Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine
1. Introduction
2. A Glimpse over the Published Studies
3. Novel Biomarkers in Precision Medicine
4. A Preview of AI-Integrated Technologies for Shaping the Future of Personalized Medicine
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Walker, J.M.; O’Malley, P.; He, M. Applications of Exosomes in Diagnosing Muscle Invasive Bladder Cancer. Pharmaceutics 2022, 14, 2027. https://doi.org/10.3390/pharmaceutics14102027.
- Axente, M.; Mirea, A.; Sporea, C.; Pădure, L.; Drăgoi, C.M.; Nicolae, A.C.; Ion, D.A. Clinical and Electrophysiological Changes in Pediatric Spinal Muscular Atrophy after 2 Years of Nusinersen Treatment. Pharmaceutics 2022, 14, 2074. https://doi.org/10.3390/pharmaceutics14102074.
- Becker, G.; Fialho, M.F.P.; Brusco, I.; Oliveira, S.M. Kinin B1 and B2 Receptors Contribute to Cisplatin-Induced Painful Peripheral Neuropathy in Male Mice. Pharmaceutics 2023, 15, 852. https://doi.org/10.3390/pharmaceutics15030852.
- García-Lluch, G.; Peña-Bautista, C.; Royo, L.M.; Baquero, M.; Cañada-Martínez, A.J.; Cháfer-Pericás, C. Angiotensin II Receptor Blockers Reduce Tau/Aß42 Ratio: A Cerebrospinal Fluid Biomarkers’ Case-Control Study. Pharmaceutics 2023, 15, 924. https://doi.org/10.3390/pharmaceutics15030924.
- Silva, R.; Colom, H.; Bicker, J.; Almeida, A.; Silva, A.; Sales, F.; Santana, I.; Falcão, A.; Fortuna, A. Population Pharmacokinetic Analysis of Perampanel in Portuguese Patients Diagnosed with Refractory Epilepsy. Pharmaceutics 2023, 15, 1704. https://doi.org/10.3390/pharmaceutics15061704.
- Kanellopoulos, P.; Nock, B.A.; Krenning, E.P.; Maina, T. Toward Stability Enhancement of NTS1R-Targeted Radioligands: Structural Interventions on [99mTc]Tc-DT1. Pharmaceutics 2023, 15, 2092. https://doi.org/10.3390/pharmaceutics15082092.
- Rakicevic, L. DNA and RNA Molecules as a Foundation of Therapy Strategies for Treatment of Cardiovascular Diseases. Pharmaceutics 2023, 15, 2141. https://doi.org/10.3390/pharmaceutics15082141.
- Joung, H.-Y.; Oh, J.-M.; Song, M.-S.; Kwon, Y.-B.; Chun, S. Selegiline Modulates Lipid Metabolism by Activating AMPK Pathways of Epididymal White Adipose Tissues in HFD-Fed Obese Mice. Pharmaceutics 2023, 15, 2539. https://doi.org/10.3390/pharmaceutics15112539.
- Kwak, Y.B.; Seo, J.I.; Yoo, H.H. Exploring Metabolic Pathways of Anamorelin, a Selective Agonist of the Growth Hormone Secretagogue Receptor, via Molecular Networking. Pharmaceutics 2023, 15, 2700. https://doi.org/10.3390/pharmaceutics15122700.
- Sánchez Suárez, M.D.M.; Martín Roldán, A.; Alarcón-Payer, C.; Rodríguez-Gil, M.Á.; Poquet-Jornet, J.E.; Puerta Puerta, J.M.; Jiménez Morales, A. Treatment of Chronic Lymphocytic Leukemia in the Personalized Medicine Era. Pharmaceutics 2024, 16, 55. https://doi.org/10.3390/pharmaceutics16010055.
- Dräger, S.; Ewoldt, T.M.J.; Abdulla, A.; Rietdijk, W.J.R.; Verkaik, N.; Ramakers, C.; de Jong, E.; Osthoff, M.; Koch, B.C.P.; Endeman, H., on behalf of the DOLPHIN Investigators. Exploring the Impact of Model-Informed Precision Dosing on Procalcitonin Concentrations in Critically Ill Patients: A Secondary Analysis of the DOLPHIN Trial. Pharmaceutics 2024, 16, 270. https://doi.org/10.3390/pharmaceutics16020270.
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. https://doi.org/10.3390/pharmaceutics16030332.
- Harnett, A.; Byrne, S.; O’Connor, J.; Burke, E.; South, L.; Lyons, D.; Sahm, L.J. Point Prevalence Survey of Acute Hospital Patients with Difficulty Swallowing Solid Oral Dose Forms. Pharmaceutics 2024, 16, 584. https://doi.org/10.3390/pharmaceutics16050584.
