention. In Proceedings of the 2020 IEEE 20th International Conference on Nanotechnology (IEEE-NANO), Montreal, QC, Canada, 28–31 July 2020; pp. 349–353. [Google Scholar] [CrossRef]
- Terracciano, R.; Carcamo-Bahena, Y.; Royal, A.L.R.; Messina, L.; Delk, J.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Wang, Z.; Cristini, V.; et al. Zonal Intratumoral Delivery of Nanoparticles Guided by Surface Functionalization. Langmuir 2022, 38, 13983–13994. [Google Scholar] [CrossRef]
- Terracciano, R.; Carcamo-Bahena, Y.; Butler, E.B.; Demarchi, D.; Grattoni, A.; Filgueira, C.S. Hyaluronate-Thiol Passivation Enhances Gold Nanoparticle Peritumoral Distribution When Administered Intratumorally in Lung Cancer. Biomedicines 2021, 9, 1561. [Google Scholar] [CrossRef]
- Zhang, D.; Zhang, J. Surface Engineering of Nanomaterials with Phospholipid-Polyethylene Glycol-Derived Functional Conjugates for Molecular Imaging and Targeted Therapy. Biomaterials 2020, 230, 119646. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Zhang, T.; Qin, S.; Huang, Z.; Zhou, L.; Shi, J.; Nice, E.C.; Xie, N.; Huang, C.; Shen, Z. Enhancing the Therapeutic Efficacy of Nanoparticles for Cancer Treatment Using Versatile Targeted Strategies. J. Hematol. Oncol. 2022, 15, 132. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.L.; Reuter, K.G.; Luft, J.C.; Pecot, C.V.; Zamboni, W.; DeSimone, J.M. Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Lett. 2017, 17, 2879–2886. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Vighetto, V.; Di Marzio, N.; Ferraro, F.; Hirsch, M.; Ferrante, N.; Mitra, S.; Grattoni, A.; Filgueira, C.S. Gold Nanoparticles Radio-Sensitize and Reduce Cell Survival in Lewis Lung Carcinoma. Nanomaterials 2020, 10, 1717. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Wu, Z.; Liu, J.; Zhang, W. Particle Morphology: An Important Factor Affecting Drug Delivery by Nanocarriers into Solid Tumors. Expert Opin. Drug Deliv. 2018, 15, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Held, K.D.; Kawamura, H.; Kaminuma, T.; Paz, A.E.S.; Yoshida, Y.; Liu, Q.; Willers, H.; Takahashi, A. Effects of Charged Particles on Human Tumor Cells. Front. Oncol. 2016, 6, 23. [Google Scholar] [CrossRef] [PubMed]
- Terracciano, R.; Zhang, A.; Simeral, M.L.; Demarchi, D.; Hafner, J.H.; Filgueira, C.S. Improvements in Gold Nanorod Biocompatibility with Sodium Dodecyl Sulfate Stabilization. J. Nanotheranostics 2021, 2, 157–173. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, S.; Yang, D.; Fang, Y.; Lin, X.; Jin, X.; Liu, Y.; Liu, X.; Su, K.; Shi, K. Influencing Factors and Strategies of Enhancing Nanoparticles into Tumors in Vivo. Acta Pharm. Sin. B 2021, 11, 2265–2285. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, M. Cancer Nanotechnology: Opportunities and Challenges. Nat. Rev. Cancer 2005, 5, 161–171. [Google Scholar] [CrossRef]
- Ziemys, A.; Kojic, M.; Milosevic, M.; Ferrari, M. Interfacial Effects on Nanoconfined Diffusive Mass Transport Regimes. Phys. Rev. Lett. 2012, 108, 236102. [Google Scholar] [CrossRef]
