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Abstract: Drug-resistant infectious diseases pose a substantial challenge and threat to medical reg-
imens. While adaptive laboratory evolution provides foresight for encountering such situations,
it has inherent limitations. Novel drug delivery systems (DDSs) have garnered attention for over-
coming these hurdles. Multi-stimuli responsive DDSs are particularly effective due to their reduced
background leakage and targeted drug delivery to specific host sites for pathogen elimination. Bac-
terial infections create an acidic state in the microenvironment (pH: 5.0–5.5), which differs from
normal physiological conditions (pH: 7.4). Infected areas are characterized by the overexpression of
hyaluronidase, gelatinase, phospholipase, and other virulence factors. Consequently, several effective
stimuli-responsive DDSs have been developed to target bacterial pathogens. Additionally, biofilms,
structured communities of bacteria encased in a self-produced polymeric matrix, pose a significant
challenge by conferring resistance to conventional antimicrobial treatments. Recent advancements in
nano-drug delivery systems (nDDSs) show promise in enhancing antimicrobial efficacy by improving
drug absorption and targeting within the biofilm matrix. nDDSs can deliver antimicrobials directly to
the biofilm, facilitating more effective eradication of these resilient bacterial communities. Herein, this
review examines challenges in DDS development, focusing on enhancing antibacterial activity and
eradicating biofilms without adverse effects. Furthermore, advances in immune system modulation
and photothermal therapy are discussed as future directions for the treatment of bacterial diseases.
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1. Introduction

Bacterial pathogens pose various infections to human health worldwide through
the development of multi-drug resistance [1]. For example, methicillin-resistant Staphy-
lococcus aureus (MRSA) is listed as a multi-drug-resistant pathogen by the World Health
Organization (WHO) and causes various infections in humans. Bacterial diseases are resis-
tant to antimicrobial regimens, including osteomyelitis, pneumonia, infective endocarditis,
bacteremia, and implant-associated infections [2,3]. Moreover, bacterial pathogens develop
biofilm matrices by generating extracellular polysaccharides (EPS). The EPS facilitates
cellular communication between the bacterial cells via quorum sensing (QS), which pre-
vents nutrient competence and enhances the ability to respond to various environmental
factors [4,5]. The EPS matrix acts as a bio-shied for bacterial pathogens, protecting them
from immune response and various antimicrobial treatments [6]. Biofilm-forming bacterial
infections are more hazardous compared to planktonic bacterial infections. The biofilm of
the bacterial pathogen is 1000-fold more resistant to antibacterial treatments than plank-
tonic bacterial cells of the same strain [1]. The global view towards antimicrobial resistance
is one of angst, with bacteria evolving novel ways to evade drug-microbe interactions.
Some current evasion mechanisms include efflux pumping, modification, inactivation, and
limiting targeted drug uptake [7]. Therefore, an effective biofilm eradication approach is
essential for treating biofilm-associated bacterial infections.

Nanotechnology and nanomedicine provide stimuli-responsive DDSs for triggering
bacteriostatic and bactericidal effects in biofilm-forming bacterial pathogens. This method
allows for greater drug efficacy, controlled localized drug delivery, carrier leakage pre-
vention, and less adverse effects. Several studies have utilized a polymer modifications
approach to increase specificity and drug efficacy in biomedical applications [8–10]. For
instance, curcumin (Cur) and indocyanine green (ICG) co-encapsulated into the zeolitic
imidazolate framework-8 (ZIF-8)/polylactic acid (PLA) coated with phase-change material
(PCM) (Cur-ICG@ZIF-8/PLA/PCM) nanocomposite has been observed to have photother-
mal and photodynamic activities, enhancing bactericidal effects by 99% against MRSA
and E. coli [11]. In addition, Cur-ICG@ZIF-8/PLA/PCM scaffolds effectively promote
MRSA-infected wound healing under near-infrared (NIR) irradiation [11]. However, the
efficiency of DDS is impacted by common exogenous and endogenous stimuli, including
enzymatic activity, H2O2, pH, temperature, ions, electrical, light, magnetic fields, and
ultrasound. The administration route also impacts the efficacy of the delivered drug. These
routes can be enteral or parenteral, each possessing limitations with drug carrier types
(hydrogel, polymer dot, nanoparticles, liposomes) [12].