References
- Marques, L.; Costa, B.; Pereira, M.; Silva, A.; Santos, J.; Saldanha, L.; Silva, I.; Magalhães, P.; Schmidt, S.; Vale, N. Advancing Precision Medicine: A Review of Innovative In Silico Approaches for Drug Development, Clinical Pharmacology and Personalized Healthcare. Pharmaceutics 2024, 16, 332. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Kanayama, N.; Nakayama, Y.; Matsushima, N. Current Status, Issues and Future Prospects of Personalized Medicine for Each Disease. J. Pers. Med. 2022, 12, 444. [Google Scholar] [CrossRef] [PubMed]
- Akhoon, N. Precision Medicine: A New Paradigm in Therapeutics. Int. J. Prev. Med. 2021, 12, 12. [Google Scholar] [CrossRef]
- Gameiro, G.R.; Sinkunas, V.; Liguori, G.R.; Auler-Júnior, J.O.C. Precision Medicine: Changing the Way We Think about Healthcare. Clinics 2018, 73, e723. [Google Scholar] [CrossRef] [PubMed]
- Abdelhalim, H.; Berber, A.; Lodi, M.; Jain, R.; Nair, A.; Pappu, A.; Patel, K.; Venkat, V.; Venkatesan, C.; Wable, R.; et al. Artificial Intelligence, Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Precision Medicine. Front. Genet. 2022, 13, 929736. [Google Scholar] [CrossRef] [PubMed]
- Venne, J.; Busshoff, U.; Poschadel, S.; Menschel, R.; Evangelatos, N.; Vysyaraju, K.; Brand, A. International consortium for personalised medicine: An international survey about the future of personalised medicine. Pers. Med. 2020, 17, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Steinhubl, S.R.; Muse, E.D.; Topol, E.J. The Emerging Field of Mobile Health. Sci. Transl. Med. 2015, 7, 283rv3. [Google Scholar] [CrossRef]
- Vicente, A.M.; Ballensiefen, W.; Jönsson, J.I. How personalised medicine will transform healthcare by 2030: The ICPerMed vision. J. Transl. Med. 2020, 18, 180. [Google Scholar] [CrossRef]
- Denny, J.C.; Collins, F.S. Precision Medicine in 2030—Seven Ways to Transform Healthcare. Cell 2021, 184, 1415–1419. [Google Scholar] [CrossRef]
- Baylot, V.; Le, T.K.; Taïeb, D.; Rocchi, P.; Colleaux, L. Between hope and reality: Treatment of genetic diseases through nucleic acid-based drugs. Commun. Biol. 2024, 7, 489. [Google Scholar] [CrossRef]
- Barbu, C.G.; Arsene, A.L.; Florea, S.; Albu, A.; Sirbu, A.; Martin, S.; Nicolae, A.C.; Burcea-Dragomiroiu, G.T.A.; Popa, D.E.; Velescu, B.S.; et al. Cardiovascular Risk Assessment in Osteoporotic Patients Using Osteoprotegerin as a Reliable Predictive Biochemical Marker. Mol. Med. Rep. 2017, 16, 6059–6067. [Google Scholar] [CrossRef] [PubMed]
- Kerioui, M.; Bertrand, J.; Bruno, R.; Mercier, F.; Guedj, J.; Desmée, S. Modelling the association between biomarkers and clinical outcome: An introduction to nonlinear joint models. Br. J. Clin. Pharmacol. 2022, 88, 1452–1463. [Google Scholar] [CrossRef] [PubMed]
- Nechita, V.I.; Hajjar, N.A.; Drugan, C.; Cătană, C.S.; Moiş, E.; Nechita, M.A.; Graur, F. Chitotriosidase and Neopterin as Two Novel Potential Biomarkers for Advanced Stage and Survival Prediction in Gastric Cancer-A Pilot Study. Diagnostics 2023, 13, 1362. [Google Scholar] [CrossRef] [PubMed]
- Rasheed, N.W.; Barbu, C.G.; Florea, S.; Branceanu, G.; Fica, S.; Mitrea, N.; Dragoi, C.M.; Nicolae, A.C.; Arsene, A.L. Biochemical Markers of Calcium and Bone Metabolism in the Monitoring of Osteoporosis Treatment. Farmacia 2014, 62, 728–736. [Google Scholar]
- Park, S.Y.; Cho, D.-G.; Shim, B.-Y.; Cho, U. Relationship between Systemic Inflammatory Markers, GLUT1 Expression, and Maximum 18F-Fluorodeoxyglucose Uptake in Non-Small Cell Lung Carcinoma and Their Prognostic Significance. Diagnostics 2023, 13, 1013. [Google Scholar] [CrossRef]
