Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of a Co-Processed Excipient
2.2.2. Preparation of SDs
2.2.3. Characterization of SDs
2.2.4. Tableting
3. Results and Discussion
3.1. Drug Release from SDs and PMs
3.2. Production and Characterization of ODTs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rodriguez-Aller, M.; Guillarme, D.; Veuthey, J.-L.; Gurny, R. Strategies for Formulating and Delivering Poorly Water-Soluble Drugs. J. Drug Deliv. Sci. Technol. 2015, 30, 342–351. [Google Scholar] [CrossRef]
- Baumgartner, A.; Planinšek, O. Application of Commercially Available Mesoporous Silica for Drug Dissolution Enhancement in Oral Drug Delivery. Eur. J. Pharm. Sci. 2021, 167, 106015. [Google Scholar] [CrossRef] [PubMed]
- Baghel, S.; Cathcart, H.; O’Reilly, N.J. Polymeric Amorphous Solid Dispersions: A Review of Amorphization, Crystallization, Stabilization, Solid-State Characterization, and Aqueous Solubilization of Biopharmaceutical Classification System Class II Drugs. J. Pharm. Sci. 2016, 105, 2527–2544. [Google Scholar] [CrossRef] [PubMed]
- Baumgartner, A.; Planinšek, O. Effect of Process Parameters in High Shear Granulation on Characteristics of a Novel Co-Processed Mesoporous Silica Material. Eur. J. Pharm. Sci. 2023, 188, 106528. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous Silica Materials: From Physico-Chemical Properties to Enhanced Dissolution of Poorly Water-Soluble Drugs. J. Control. Release 2017, 262, 329–347. [Google Scholar] [CrossRef] [PubMed]
- Démuth, B.; Nagy, Z.K.; Balogh, A.; Vigh, T.; Marosi, G.; Verreck, G.; Van Assche, I.; Brewster, M.E. Downstream Processing of Polymer-Based Amorphous Solid Dispersions to Generate Tablet Formulations. Int. J. Pharm. 2015, 486, 268–286. [Google Scholar] [CrossRef] [PubMed]
- Simšič, T.; Planinšek, O.; Baumgartner, A. Taste-Masking Methods in Multiparticulate Dosage Forms with a Focus on Poorly Soluble Drugs. Acta Pharm. 2024, 74, 177–199. [Google Scholar] [CrossRef]
- Walsh, J.; Ranmal, S.R.; Ernest, T.B.; Liu, F. Patient Acceptability, Safety and Access: A Balancing Act for Selecting Age-Appropriate Oral Dosage Forms for Paediatric and Geriatric Populations. Int. J. Pharm. 2018, 536, 547–562. [Google Scholar] [CrossRef] [PubMed]
- Slavkova, M.; Breitkreutz, J. Orodispersible Drug Formulations for Children and Elderly. Eur. J. Pharm. Sci. 2015, 75, 2–9. [Google Scholar] [CrossRef]
- Kokott, M.; Lura, A.; Breitkreutz, J.; Wiedey, R. Evaluation of Two Novel Co-Processed Excipients for Direct Compression of Orodispersible Tablets and Mini-Tablets. Eur. J. Pharm. Biopharm. 2021, 168, 122–130. [Google Scholar] [CrossRef]
- The International Pharmaceutical Council Co-Processed Excipient Guide For Pharmaceutical Excipients. 2017. Available online: https://www.gmp-compliance.org/files/guidemgr/20171030_Co-processed_Excipient_Guide(FINAL_FOR_PUBLICATION).pdf (accessed on 9 August 2024).
- Baumgartner, A. Uporaba koprocesiranih pomonih snovi pri izdelavi orodisperznibilnih tablet. Farm. Vestn. 2024, 75, 34–42. [Google Scholar]
- Azad, M.; Moreno, J.; Davé, R. Stable and Fast-Dissolving Amorphous Drug Composites Preparation via Impregnation of Neusilin® UFL2. J. Pharm. Sci. 2018, 107, 170–182. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, A.M.; Kim, D.W.; Oh, Y.-K.; Yong, C.S.; Kim, J.O.; Choi, H.-G. Enhanced Oral Bioavailability of Fenofibrate Using Polymeric Nanoparticulated Systems: Physicochemical Characterization and in Vivo Investigation. Int. J. Nanomed. 2015, 10, 1819–1830. [Google Scholar] [CrossRef]
- Ahern, R.J.; Hanrahan, J.P.; Tobin, J.M.; Ryan, K.B.; Crean, A.M. Comparison of Fenofibrate-Mesoporous Silica Drug-Loading Processes for Enhanced Drug Delivery. Eur. J. Pharm. Sci. 2013, 50, 400–409. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, M.; Li, J.; Agrawal, A.; Hui, H.-W.; Liu, D. Superiority of Mesoporous Silica-Based Amorphous Formulations over Spray-Dried Solid Dispersions. Pharmaceutics 2022, 14, 428. [Google Scholar] [CrossRef]
- Waters, L.J.; Hussain, T.; Parkes, G.; Hanrahan, J.P.; Tobin, J.M. Inclusion of Fenofibrate in a Series of Mesoporous Silicas Using Microwave Irradiation. Eur. J. Pharm. Biopharm. 2013, 85, 936–941. [Google Scholar] [CrossRef]
- Baumgartner, A.; Dobaj, N.; Planinšek, O. Investigating the Influence of Processing Conditions on Dissolution and Physical Stability of Solid Dispersions with Fenofibrate and Mesoporous Silica. Pharmaceutics 2024, 16, 575. [Google Scholar] [CrossRef] [PubMed]
- American Chemical Society Common Solvents Used in Organic Chemistry: Table of Properties. Available online: https://organicchemistrydata.org/solvents/ (accessed on 22 January 2024).