The most significant smart system increases efficacy due to higher local concentra-
tions, reduced systemic side effects, and the released agent’s capacity to diffuse into the
peri-implant tissues, killing bacteria on implant surfaces and in the surrounding environ-
ment [13]. Another work demonstrated that a hydrophilic and viscous hydrogel composed
of titanium (Ti), red phosphorus (RP), poly (vinyl alcohol) (PVA)/chitosan (CS) hydro-
gel (PCP), and NO donor of S-nitro succinic acid (RSNO) (Ti-RP/PCP/RSNO) system
releases NO to trigger the osteogenesis and MRSA biofilm eradication under NIR irradi-
ation through immunotherapy and phototherapy [14]. The multi-stimuli (pH and elec-
tro responsiveness) chitosan-graft-polyaniline (CP) and oxidized dextran (OD) (CP/OD)
hybrid hydrogels enhanced antibacterial activity against E. coli and S. aureus while show-
ing excellent cytocompatibility, in vivo biodegradability, and biocompatibility [15]. The
metal organic framework (MOF) DDS of ZIF-8 (zeolitic imidazolate framework 8) is a
promising drug delivery nanocarrier with a porous structure. For example, dual-stimuli
(NIR/pH)-responsive release of vancomycin’s (Van) from Van@ZIF8@PDA (van- ZIF-8
with polydopamine (PDA)) at pH 4.7 with NIR irradiation showed the enhanced in vivo
antibacterial activity [16]. Certain drug encapsulation nanoparticles (NPs) can also be
toxic, carcinogenic, and non-metabolizable to the body; thus, biodegradable NPs have been
developed [17,18]. Stimuli pathology or physiology that aids in drug release is another
factor to consider. Biofilm formation from bacterial infection poses a significant barrier and
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must be considered in DDS designs [19]. Thus, modeling proper stimuli-response DDSs
and stimuli intensity is crucial. This review discusses in-depth roles and challenges of
stimuli-response DDSs in the treatment of bacterial diseases.

2. Drug Antimicrobial Mechanisms and Encapsulation
2.1. Drug Carrier Types

Various drug carriers used as vehicles include NPs, microbots, liposomes, dendrimers,
and micelles that release the drug to localized sites. NPs have garnered considerable atten-
tion as they can deliver antimicrobial components directly to the infection site. Microbial
growth in wounds hinders the healing process and often results in infection. Although
antimicrobial creams are widely used, they offer inaccurate healing compound doses.
Therefore, wound dressings are preferred, as they prevent secondary infections. Silver sulfa-
diazine (SSD) is an antibacterial drug that combats infections and prevents sepsis. However,
due to its poor aqueous solubility and inability to bond to textile fibers, El-Feky et al. [20]
observed the controlled release of SSD from chitosan NP wound dressing. Chitosan NPs, as
a drug carrier and effective fabric coating material, have been studied through ionotropic
gelation, where the positive charge of the chitosan amino group interacts with the negative
charge of the polyanion. This wound dressing, coated with SSD-loaded chitosan NPs, ex-
hibited an extended SSD delivery of over 24 h, inhibiting Gram-positive and Gram-negative
bacterial pathogens. Reactive oxygen species (ROS)-responsive mesoporous silica nanopar-
ticles (MSNs) composed of vancomycin (Van) thioketal (TK)-functionalized methoxy poly
(ethylene glycol) (mPEG-TK) (Van-mPEG-TK-MSNs showed excellent antibacterial activity
and S. aureus-infected wound healing activity [21]. Microrobot and liposome biohybrids are
used for targeted delivery of drugs into infected sites with minimal invasion. For instance,
microrobots loaded with photothermal agents and chemotherapeutic molecules, composed
of magnetic and nanoliposomes sensitive to pH or external stimuli such as light and mag-
netic fields, are designed to deliver drugs to a specified site for killing E. coli [22]. Moreover,
PEGylated liposomes are used for cancer therapeutics [23]. Simonis et al. have reported
the efficiency of cationic liposomes in penetrating the blood–brain barriers (BBBs) [24].
Dendrimers are highly branched macromolecules with entrapment properties useful in
DDS; among dendrimers, polyamidoamine (PAMAM) dendrimers are widely studied.
These macromolecules possess vacant cavities to entrap cargo molecules and many func-
tional groups that enhance their high solubility, making them reliable drug carriers [25].
Sulfonamides have a broad antibacterial activity spectrum but a considerable drawback
of extremely low solubility in aqueous solutions. For example, Ma et al. researched sul-
famethoxazole (SMZ) encapsulation into PAMAM dendrimers, revealing prolonged drug
release and increased antibacterial activity against E. coli [25]. In addition to these materials,
nanotechnology offers several innovative DDSs that precisely target specific bacterial infec-
tions, enhancing treatment efficacy and minimizing side effects. These are summarized in
Table 1.
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Table 1. Summary of stimuli-responsive antibacterial systems. phosphorylation-modified poly (ethylene glycol)-b-poly(tyrosine) (PEG-b-PPTyr). amphiphilic
fluorinated copolymers were assembled into micelles (FCBMs); ciprofloxacin (CIP); curcumin (Cur); chitosan (CS); silver nanoparticles (AgNPs); cinnamaldehyde
(CA); chitosan nanoparticles (CSNPs); solid lipid nanoparticles (SLNs); polydopamine (PDA); 2-(dimethylamino)ethyl methacrylate (DMAEMA); butyl methacrylate
(BMA); and 2-propylacrylic acid (PAA); carboxybetaine-co-dopamine methacrylamide (PCBDA); contact lenses (CLs); xanthan gum (XG); aloe vera extract (AVE);
silica oxide nanoparticles (SiO NPs); ampicillin (Amp); erythromycin (Ery); 2,3-dimethyl maleic anhydride (DA); lysine and arginine and encapsulating ursolic and
oleanolic acids (UOACDs); platensimycin (PTM).

