Genetic Variation in CYP2D6, UGT1A4, SLC6A2 and SLCO1B1 Alters the Pharmacokinetics and Safety of Mirabegron
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Clinical Trial Design
2.3. Pharmacokinetic and Safety Analysis
2.4. Genotyping and Phenotyping
2.5. Statistical Analysis
3. Results
3.1. Demographic Characteristics
3.2. Pharmacokinetics
3.3. Pharmacogenetics
3.4. Safety
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hutchinson, A.; Nesbitt, A.; Joshi, A.; Clubb, A.; Perera, M. Overactive Bladder Syndrome: Management and Treatment Options. Aust. J. Gen. Pract. 2020, 49, 593–598. [Google Scholar] [CrossRef] [PubMed]
- Pautz, A.; Michel, M.C. Sex and Gender Differences in the Pharmacology of the Overactive Urinary Bladder. In Sex and Gender Effects in Pharmacology; Tsirka, S.E., Acosta-Martinez, M., Eds.; Handbook of Experimental Pharmacology; Springer International Publishing: Cham, Switzerland, 2023; pp. 57–74. Volume 282, ISBN 978-3-031-42647-6. [Google Scholar]
- Yang, C.-F.; Huang, C.-Y.; Wang, S.-Y.; Chang, S.-R. Prevalence of and Associated Factors for Overactive Bladder Subtypes in Middle-Aged Women: A Cross-Sectional Study. Medicina 2022, 58, 383. [Google Scholar] [CrossRef] [PubMed]
- El-Zawahry, A. Combination Pharmacotherapy for Treatment of Overactive Bladder (OAB). Curr. Urol. Rep. 2019, 20, 33. [Google Scholar] [CrossRef]
- European Medicines Agency Betmiga. Last Update: 15th October 2015. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/betmiga (accessed on 12 April 2024).
- Peyronnet, B.; Mironska, E.; Chapple, C.; Cardozo, L.; Oelke, M.; Dmochowski, R.; Amarenco, G.; Gamé, X.; Kirby, R.; Van Der Aa, F.; et al. A Comprehensive Review of Overactive Bladder Pathophysiology: On the Way to Tailored Treatment. Eur. Urol. 2019, 75, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Spanish Drug Agency CIMA. FICHA TECNICA BETMIGA 50mg Comprimidos de Liberacion Prolongada. Available online: https://cima.aemps.es/cima/dochtml/ft/112809010/FT_112809010 (accessed on 12 April 2024).
- Konishi, K.; Tenmizu, D.; Takusagawa, S. Identification of Uridine 5′-Diphosphate-Glucuronosyltransferases Responsible for the Glucuronidation of Mirabegron, a Potent and Selective Β3-Adrenoceptor Agonist, in Human Liver Microsomes. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Cacabelos, R.; Naidoo, V.; Corzo, L.; Cacabelos, N.; Carril, J.C. Genophenotypic Factors and Pharmacogenomics in Adverse Drug Reactions. Int. J. Mol. Sci. 2021, 22, 13302. [Google Scholar] [CrossRef] [PubMed]
- Cecchin, E.; Stocco, G. Pharmacogenomics and Personalized Medicine. Genes 2020, 11, 679. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.J.; Thomas, C.D.; Barbarino, J.; Desta, Z.; Van Driest, S.L.; El Rouby, N.; Johnson, J.A.; Cavallari, L.H.; Shakhnovich, V.; Thacker, D.L.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2C19 and Proton Pump Inhibitor Dosing. Clin. Pharmacol. Ther. 2021, 109, 1417–1423. [Google Scholar] [CrossRef] [PubMed]
- Cooper-DeHoff, R.M.; Niemi, M.; Ramsey, L.B.; Luzum, J.A.; Tarkiainen, E.K.; Straka, R.J.; Gong, L.; Tuteja, S.; Wilke, R.A.; Wadelius, M.; et al. The Clinical Pharmacogenetics Implementation Consortium Guideline for SLCO1B1, ABCG2, and CYP2C9 Genotypes and Statin-Associated Musculoskeletal Symptoms. Clin. Pharmacol. Ther. 2022, 111, 1007–1021. [Google Scholar] [CrossRef]
- Desta, Z.; Gammal, R.S.; Gong, L.; Whirl-Carrillo, M.; Gaur, A.H.; Sukasem, C.; Hockings, J.; Myers, A.; Swart, M.; Tyndale, R.F.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2B6 and Efavirenz-Containing Antiretroviral Therapy. Clin. Pharmacol. Ther. 2019, 106, 726–733. [Google Scholar] [CrossRef]