- Ziemys, A.; Kojic, M.; Milosevic, M.; Kojic, N.; Hussain, F.; Ferrari, M.; Grattoni, A. Hierarchical Modeling of Diffusive Transport through Nanochannels by Coupling Molecular Dynamics with Finite Element Method. J. Comput. Phys. 2011, 230, 5722–5731. [Google Scholar] [CrossRef]
- Blanco, E.; Ferrari, M. Emerging Nanotherapeutic Strategies in Breast Cancer. Breast 2014, 23, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Yokoi, K.; Tanei, T.; Godin, B.; van de Ven, A.L.; Hanibuchi, M.; Matsunoki, A.; Alexander, J.; Ferrari, M. Serum Biomarkers for Personalization of Nanotherapeutics-Based Therapy in Different Tumor and Organ Microenvironments. Cancer Lett. 2014, 345, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Shah, S.; Tan, J. Computational Modeling of Nanoparticle Targeted Drug Delivery. Rev. Nanosci. Nanotechnol. 2012, 1, 66–83. [Google Scholar] [CrossRef]
- Kaddi, C.D.; Phan, J.H.; Wang, M.D. Computational Nanomedicine: Modeling of Nanoparticle-Mediated Hyperthermal Cancer Therapy. Nanomedicine 2013, 8, 1323–1333. [Google Scholar] [CrossRef] [PubMed]
- Frieboes, H.B.; Wu, M.; Lowengrub, J.; Decuzzi, P.; Cristini, V. A Computational Model for Predicting Nanoparticle Accumulation in Tumor Vasculature. PLoS ONE 2013, 8, e56876. [Google Scholar] [CrossRef] [PubMed]
- Stillman, N.R.; Balaz, I.; Tsompanas, M.-A.; Kovacevic, M.; Azimi, S.; Lafond, S.; Adamatzky, A.; Hauert, S. Evolutionary Computational Platform for the Automatic Discovery of Nanocarriers for Cancer Treatment. npj Comput. Mater. 2021, 7, 1–12. [Google Scholar] [CrossRef]
- Guo, P.; Yang, J.; Bielenberg, D.R.; Dillon, D.; Zurakowski, D.; Moses, M.A.; Auguste, D.T. A Quantitative Method for Screening and Identifying Molecular Targets for Nanomedicine. J. Control. Release 2017, 263, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Kutumova, E.O.; Akberdin, I.R.; Kiselev, I.N.; Sharipov, R.N.; Egorova, V.S.; Syrocheva, A.O.; Parodi, A.; Zamyatnin, A.A.; Kolpakov, F.A. Physiologically Based Pharmacokinetic Modeling of Nanoparticle Biodistribution: A Review of Existing Models, Simulation Software, and Data Analysis Tools. Int. J. Mol. Sci. 2022, 23, 12560. [Google Scholar] [CrossRef]
- Stapleton, S.; Milosevic, M.; Allen, C.; Zheng, J.; Dunne, M.; Yeung, I.; Jaffray, D.A. A Mathematical Model of the Enhanced Permeability and Retention Effect for Liposome Transport in Solid Tumors. PLoS ONE 2013, 8, e81157. [Google Scholar] [CrossRef]
- Caddy, G.; Stebbing, J.; Wakefield, G.; Xu, X.Y. Modelling of Nanoparticle Distribution in a Spherical Tumour during and Following Local Injection. Pharmaceutics 2022, 14, 1615. [Google Scholar] [CrossRef] [PubMed]
- Dogra, P.; Butner, J.D.; Ruiz Ramírez, J.; Chuang, Y.; Noureddine, A.; Jeffrey Brinker, C.; Cristini, V.; Wang, Z. A Mathematical Model to Predict Nanomedicine Pharmacokinetics and Tumor Delivery. Comput. Struct. Biotechnol. J. 2020, 18, 518–531. [Google Scholar] [CrossRef] [PubMed]
- Kojic, M.; Filipovic, N.; Milosevic, M. PAK-BIO; Finite Element Program for Bioengineering Problems; Bioengineering R&D Center and University of Kragujevac: Kragujevac, Serbia, 2020. [Google Scholar]