Nanomaterial Name of DDS System Drug Targeted Bacterial Infections Mechanism of Action Ref.

Nanoparticles mPEG-TK-MSN Vancomycin S. aureus infected wound
healing therapy

Cell membrane/cell wall partial
disintegration [21]

Antimicrobial peptide-Polydopamine
nanoparticles (PdNPs-AMP) Antimicrobial peptides (AMP) E. coli Structural deterioration [26]

CS-AgNPs Silver nanoparticles E. coli and S. aureus - [27]

CSNP-CAs Cinnamaldehyde S. aureus biofilms eradication Cell wall damage and
permeability [28]

Rifampin-SLN-P-SA6 Rifampin S. epidermidis biofilm eradication - [29]

Cefazolin-containing niosome
nanoparticles Cefazolin MRSA Biofilm removal [30]

Ferromagnetic Nanoparticles
(Fe3O4@PDA@Mino) Minocycline (Mino) Periodontal biofilm eradication Regulation of inflammatory

response [31]

p(DMAEMA-co-BMA-co-PAA) Farnesol Treatment of rodent dental caries (S.
mutans biofilms) Bacterial biofilm penetration [32]

Quantum dots-Poly lactic-co-glycolic
acid (PLGA) (CQD-PLGA NPs) Azithromycin and tobramycin Eradication of P. aeruginosa biofilms Increases bacterial membrane

permeability [33]

PCBDA@AgNPs-CL AgNPs Microbe-induced ocular infections (C.
albicans) Resist–kill–remove [34]

Pt-Se NPs - S. enterica, E. coli, L. monocytogenes,
S. aureus, and B. cereus Bacterial cell damage [35]

XG-AVE-Ag/MgO NCs Ag and MgO, nanoparticles,
Aloe vera extracts E. coli biofilm removal Cell wall damage [36]

Pae-SiO2 NPs Paeoniflorin S. aureus and B. cereus - [37]

ZrO2-Amp NPs and ZrO2-Ery NPs Ampicillin and erythromycin E. coli and B. cereus, in vitro
wound healing Protein and DNA damage [38]



Pharmaceutics 2024, 16, 976 5 of 20

Table 1. Cont.

Nanomaterial Name of DDS System Drug Targeted Bacterial Infections Mechanism of Action Ref.

Tetracycline-loaded ZrO2 NPs Tetracycline S. entrica and S. aureus
biofilm eradication Penetration inside the biofilm [39]

CS-FeNPs Fe NPs E. coli biofilms eradication Protein leakage, cell
wall permeability [40]

Anti-CD54@Cur-DA NPs Curcumin Treatment of chronic lung infection
(P. aeruginosa)

Inhibiting efflux pump-related
genes [41]

Micelles Nanostructured antimicrobial micelles
(CT9W1000 micelles) Antimicrobial peptides (T9W) P. aeruginosa lung infection ROS production and

anti-inflammatory effect [42]

SIR-micelles conjugated mannose
targeting ligands Inflammatory cytokines Treatment of pneumonia infection of

multidrug-resistant K. pneumoniae
Regulate the inflammatory
cytokines [43]

Curcumin-loaded polymeric micelles Curcumin S. aureus, E. coli and C. albicans - [44]

Caffeic acid graft chitosan copolymer
loaded QR micelles (CA-g-CS/QR) Quercetin E. coli In vivo antibacterial activity in

broiler chickens [45]

Polyzwitterionic micelles Triclosan S. aureus infection Drug penetration inside the
biofilm kills bacteria [46]

Chitosan oligosaccharide lactate
(COL)-pluronic F127 polymers, loaded
with gatifloxacin
(Gati@FCOL1/Gati@FCOL2 micelles)