- Goetz, M.P.; Sangkuhl, K.; Guchelaar, H.-J.; Schwab, M.; Province, M.; Whirl-Carrillo, M.; Symmans, W.F.; McLeod, H.L.; Ratain, M.J.; Zembutsu, H.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and Tamoxifen Therapy. Clin. Pharmacol. Ther. 2018, 103, 770–777. [Google Scholar] [CrossRef]
- Birdwell, K.; Decker, B.; Barbarino, J.; Peterson, J.; Stein, C.; Sadee, W.; Wang, D.; Vinks, A.; He, Y.; Swen, J.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guidelines for CYP3A5 Genotype and Tacrolimus Dosing. Clin. Pharmacol. Ther. 2015, 98, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Relling, M.V.; Schwab, M.; Whirl-Carrillo, M.; Suarez-Kurtz, G.; Pui, C.-H.; Stein, C.M.; Moyer, A.M.; Evans, W.E.; Klein, T.E.; Antillon-Klussmann, F.G.; et al. Clinical Pharmacogenetics Implementation Consortium Guideline for Thiopurine Dosing Based on TPMT and NUDT15 Genotypes: 2018 Update. Clin. Pharmacol. Ther. 2019, 105, 1095–1105. [Google Scholar] [CrossRef]
- Gammal, R.; Court, M.; Haidar, C.; Iwuchukwu, O.; Gaur, A.; Alvarellos, M.; Guillemette, C.; Lennox, J.; Whirl-Carrillo, M.; Brummel, S.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for UGT1A1 and Atazanavir Prescribing. Clin. Pharmacol. Ther. 2016, 99, 363–369. [Google Scholar] [CrossRef]
- PharmGKB Mirabegron. Available online: https://www.pharmgkb.org/chemical/PA166177513 (accessed on 22 May 2024).
- Zubiaur, P.; Mejía-Abril, G.; Navares-Gómez, M.; Villapalos-García, G.; Soria-Chacartegui, P.; Saiz-Rodríguez, M.; Ochoa, D.; Abad-Santos, F. PriME-PGx: La Princesa University Hospital Multidisciplinary Initiative for the Implementation of Pharmacogenetics. J. Clin. Med. 2021, 10, 3772. [Google Scholar] [CrossRef]
- Vijayananthan, A.; Nawawi, O. The Importance of Good Clinical Practice Guidelines and Its Role in Clinical Trials. Biomed. Imaging Interv. J. 2008, 4, e5. [Google Scholar] [CrossRef] [PubMed]
- World Medical Association Declaration of Helsinki Ethical Principles for Medical Research Involving Human Subjects. Last Update: 19th October 2013. Available online: https://jamanetwork.com/journals/jama/fullarticle/1760318 (accessed on 20 May 2024).
- Chin, R.Y.; Lee, B.Y. Principles and Practice of Clinical Trial Medicine; Elsevier: Amsterdam, The Netherlands; Academic Press: Cambridge, MA, USA, 2008; ISBN 978-0-12-373695-6. [Google Scholar]
- European Medicines Agency Guideline on the Investigation of Bioequivalence. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-bioequivalence-rev1_en.pdf (accessed on 20 May 2024).
- Aguirre, C.; García, M. Causality assessment in adverse drug reaction reports. Algorithm of the Spanish Pharmacovigilance System. Med. Clínica 2016, 147, 461–464. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Health RefSeq: NCBI Reference Sequence Database. Available online: https://www.ncbi.nlm.nih.gov/refseq/ (accessed on 26 February 2024).
- Soria-Chacartegui, P.; Zubiaur, P.; Ochoa, D.; Villapalos-García, G.; Román, M.; Matas, M.; Figueiredo-Tor, L.; Mejía-Abril, G.; Calleja, S.; De Miguel, A.; et al. Genetic Variation in CYP2D6 and SLC22A1 Affects Amlodipine Pharmacokinetics and Safety. Pharmaceutics 2023, 15, 404. [Google Scholar] [CrossRef]
- Clinical Pharmacogenetics Implementation Consortium CPIC Website. Available online: https://cpicpgx.org/ (accessed on 26 February 2020).
- PharmGKB PGx Gene-Specific Information Tables. Available online: https://www.pharmgkb.org/page/pgxGeneRef (accessed on 26 February 2024).