- Moore, J.W.; Flanner, H.H. Mathematical Comparison of Dissolution Profiles. Pharm. Technol. 1996, 20, 64–74. [Google Scholar]
- Maulvi, F.A.; Dalwadi, S.J.; Thakkar, V.T.; Soni, T.G.; Gohel, M.C.; Gandhi, T.R. Improvement of Dissolution Rate of Aceclofenac by Solid Dispersion Technique. Powder Technol. 2011, 207, 47–54. [Google Scholar] [CrossRef]
- Council of Europe. European Pharmacopoeia, 10th ed.; Council of Europe: Strasbourg, France, 2019. [Google Scholar]
- Katsuno, E.; Tahara, K.; Takeuchi, Y.; Takeuchi, H. Orally Disintegrating Tablets Prepared by a Co-Processed Mixture of Micronized Crospovidone and Mannitol Using a Ball Mill to Improve Compactibility and Tablet Stability. Powder Technol. 2013, 241, 60–66. [Google Scholar] [CrossRef]
- Garg, N.; Dureja, H.; Kaushik, D. Co-Processed Excipients: A Patent Review. Recent Pat. Drug Deliv. Formul. 2013, 7, 73–83. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, P.; Malaj, L.; Censi, R.; Martelli, S.; Joiris, E.; Barthélémy, C. The Role of Several L-HPCs in Preventing Tablet Capping During Direct Compression of Metronidazole. Drug Dev. Ind. Pharm. 2007, 33, 1308–1317. [Google Scholar] [CrossRef] [PubMed]
- L-HPC (Low-Substituted Hydroxypropylcellulose). Available online: https://www.metolose.jp/en/pharmaceutical/l-hpc.html (accessed on 24 May 2024).
- L-HPC/NBD: Multifunctional Excipient for Oral Solid Dose. Available online: https://www.setylose.com/en/products/healthcare/l-hpc (accessed on 24 May 2024).
- Center for Drug Evaluation and Research. Guidance for Industry: Orally Disintegrating Tablets 2008. Available online: https://www.fda.gov/media/70877/download (accessed on 9 August 2024).
- Kovačević, M.; Zvonar Pobirk, A.; German Ilić, I. The Effect of Polymeric Binder Type and Concentration on Flow and Dissolution Properties of SMEDDS Loaded Mesoporous Silica-Based Granules. Eur. J. Pharm. Sci. 2024, 193, 106582. [Google Scholar] [CrossRef] [PubMed]
Ingredient | Role | Amount per Tablet (mg) | |||||
---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | |||
30% SD | FF | API (active pharmaceutical ingredient) | 150 | 150 | 150 | 150 | 150 |
Co-processed excipient | Carrier | 350 | 350 | 350 | 350 | 350 | |
Sodium crosscarmellose | Superdissintegrant | 50 | 50 | 50 | 75 | 50 | |
Sorbitol | Wicking agent, direct compression excipient | 0 | 0 | 75 | 50 | 50 | |
Mannitol | Wicking agent, direct compression excipient | 75 | 75 | 0 | 0 | 0 | |
L-HPC | Anti-capping agent | 50 | 31.3 | 0 | 0 | 0 | |
Magnesium stearate | Glidant | 6.8 | 6.6 | 6.3 | 6.3 | 6.0 | |
Total tablet mass (mg) | 681.8 | 662.9 | 631.3 | 631.3 | 606.0 |
Formulation | Amount of Mannitol per Tablet (mg) | Amount of Sorbitol per Tablet (mg) | Amount of L-HPC per Tablet (mg) | Amount of Sodium Croscarmellose per Tablet (mg) | Disintegration Time (n = 3) | Hardness (n = 5; Average ± Standard Deviation) |
---|---|---|---|---|---|---|
F1 | 75 | - | 50 | 50 | <60 s | 38 N ± 3 N |
F2 | 75 | - | 31.3 | 50 | <60 s | 41 N ± 3 N |
F3 | - | 75 | - | 50 | ≈90 s | 34 N ± 5 N |
F4 | - | 50 | - | 75 | <80 s | 29 N ± 4 N |
F5 | - | 50 | - | 50 | Tablets could not be produced due to capping and lamination |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baumgartner, A.; Planinšek, O. Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution. Pharmaceutics 2024, 16, 1060. https://doi.org/10.3390/pharmaceutics16081060
Baumgartner A, Planinšek O. Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution. Pharmaceutics. 2024; 16(8):1060. https://doi.org/10.3390/pharmaceutics16081060
Chicago/Turabian StyleBaumgartner, Ana, and Odon Planinšek. 2024. "Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution" Pharmaceutics 16, no. 8: 1060. https://doi.org/10.3390/pharmaceutics16081060
APA StyleBaumgartner, A., & Planinšek, O. (2024). Development of Orodispersible Tablets with Solid Dispersions of Fenofibrate and Co-Processed Mesoporous Silica for Improved Dissolution. Pharmaceutics, 16(8), 1060. https://doi.org/10.3390/pharmaceutics16081060