Gatifloxacin
Eradication of P. aeruginosa and
S. aureus and treatment of bacterial
keratitis

Anti-quorum sensing (QS) effect [47]

Antibacterial Micelles- Carboxymethyl
Chitosan (CC)/Oxidized Konjac
Glucomannan (OKG)
stevioside-stabilized honokiol (HS)
(CC45/OKG40/HS hydrogel)

Honokiol S. aureus infected Wound Healing
Eradicate the bacterial infection
and regulate the inflammatory
response

[48]

PEG-b-PPTyr micelles α-helical cationic polypeptide E. coli infected wound healing
Eradication of bacterial biofilm
and regulating the
anti-inflammatory response

[49]

CIP@FCBMs Ciprofloxacin Eradication of biofilms and
MRSA-infected wound healing

Targeting the bacterial proteins
and nucleic acid synthesis [50]

Cur-EPS conjugate-based polymeric
micelles Curcumin

Antioxidant, eradication of E. coli,
S. aureus, P. aeruginosa, S. typhimurium,
and S. marcescens biofilms

Antibacterial, antibiofilm, and
antioxidant mechanisms [51]
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Table 1. Cont.

Nanomaterial Name of DDS System Drug Targeted Bacterial Infections Mechanism of Action Ref.

Liposomes Liposome-based nanoreactor
(RFP-CaO2@PCM@Lec) Eutectic antimicrobial mixture Treatment of MRSA-infected wounds Antimicrobial release through

pore formation [52]

Liposome-based bacterial microbats Liposomal drug E. coli infection Lipid bilayer permeabilization [22]

Asiaticoside-Loaded Liposomes
(rColMA/QCSG/LIP@AS/Ag@MOF
(RQLAg) hydrogel

Asiaticoside E. coli and S. aureus Destroy the cell membrane [53]

Dendrimers Amino acid-conjugated cationic
dendrimers (CDs) UOACDs E. coli, K. pneumoniae, MRSA, and

MRSE - [54]

PLGA/PTM; PAMAM/PTM NPs PTM S. aureus (mouse peritonitis model) S. aureus cell membranes
interactions [55]

Ag-loaded poly(amide-amine)
dendrimer Ag E. coli and S. aureus - [56]

Dendrimer G4 poloxamer nanoparticles Coumarin MRSA Drug penetration and uptake,
cellular damage [57]

Erythromycin-conjugated nano
dendrimer Erythromycin S. aureus, S. epidermidis, S. saprophyticus,

and P. aeruginosa
Membrane permeability and
bacterial lysis [58]

Gelatin and gelatin Star-shaped
polyamidoamine (PAMAM) dendrimer
G3.5 (sIPN NCs)

Silver acetate S. aureus and P. aeruginosa Release kill mechanism [59]



Pharmaceutics 2024, 16, 976 7 of 20

2.2. Targeted Stimuli for Bacterial Therapy

In addition to nanocarriers, targeted stimuli in bacterial therapy are gaining immense
attention. Developing new methods for controlled drug release is crucial for maintaining
efficient drug circulation for a prolonged period and reducing side effects [52]. Hence,
stimuli-responsive drug release in localized infection sites is a promising avenue. Drug
carriers are modified to deliver drugs when exposed to specific stimuli. ROS is a redox
stimulus that includes hydrogen peroxide, hypochlorite, superoxide, and hydroxyl radi-
cals. ROS is often found in living systems as an integral component of vital biochemical
pathways [21]. Andoy et al. used polydopamine NPs (PdNPs) as a biocompatible pho-
tothermal agent and assessed their applicability in bacterial therapy against drug-resistant
E. coli [26]. Li et al. [21] developed vancomycin-loaded thioketal-functionalized methoxy
poly (ethylene glycol) (mPEG-TK) mesoporous silica nanoparticles (MSNs) sensitive to
ROS for improved antibacterial drug delivery to kill S. aureus. In addition to the exter-
nal stimuli, several studies explored endogenous stimuli-driven antimicrobial release for
bacterial therapy.

2.3. Mechanisms of Bacterial Therapy

Antimicrobials are one of the most prevalent treatments in antibacterial therapy. How-
ever, due to their constant misuse and overuse, humans now confront antimicrobial-
resistant bacterial species. Introducing PTT-mediated bacterial therapy techniques is critical
in overcoming this challenge [16]. Antibacterial activity involves various biocidal mech-
anisms including membrane lytic activity, enzyme inactivation, and ROS induction [26].
The bacterial cell’s mechanical integrity is tested during bacterial therapy. Disrupting the
elasticity of the cell membrane or envelope enhances drug entry into the bacterial cell [26].
Drug carriers that respond to certain stimuli combine antibacterial mechanisms to kill or
inhibit bacteria. Antimicrobial peptides (AMPs) outshine conventional antimicrobials in
hindering antimicrobial resistance [26].