- DPWG Annotation of DPWG Guideline for Quetiapine and CYP3A4. 2021. Available online: https://www.pharmgkb.org/guidelineAnnotation/PA166265421 (accessed on 26 February 2024).
- Campodónico, D.M.; Zubiaur, P.; Soria-Chacartegui, P.; Casajús, A.; Villapalos-García, G.; Navares-Gómez, M.; Gómez-Fernández, A.; Parra-Garcés, R.; Mejía-Abril, G.; Román, M.; et al. CYP2C8 *3 and *4 Define CYP2C8 Phenotype: An Approach with the Substrate Cinitapride. Clin. Transl. Sci. 2022, 15, 2613–2624. [Google Scholar] [CrossRef]
- Villapalos-García, G.; Zubiaur, P.; Ochoa, D.; Soria-Chacartegui, P.; Navares-Gómez, M.; Matas, M.; Mejía-Abril, G.; Casajús-Rey, A.; Campodónico, D.; Román, M.; et al. NAT2 Phenotype Alters Pharmacokinetics of Rivaroxaban in Healthy Volunteers. Biomed. Pharmacother. 2023, 165, 115058. [Google Scholar] [CrossRef]
- Humburg, J. Die Urininkontinenz der Frau: Einführung in die Diagnostik und Therapie. Ther. Umsch. 2018, 75, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Scarneciu, I.; Lupu, S.; Bratu, O.; Teodorescu, A.; Maxim, L.; Brinza, A.; Laculiceanu, A.; Rotaru, R.; Lupu, A.-M.; Scarneciu, C. Overactive Bladder: A Review and Update. Exp. Ther. Med. 2021, 22, 1444. [Google Scholar] [CrossRef]
- Deeks, E.D. Mirabegron: A Review in Overactive Bladder Syndrome. Drugs 2018, 78, 833–844. [Google Scholar] [CrossRef]
- Krauwinkel, W.; Van Dijk, J.; Schaddelee, M.; Eltink, C.; Meijer, J.; Strabach, G.; Van Marle, S.; Kerbusch, V.; Van Gelderen, M. Pharmacokinetic Properties of Mirabegron, a Β3-Adrenoceptor Agonist: Results from Two Phase I, Randomized, Multiple-Dose Studies in Healthy Young and Elderly Men and Women. Clin. Ther. 2012, 34, 2144–2160. [Google Scholar] [CrossRef]
- Iitsuka, H.; Tokuno, T.; Amada, Y.; Matsushima, H.; Katashima, M.; Sawamoto, T.; Takusagawa, S.; Van Gelderen, M.; Tanaka, T.; Miyahara, H. Pharmacokinetics of Mirabegron, a Β3-Adrenoceptor Agonist for Treatment of Overactive Bladder, in Healthy Japanese Male Subjects: Results from Single- and Multiple-Dose Studies. Clin. Drug Investig. 2014, 34, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Eltink, C.; Lee, J.; Schaddelee, M.; Zhang, W.; Kerbusch, V.; Meijer, J.; Marle, S.V.; Grunenberg, N.; Kowalski, D.; Drogendijk, T.; et al. Single Dose Pharmacokinetics and Absolute Bioavailability of Mirabegron, a β3-Adrenoceptor Agonist for Treatment of Overactive Bladder. Int. J. Clin. Pharmacol. Ther. 2012, 50, 838–850. [Google Scholar] [CrossRef] [PubMed]
- Warren, K.; Burden, H.; Abrams, P. Mirabegron in Overactive Bladder Patients: Efficacy Review and Update on Drug Safety. Ther. Adv. Drug Saf. 2016, 7, 204–216. [Google Scholar] [CrossRef]
- Tyagi, P.; Tyagi, V.; Chancellor, M. Mirabegron: A Safety Review. Expert. Opin. Drug Saf. 2011, 10, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Paśko, P.; Rodacki, T.; Domagała-Rodacka, R.; Owczarek, D. A Short Review of Drug–Food Interactions of Medicines Treating Overactive Bladder Syndrome. Int. J. Clin. Pharm. 2016, 38, 1350–1356. [Google Scholar] [CrossRef]
- Takusagawa, S.; Ushigome, F.; Nemoto, H.; Takahashi, Y.; Li, Q.; Kerbusch, V.; Miyashita, A.; Iwatsubo, T.; Usui, T. Intestinal Absorption Mechanism of Mirabegron, a Potent and Selective β3-Adrenoceptor Agonist: Involvement of Human Efflux and/or Influx Transport Systems. Mol. Pharm. 2013, 10, 1783–1794. [Google Scholar] [CrossRef]