- Stanciu, A.E.; Zamfir-Chiru-Anton, A.; Stanciu, M.M.; Stoian, A.P.; Jinga, V.; Nitipir, C.; Bucur, A.; Pituru, T.S.; Arsene, A.L.; Dragoi, C.M.; et al. Clinical Significance of Serum Melatonin in Predicting the Severity of Oral Squamous Cell Carcinoma. Oncol. Lett. 2020, 19, 1537–1543. [Google Scholar] [CrossRef]
- Lunke, S.; Bouffler, S.E.; Patel, C.V.; Sandaradura, S.A.; Wilson, M.; Pinner, J.; Hunter, M.F.; Barnett, C.P.; Wallis, M.; Kamien, B.; et al. Integrated multi-omics for rapid rare disease diagnosis on a national scale. Nat. Med. 2023, 29, 1681–1691. [Google Scholar] [CrossRef]
- DeGroat, W.; Mendhe, D.; Bhusari, A.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. IntelliGenes: A Novel Machine Learning Pipeline for Biomarker Discovery and Predictive Analysis Using Multigenomic Profiles. Bioinformatics 2023, 39, btad755. [Google Scholar] [CrossRef]
- Laurie, S.; Piscia, D.; Matalonga, L.; Corvó, A.; Fernández-Callejo, M.; Garcia-Linares, C.; Hernandez-Ferrer, C.; Luengo, C.; Martínez, I.; Papakonstantinou, A.; et al. The RD-Connect Genome-Phenome Analysis Platform: Accelerating diagnosis, research, and gene discovery for rare diseases. Hum. Mutat. 2022, 43, 717–733. [Google Scholar] [CrossRef]
- Niculae, D.; Dusman, R.; Leonte, R.A.; Chilug, L.E.; Dragoi, C.M.; Nicolae, A.; Serban, R.M.; Niculae, D.A.; Dumitrescu, I.B.; Draganescu, D. Biological Pathways as Substantiation of the Use of Copper Radioisotopes in Cancer Theranostics. Front. Phys. 2021, 8, 568296. [Google Scholar] [CrossRef]
- Twilt, J.J.; van Leeuwen, K.G.; Huisman, H.J.; Fütterer, J.J.; de Rooij, M. Artificial Intelligence Based Algorithms for Prostate Cancer Classification and Detection on Magnetic Resonance Imaging: A Narrative Review. Diagnostics 2021, 11, 959. [Google Scholar] [CrossRef]
- Stanowicka-Grada, M.; Senkus, E. Anti-HER2 Drugs for the Treatment of Advanced HER2 Positive Breast Cancer. Curr. Treat. Options Oncol. 2023, 24, 1633–1650. [Google Scholar] [CrossRef] [PubMed]
- Chiș, I.-A.; Andrei, V.; Muntean, A.; Moldovan, M.; Mesaroș, A.; Dudescu, M.C.; Ilea, A. Salivary Biomarkers of Anti-Epileptic Drugs: A Narrative Review. Diagnostics 2023, 13, 1962. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, Z.; Zeeshan, S.; Liang, B.T. RNA-Seq Driven Expression and Enrichment Analysis to Investigate CVD Genes with Associated Phenotypes among High-Risk Heart Failure Patients. Hum. Genom. 2021, 15, 67. [Google Scholar] [CrossRef]
- Drăgoi, C.; Nicolae, A.C.; Dumitrescu, I.-B.; Popa, D.E.; Ritivoiu, M.; Arsene, A.L. DNA targeting as a molecular mechanism underlying endogenous indoles biological effects. Farmacia 2019, 67, 367. [Google Scholar] [CrossRef]
- Zhao, S.; Bao, Z.; Zhao, X.; Xu, M.; Li, M.D.; Yang, Z. Identification of Diagnostic Markers for Major Depressive Disorder Using Machine Learning Methods. Front. Neurosci. 2021, 15, 645998. [Google Scholar] [CrossRef] [PubMed]
- Schaack, D.; Weigand, M.A.; Uhle, F. Comparison of Machine-Learning Methodologies for Accurate Diagnosis of Sepsis Using Microarray Gene Expression Data. PLoS ONE 2021, 16, e0251800. [Google Scholar] [CrossRef] [PubMed]
- DeGroat, W.; Abdelhalim, H.; Patel, K.; Mendhe, D.; Zeeshan, S.; Ahmed, Z. Discovering Biomarkers Associated and Predicting Cardiovascular Disease with High Accuracy Using a Novel Nexus of Machine Learning Techniques for Precision Medicine. Sci. Rep. 2024, 14, 1. [Google Scholar] [CrossRef]