- Card, J.W.; Carey, M.A.; Bradbury, J.A.; DeGraff, L.M.; Morgan, D.L.; Moorman, M.P.; Flake, G.P.; Zeldin, D.C. Gender Differences in Murine Airway Responsiveness and Lipopolysaccharide-Induced Inflammation. J. Immunol. 2006, 177, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.G.; Peiffer, D.S.; Larson, M.; Navarro, F.; Watkins, S.K. FOXO3, Estrogen Receptor Alpha, and Androgen Receptor Impact Tumor Growth Rate and Infiltration of Dendritic Cell Subsets Differentially between Male and Female Mice. Cancer Immunol. Immunother. 2017, 66, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.A.; Hill, S.A.; Begg, A.C.; Denekamp, J. Validation of the Fluorescent Dye Hoechst 33342 as a Vascular Space Marker in Tumours. Br. J. Cancer 1988, 57, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Kojic, M.; Milosevic, M.; Simic, V.; Koay, E.J.; Fleming, J.B.; Nizzero, S.; Kojic, N.; Ziemys, A.; Ferrari, M. A Composite Smeared Finite Element for Mass Transport in Capillary Systems and Biological Tissue. Comput. Methods Appl. Mech. Eng. 2017, 324, 413–437. [Google Scholar] [CrossRef] [PubMed]
- Kojic, M.; Milosevic, M.; Simic, V.; Koay, E.J.; Kojic, N.; Ziemys, A.; Ferrari, M. Extension of the Composite Smeared Finite Element (CSFE) to Include Lymphatic System in Modeling Mass Transport in Capillary Systems and Biological Tissue. J. Serbian Soc. Comput. Mech. 2017, 11, 108–119. [Google Scholar] [CrossRef] [PubMed]
- Kojic, M.; Simic, V.; Milosevic, M. Composite Smeared Finite Element—Some Aspects of the Formulation and Accuracy. In IPSI Transactions on Advanced Research; IPSI: Belgrade, Serbia, 2017; Volume 13, ISBN 1820-4511. [Google Scholar]
- Kojic, M.; Milosevic, M.; Kojic, N.; Koay, E.J.; Fleming, J.B.; Ferrari, M.; Ziemys, A. Mass Release Curves as the Constitutive Curves for Modeling Diffusive Transport within Biological Tissue. Comput. Biol. Med. 2018, 92, 156–167. [Google Scholar] [CrossRef]
- Kojic, M.; Milosevic, M.; Simic, V.; Koay, E.J.; Kojic, N.; Ziemys, A.; Ferrari, M. Multiscale Smeared Finite Element Model for Mass Transport in Biological Tissue: From Blood Vessels to Cells and Cellular Organelles. Comput. Biol. Med. 2018, 99, 7–23. [Google Scholar] [CrossRef]
- Kojic, M.; Milosevic, M.; Simic, V.; Geroski, V.; Ziemys, A.; Filipovic, N.; Ferrari, M. Smeared Multiscale Finite Element Model for Electrophysiology and Ionic Transport in Biological Tissue. Comput. Biol. Med. 2019, 108, 288–304. [Google Scholar] [CrossRef]
- Kojic, M. Smeared Concept as a General Methodology in Finite Element Modeling of Physical Fields and Mechanical Problems in Composite Media. J. Serb. Soc. Comp. Mech. 2018, 12, 1–16. [Google Scholar] [CrossRef]
- Milosevic, M.; Simic, V.; Milicevic, B.; Koay, E.J.; Ferrari, M.; Ziemys, A.; Kojic, M. Correction Function for Accuracy Improvement of the Composite Smeared Finite Element for Diffusive Transport in Biological Tissue Systems. Comput. Methods Appl. Mech. Eng. 2018, 338, 97–116. [Google Scholar] [CrossRef]
- Milosevic, M.; Stojanovic, D.; Simic, V.; Milicevic, B.; Radisavljevic, A.; Uskokovic, P.; Kojic, M. A Computational Model for Drug Release from PLGA Implant. Materials 2018, 11, 2416. [Google Scholar] [CrossRef]
- Kojic, M.; Milosevic, M.; Ziemys, A. Computational Models in Biomedical Engineering—Finite Element Models Based on Smeared Physical Fields: Theory, Solutions, and Software; Elsevier: Amsterdam, The Netherlands, 2022; ISBN 978-0-323-88472-3. [Google Scholar]