- Ali, Y.; Shams, T.; Wang, K.; Cheng, Z.; Li, Y.; Shu, W.; Bao, X.; Zhu, L.; Murray, M.; Zhou, F. The Involvement of Human Organic Anion Transporting Polypeptides (OATPs) in Drug-Herb/Food Interactions. Chin. Med. 2020, 15, 71. [Google Scholar] [CrossRef] [PubMed]
- Konishi, K.; Minematsu, T.; Nagasaka, Y.; Tabata, K. Physiologically-Based Pharmacokinetic Modeling for Mirabegron: A Multi-Elimination Pathway Mediated by Cytochrome P450 3A4, Uridine 5′-Diphosphate-Glucuronosyltransferase 2B7, and Butyrylcholinesterase. Xenobiotica 2019, 49, 912–921. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Moy, S.; Meijer, J.; Krauwinkel, W.; Sawamoto, T.; Kerbusch, V.; Kowalski, D.; Roy, M.; Marion, A.; Takusagawa, S.; et al. Role of Cytochrome P450 Isoenzymes 3A and 2D6 in the In Vivo Metabolism of Mirabegron, a Β3-Adrenoceptor Agonist. Clin. Drug Investig. 2013, 33, 429–440. [Google Scholar] [CrossRef] [PubMed]
- Takusagawa, S.; Miyashita, A.; Iwatsubo, T.; Usui, T. In Vitro Inhibition and Induction of Human Cytochrome P450 Enzymes by Mirabegron, a Potent and Selective Β3-Adrenoceptor Agonist. Xenobiotica 2012, 42, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Minegishi, G.; Kobayashi, Y.; Fujikura, M.; Sano, A.; Kazuki, Y.; Kobayashi, K. Induction of Hepatic CYP3A4 Expression by Cholesterol and Cholic Acid: Alterations of Gene Expression, Microsomal Activity, and Pharmacokinetics. Pharmacol. Res. Perspect. 2024, 12, e1197. [Google Scholar] [CrossRef] [PubMed]
- Chetty, M.; Mattison, D.; Rostami-Hodjegan, A. Sex Differences in the Clearance of CYP3A4 Substrates: Exploring Possible Reasons for the Substrate Dependency and Lack of Consensus. Curr. Drug Metab. 2012, 13, 778–786. [Google Scholar] [CrossRef] [PubMed]
- Pardiñas, A.F.; Nalmpanti, M.; Pocklington, A.J.; Legge, S.E.; Medway, C.; King, A.; Jansen, J.; Helthuis, M.; Zammit, S.; MacCabe, J.; et al. Pharmacogenomic Variants and Drug Interactions Identified through the Genetic Analysis of Clozapine Metabolism. Am. J. Psychiatry 2019, 176, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Ghotbi, R.; Mannheimer, B.; Aklillu, E.; Suda, A.; Bertilsson, L.; Eliasson, E.; Ösby, U. Carriers of the UGT1A4 142T>G Gene Variant Are Predisposed to Reduced Olanzapine Exposure—An Impact Similar to Male Gender or Smoking in Schizophrenic Patients. Eur. J. Clin. Pharmacol. 2010, 66, 465–474. [Google Scholar] [CrossRef]
- Fujiwara, R.; Yokoi, T.; Nakajima, M. Structure and Protein–Protein Interactions of Human UDP-Glucuronosyltransferases. Front. Pharmacol. 2016, 7, 388. [Google Scholar] [CrossRef]
- Sodhi, J.K.; Benet, L.Z. The Necessity of Using Changes in Absorption Time to Implicate Intestinal Transporter Involvement in Oral Drug-Drug Interactions. AAPS J. 2020, 22, 111. [Google Scholar] [CrossRef]
- Zubiaur, P.; Figueiredo-Tor, L.; Villapalos-García, G.; Soria-Chacartegui, P.; Navares-Gómez, M.; Novalbos, J.; Matas, M.; Calleja, S.; Mejía-Abril, G.; Román, M.; et al. Association between CYP2C19 and CYP2B6 Phenotypes and the Pharmacokinetics and Safety of Diazepam. Biomed. Pharmacother. 2022, 155, 113747. [Google Scholar] [CrossRef] [PubMed]
- Thomas, L.; Raju, A.P.; Chaithra, M.S.S.; Varma, M.; Saravu, K.; Banerjee, M.; Sv, C.S.; Mallayasamy, S.; Rao, M. Influence of N-Acetyltransferase 2 (NAT2) Genotype/Single Nucleotide Polymorphisms on Clearance of Isoniazid in Tuberculosis Patients: A Systematic Review of Population Pharmacokinetic Models. Eur. J. Clin. Pharmacol. 2022, 78, 1535–1553. [Google Scholar] [CrossRef] [PubMed]
- PharmGKB NAT2. Available online: https://www.pharmgkb.org/gene/PA18 (accessed on 9 June 2024).