- Ungurianu, A.; Zanfirescu, A.; Margina, D. Regulation of Gene Expression through Food-Curcumin as a Sirtuin Activity Modulator. Plants 2022, 11, 1741. [Google Scholar] [CrossRef]
- Kegerreis, B.; Catalina, M.D.; Bachali, P.; Geraci, N.S.; Labonte, A.C.; Zeng, C.; Stearrett, N.; Crandall, K.A.; Lipsky, P.E.; Grammer, A.C. Machine Learning Approaches to Predict Lupus Disease Activity from Gene Expression Data. Sci. Rep. 2019, 9, 9617. [Google Scholar] [CrossRef]
- Tang, L. Informatics for Genomics. Nat. Methods 2020, 17, 23. [Google Scholar] [CrossRef]
- Babu, M.; Lautman, Z.; Lin, X.; Sobota, M.H.; Snyder, M.P. Wearable Devices: Implications for Precision Medicine and the Future of Health Care. Annu. Rev. Med. 2024, 75, 401–415. [Google Scholar] [CrossRef]
- Ahmed, Z.; Mohamed, K.; Zeeshan, S.; Dong, X. Artificial Intelligence with Multi-Functional Machine Learning Platform Development for Better Healthcare and Precision Medicine. Database 2020, 2020, baaa010. [Google Scholar] [CrossRef] [PubMed]
- Fagiani, F.; Di Marino, D.; Romagnoli, A.; Travelli, C.; Voltan, D.; Di Cesare Mannelli, L.; Racchi, M.; Govoni, S.; Lanni, C. Molecular regulations of circadian rhythm and implications for physiology and diseases. Signal Transduct. Target. Ther. 2022, 7, 41. [Google Scholar]
- Dragoi, C.M.; Nicolae, A.C.; Ungurianu, A.; Margina, D.M.; Gradinaru, D.; Dumitrescu, I.-B. Circadian Rhythms, Chrononutrition, Physical Training, and Redox Homeostasis—Molecular Mechanisms in Human Health. Cells 2024, 13, 138. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Dean, J. A Guide to Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Topol, E.J. High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nat. Med. 2019, 25, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Walker, W.H.; Walton, J.C.; DeVries, A.C.; Nelson, R.J. Circadian rhythm disruption and mental health. Transl. Psychiatry 2020, 10, 28. [Google Scholar] [CrossRef] [PubMed]
- Dragoi, C.M.; Morosan, E.; Dumitrescu, I.B.; Nicolae, A.C.; Arsene, A.L.; Draganescu, D.; Lupuliasa, D.; Ionita, A.C.; Stoian, A.P.; Nicolae, C.; et al. Insights into chrononutrition: The innermost interplay amongst nutrition, metabolism and the circadian clock, in the context of epigenetic reprogramming. Farmacia 2019, 67, 557–571. [Google Scholar] [CrossRef]
- Vadapalli, S.; Abdelhalim, H.; Zeeshan, S.; Ahmed, Z. Artificial Intelligence and Machine Learning Approaches Using Gene Expression and Variant Data for Personalized Medicine. Brief. Bioinform. 2022, 23, bbac191. [Google Scholar] [CrossRef]
- Knoppers, B.M.; Thorogood, A.M. Ethics and big data in health. Curr. Opin. Syst. Biol. 2017, 4, 53–57. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drăgoi, C.M.; Nicolae, A.C.; Dumitrescu, I.-B. Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine. Pharmaceutics 2024, 16, 1107. https://doi.org/10.3390/pharmaceutics16081107
Drăgoi CM, Nicolae AC, Dumitrescu I-B. Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine. Pharmaceutics. 2024; 16(8):1107. https://doi.org/10.3390/pharmaceutics16081107
Chicago/Turabian StyleDrăgoi, Cristina Manuela, Alina Crenguța Nicolae, and Ion-Bogdan Dumitrescu. 2024. "Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine" Pharmaceutics 16, no. 8: 1107. https://doi.org/10.3390/pharmaceutics16081107
APA StyleDrăgoi, C. M., Nicolae, A. C., & Dumitrescu, I. -B. (2024). Emerging Strategies in Drug Development and Clinical Care in the Era of Personalized and Precision Medicine. Pharmaceutics, 16(8), 1107. https://doi.org/10.3390/pharmaceutics16081107