- Kojic, M.; Milosevic, M.; Simic, V.; Milicevic, B.; Terracciano, R.; Filgueira, C.S. On the Generality of the Finite Element Modeling Physical Fields in Biological Systems by the Multiscale Smeared Concept (Kojic Transport Model). Heliyon 2024, 10, e26354. [Google Scholar] [CrossRef] [PubMed]
- Forster, J.C.; Harriss-Phillips, W.M.; Douglass, M.J.; Bezak, E. A Review of the Development of Tumor Vasculature and Its Effects on the Tumor Microenvironment. Hypoxia 2017, 5, 21–32. [Google Scholar] [CrossRef] [PubMed]
- Nagy, J.A.; Chang, S.-H.; Dvorak, A.M.; Dvorak, H.F. Why Are Tumour Blood Vessels Abnormal and Why Is It Important to Know? Br. J. Cancer 2009, 100, 865–869. [Google Scholar] [CrossRef] [PubMed]
- Ganong, W.F. Review of Medical Physiology, 22nd ed.; McGraw-Hill Medical: New York, NY, USA, 2005. [Google Scholar]
- Kurbel, S.; Flam, J. Interstitial Hydrostatic Pressure: A Manual for Students. Adv. Physiol. Educ. 2007, 31, 116–117. [Google Scholar] [CrossRef]
- Boron, W.F.; Boulpaep, E.L. Medical Physiology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Open Educational Resources (OER) Services Anatomy and Physiology II. Available online: https://courses.lumenlearning.com/suny-ap2/chapter/capillary-exchange (accessed on 14 February 2023).
- Boucher, Y.; Jain, R.K. Microvascular Pressure Is the Principal Driving Force for Interstitial Hypertension in Solid Tumors: Implications for Vascular Collapse. Cancer Res. 1992, 52, 5110–5114. [Google Scholar]
- Jain, R.K.; Baxter, L.T. Mechanisms of Heterogeneous Distribution of Monoclonal Antibodies and Other Macromolecules in Tumors: Significance of Elevated Interstitial Pressure. Cancer Res. 1988, 48, 7022–7032. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martino, A.; Terracciano, R.; Milićević, B.; Milošević, M.; Simić, V.; Fallon, B.C.; Carcamo-Bahena, Y.; Royal, A.L.R.; Carcamo-Bahena, A.A.; Butler, E.B.; et al. An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors. Pharmaceutics 2024, 16, 1009. https://doi.org/10.3390/pharmaceutics16081009
Martino A, Terracciano R, Milićević B, Milošević M, Simić V, Fallon BC, Carcamo-Bahena Y, Royal ALR, Carcamo-Bahena AA, Butler EB, et al. An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors. Pharmaceutics. 2024; 16(8):1009. https://doi.org/10.3390/pharmaceutics16081009
Chicago/Turabian StyleMartino, Antonio, Rossana Terracciano, Bogdan Milićević, Miljan Milošević, Vladimir Simić, Blake C. Fallon, Yareli Carcamo-Bahena, Amber Lee R. Royal, Aileen A. Carcamo-Bahena, Edward Brian Butler, and et al. 2024. "An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors" Pharmaceutics 16, no. 8: 1009. https://doi.org/10.3390/pharmaceutics16081009
APA StyleMartino, A., Terracciano, R., Milićević, B., Milošević, M., Simić, V., Fallon, B. C., Carcamo-Bahena, Y., Royal, A. L. R., Carcamo-Bahena, A. A., Butler, E. B., Willson, R. C., Kojić, M., & Filgueira, C. S. (2024). An Insight into Perfusion Anisotropy within Solid Murine Lung Cancer Tumors. Pharmaceutics, 16(8), 1009. https://doi.org/10.3390/pharmaceutics16081009