- PharmVar NAT2. Available online: https://www.pharmvar.org/gene/NAT2 (accessed on 9 June 2024).
- Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3-adrenoceptor Agonist Mirabegron Increases Human Atrial Force through β1-adrenoceptors: An Indirect Mechanism? Br. J. Pharmacol. 2017, 174, 2706–2715. [Google Scholar] [CrossRef]
- Gul, M.K.; Sener, E.F.; Onal, M.G.; Demirci, E. Role of the Norepinephrine Transporter Polymorphisms in Atomoxetine Treatment: From Response to Side Effects in Children with ADHD. J. Psychopharmacol. 2022, 36, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Bgee database SLC6A2 Expression in Humans. Available online: https://www.bgee.org/gene/ENSG00000103546 (accessed on 31 May 2024).
- Groen-Wijnberg, M.; Van Dijk, J.; Krauwinkel, W.; Kerbusch, V.; Meijer, J.; Tretter, R.; Zhang, W.; Van Gelderen, M. Pharmacokinetic Interactions between Mirabegron and Metformin, Warfarin, Digoxin or Combined Oral Contraceptives. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 417–429. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, L.B.; Gong, L.; Lee, S.; Wagner, J.B.; Zhou, X.; Sangkuhl, K.; Adams, S.M.; Straka, R.J.; Empey, P.E.; Boone, E.C.; et al. PHARMVAR GENEFOCUS: SLCO1B1. Clin. Pharmacol. Ther. 2022, 113, 782–793. [Google Scholar] [CrossRef]
- Tikkanen, A.; Pierrot, E.; Deng, F.; Sánchez, V.B.; Hagström, M.; Koenderink, J.B.; Kidron, H. Food Additives as Inhibitors of Intestinal Drug Transporter OATP2B1. Mol. Pharm. 2020, 17, 3748–3758. [Google Scholar] [CrossRef]
Clinical Trial | EUDRA-CT | Conditions | Dose | Sample Size * (BE Study) | Sample Size * (PG Study) |
---|---|---|---|---|---|
A | 2020-004710-35 | Fasting | Single, 50 mg | 36 (19/17) | 22 (12/10) |
B | 2021-000283-29 | Fed | Single, 50 mg | 36 (18/18) | 30 (15/15) |
C | 2021-000285-15 | Fasting | Multiple, 50 mg every 24 h | 36 (19/17) | 27 (11/16) |
n | Age Years | Height m | Weight kg | BMI kg/m2 | |
---|---|---|---|---|---|
Sex | |||||
Male | 38 | 28.50 (24.00–34.25) | 1.76 (0.06) | 75.96 (11.64) | 24.85 (22.30–27.20) |
Female | 41 | 30.00 (24.00–33.50) | 1.62 (0.06) * | 63.92 (10.21) * | 24.33 (21.88–27.37) |
Origin | |||||
European | 18 | 26.00 (23.75–31.75) | 1.73 (0.09) | 76.81 (14.61) | 26.24 (22.40–27.82) |
Latin American | 61 | 31.00 (25.00–34.50) | 1.67 (0.09) * | 67.61 (10.99) * | 24.33 (21.84–26.55) |
Trial | |||||
A | 22 | 25.00 (23.00–31.50) | 1.70 (0.09) | 68.30 (11.71) | 24.49 (21.04–26.38) |
B | 30 | 28.50 (24.00–43.00) | 1.68 (0.09) | 68.63 (12.32) | 23.66 (21.01–27.53) |
C | 27 | 32.00 (26.00–33.00) | 1.68 (0.10) | 72.06 (13.21) | 25.64 (23.15–27.58) |
Total | 79 | 30.00 (24.00–34.00) | 1.68 (0.09) | 69.71 (12.43) | 24.58 (22.12–27.25) |
n | AUC/DW kg·ng·h/mL·mg | Cmax/DW kg·ng/mL·mg | tmax h | t1/2 h | CL/F L/kg·h | |
---|---|---|---|---|---|---|
Sex | ||||||
Female | 41 | 577.02 (189.54) | 60.84 (29.19–74.58) | 4.50 (3.94–5.31) | 26.50 (8.21) | 1.81 (1.44–2.41) |
Male | 38 | 529.27 (177.04) | 48.31 (30.22–67.24) | 4.44 (3.76–5.13) | 26.34 (5.22) | 2.03 (1.64–2.61) |
Origin | ||||||
European | 18 | 582.84 (202.00) | 54.80 (40.65–72.87) | 4.69 (4.19–4.91) | 25.27 (5.16) | 1.75 (1.55–2.33) |
Latin American | 61 | 545.56 (179.29) | 48.74 (27.06–71.30) | 4.41 (3.75–5.31) | 26.75 (7.33) | 1.92 (1.52–2.57) |
Trial | ||||||
A | 22 | 633.34 (149.93) | 58.58 (50.19–67.74) | 4.31 (3.97–5.00) | 27.63 (3.89) | 1.77 (1.40–1.94) |
B | 30 | 397.84 (106.91) * | 24.85 (19.40–33.98) * | 5.13 (4.41–6.25) * | 30.62 (7.04) | 2.72 (2.21–3.35) * |
C | 27 | 663.03 (157.77) | 73.88 (63.14–93.71) | 4.25 (3.63–4.50) | 20.77 (4.51) $ | 1.64 (1.26–1.81) |
Total | 79 | 554.06 (184.03) | 50.72 (29.50–72.54) | 4.50 (3.88–5.13) | 26.42 (6.90) | 1.91 (1.52–2.51) |
Gene | Genotype/Phenotype | n | AUC/DW | Cmax/DW | tmax | t1/2 | CL/F | |
---|---|---|---|---|---|---|---|---|
kg·ng·h/mL·mg | kg·ng/mL·mg | h | h | L/kg·h | ||||
CYP2D6 | Phenotype | UM | 2 | 451.77 (231.42) | 45.37 [19.63–71.11] | 4.94 [4.75–5.13] | 20.42 (3.90) | 2.60 [1.64–3.55] |
NM | 55 | 547.97 (199.06) | 48.74 (28.59–72.57) | 4.38 (3.75–5.13) | 25.80 (6.01) | 1.94 (1.45–2.71) | ||
IM | 18 | 585.61 (188.13) | 50.24 (36.42–67.93) | 4.88 (3.97–5.78) | 29.97 (8.68) * | 1.73 (1.50–2.70) | ||
UGT1A3 | rs2008584 | A/A | 16 | 548.38 (162.14) | 58.17 (31.72–83.83) | 4.06 (3.38–4.48) * | 24.35 (6.62) | 1.84 (1.67–2.49) |
A/G | 34 | 564.37 (212.65) | 47.89 (25.47–72.54) | 4.69 (3.94–5.66) | 25.70 (5.44) | 1.84 (1.33–2.74) | ||
G/G | 26 | 537.28 (170.40) | 48.67 (28.80–67.93) | 4.69 (3.88–5.16) | 29.03 (8.39) | 1.92 (1.64–2.46) | ||
UGT1A4 | rs2011425 | T/T | 64 | 541.38 (187.75) | 48.49 (28.39–73.09) | 4.50 (3.75–5.25) | 25.28 (6.67) | 1.93 (1.55–2.69) |
T/G | 14 | 587.99 (147.20) | 57.32 (30.52–66.27) | 4.31 (3.97–4.88) | 31.14 (5.96) * | 1.75 (1.52–1.98) | ||
NAT2 | Phenotype | RA | 7 | 602.63 (159.64) | 60.84 (48.74–65.11) | 4.00 (3.26–4.25) | 27.80 (7.77) | 1.75 (1.68–1.93) |
IA | 34 | 589.33 (196.52) | 61.37 (36.10–76.70) | 4.38 (3.75–5.16) | 24.61 (4.98) | 1.81 (1.33–2.38) | ||
SA | 37 | 516.32 (173.40) | 40.91 (24.85–68.97) * | 4.75 (4.06–5.56) | 27.74 (8.04) | 2.19 (1.66–2.67) | ||
SLC6A2 | rs12708954 | C/C | 56 | 522.63 (182.61) * | 48.31 (24.23–70.35) | 4.45 (3.75–5.09) | 26.56 (7.34) | 1.93 (1.65–2.81) * |
C/A | 21 | 648.45 (162.98) | 65.11 (41.05–78.25) | 4.63 (3.94–5.56) | 26.29 (6.01) | 1.67 (1.31–1.99) | ||
A/A | 2 | 442.73 (95.66) | 47.11 [36.51–57.72] | 5.06 [4.88–5.25] | 23.94 (2.07) | 2.35 [1.98–2.71] | ||
SLC19A1 | rs1051266 | A/A | 16 | 498.20 (190.51) | 37.45 (20.53–53.46) * | 4.50 (4.03–6.25) | 27.92 (5.87) | 2.31 (1.50–3.26) |
A/G | 34 | 598.00 (181.87) | 60.74 (41.65–74.22) | 4.33 (3.75–5.03) | 25.72 (5.63) | 1.81 (1.43–2.21) | ||
G/G | 27 | 537.43 (182.46) | 48.18 (23.61–71.11) | 4.50 (3.76–5.13) | 26.12 (8.87) | 1.92 (1.61–2.74) |
Clinical Trial | ADRs | n | AUC ng·h/mL | Cmax ng/mL |
---|---|---|---|---|
A | no | 20 | 470.43 (108.04) | 45.42 (34.53–51.28) |
yes | 2 | 449.80 (19.61) | 44.90 [43.71- 46.09] | |
B | no | 24 | 282.60 (85.10) | 16.81 (12.28–24.08) |
yes | 6 | 359.96 (92.85) | 20.28 (12.15–24.60) | |
C | no | 25 | 476.37 (161.56) | 52.75 (43.61–63.79) |
yes | 2 | 505.72 (22.20) | 54.95 [51.33–58.57] | |
Total | no | 69 | 407.25 (152.77) | 26.21 (17.99–47.39) |
yes | 10 | 407.08 (94.52) | 40.52 (20.99–51.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria-Chacartegui, P.; Cendoya-Ramiro, P.; González-Iglesias, E.; Martín-Vílchez, S.; Rodríguez-Lopez, A.; Mejía-Abril, G.; Román, M.; Luquero-Bueno, S.; Ochoa, D.; Abad-Santos, F. Genetic Variation in CYP2D6, UGT1A4, SLC6A2 and SLCO1B1 Alters the Pharmacokinetics and Safety of Mirabegron. Pharmaceutics 2024, 16, 1077. https://doi.org/10.3390/pharmaceutics16081077
Soria-Chacartegui P, Cendoya-Ramiro P, González-Iglesias E, Martín-Vílchez S, Rodríguez-Lopez A, Mejía-Abril G, Román M, Luquero-Bueno S, Ochoa D, Abad-Santos F. Genetic Variation in CYP2D6, UGT1A4, SLC6A2 and SLCO1B1 Alters the Pharmacokinetics and Safety of Mirabegron. Pharmaceutics. 2024; 16(8):1077. https://doi.org/10.3390/pharmaceutics16081077
Chicago/Turabian StyleSoria-Chacartegui, Paula, Patricia Cendoya-Ramiro, Eva González-Iglesias, Samuel Martín-Vílchez, Andrea Rodríguez-Lopez, Gina Mejía-Abril, Manuel Román, Sergio Luquero-Bueno, Dolores Ochoa, and Francisco Abad-Santos. 2024. "Genetic Variation in CYP2D6, UGT1A4, SLC6A2 and SLCO1B1 Alters the Pharmacokinetics and Safety of Mirabegron" Pharmaceutics 16, no. 8: 1077. https://doi.org/10.3390/pharmaceutics16081077
APA StyleSoria-Chacartegui, P., Cendoya-Ramiro, P., González-Iglesias, E., Martín-Vílchez, S., Rodríguez-Lopez, A., Mejía-Abril, G., Román, M., Luquero-Bueno, S., Ochoa, D., & Abad-Santos, F. (2024). Genetic Variation in CYP2D6, UGT1A4, SLC6A2 and SLCO1B1 Alters the Pharmacokinetics and Safety of Mirabegron. Pharmaceutics, 16(8), 1077. https://doi.org/10.3390/pharmaceutics16081077