Laser-induced antimicrobial functionality has significantly lowered the critical tem-
perature required to inactivate bacteria in the infection site. This antibacterial system
eradicated E. coli cells by transferring heat directly to their envelope and inducing struc-
tural deterioration. In photothermal therapy, NIR light is converted into heat, which is then
used to kill microbes. For example, Wang et al. [60] designed a ZIF-8-based antibacterial
system capsulated with a Pd-Cu nanoalloy as the photothermal agent and the antimi-
crobial amoxicillin. This system incorporates two bacterial film eradication mechanisms:
chemotherapy and photothermal therapy. The chemotherapy mechanism releases amoxi-
cillin in response to pH changes, especially in acidic environments. The release disrupts
the bacterial wall, notably affecting planktonic bacteria (G+/G−) and their biofilms (S. au-
reus and P. aeruginosa), and the release is sped up by the co-released Pd-Cu nanoalloy.
This photothermal agent converts NIR irradiation light energy into heat, synergizing with
amoxicillin to kill the bacteria [60].

Xiao et al. [16] developed a zeolitic imidazole framework-8 (ZIF-8) modified with
polydopamine, with vancomycin (Van) encapsulated to form a Van@ZIF-8@PDA formula-
tion. This material releases vancomycin in response to pH changes and hypothermia from
NIR irradiation. After 10 min of NIR irradiation, the drug release percentage was 65% at a
4.7 pH and 38.7% at a 7.4. These results suggested that the antibacterial system damaged
the bacteria’s genomic DNA through NIR irradiation. PDA was added as a ZIF-8 surface
modification and implemented photothermal activation. This dual-stimuli-responsive
antibacterial system expressed synergistic germicidal and antibiofilm properties, proving
remarkable as a drug-resistant bacterial treatment. This system was also proven effective in
a mouse model, evidence of the healing of E. coli-infected wounds (Figure 1).
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Figure 1. The NIR irradiation process for treating skin infection in mice (A–G). Data are expressed as
means ± s.d., n = 3, * p < 0.05, *** p < 0.001. Reprinted from Xiao et al., [16] Acta Biomaterialia (122,
2021) with permission from Elsevier (License Number: 5806490081467).

Wu et al. developed a liposome-based nanoreactor that releases drugs in response to
the expression of bacterial toxins as an endogenous stimulus [52]. When the liposome-based
nanoreactor is exposed to MRSA, which produces these bacterial toxins, the toxins penetrate
the nanoreactors and form pores while maintaining the reactor structure. Water enters the
membrane through these pores, reacts with CaO2, and produces H2O2. The produced H2O2
decomposes into O2, aiding in the release of antimicrobial or any antibacterial material
through significant reactor expansion and reducing toxin toxicity. Therefore, this system is
applicable for therapeutic use against bacteria that secrete pore-forming toxins. In another
study, Akolpoglu et al. [22] demonstrated that a liposome-based bacterial microbot DDS
releases its cargo in response to a stimulus such as NIR and pH. A fluorescent dye capable
of absorbing NIR light was inserted into the lipid membrane. The absorbed NIR light was
converted into heat, causing structural modification in the membrane to release the cargo.
The lipid bilayer of the liposome-based carrier undergoes membrane permeabilization by
transitioning from the gel phase to the liquid crystalline phase (Figure 2).
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of drug. Distributed under a Creative Commons Attribution License 4.0 (CC BY).

Furthermore, drug release profiles were investigated over ten days with pH levels
ranging from 2.5 to 7.4. Results revealed that drug release was higher at lower pH, with 98%
released within six days at pH 2.5. The protonation of the carboxyl group in the membrane
facilitated this release by disrupting the liposomal membrane at lower pH [22]. Li et al.
developed a surface-modified ROS-responsive MSN-based antimicrobial delivery system
that encapsulated vancomycin to heal S. aureus-infected wounds [21]. As the concentration
of H2O2 in the medium increased, the vancomycin release rate also increased due to the
disintegration of mPEG-TK MSN. Assays revealed that this mPEG-TK-MSN system used
to treat S. aureus infection partially disintegrated the bacteria’s cell wall or membrane,
allowing to pass through a fluorescent dye [21]. Additionally, carbon quantum dots (CQDs)
are used in drug cargo due to their unique biocompatibility. Huang et al. [33] incorporated
CQDs into polylactic-co-glycolic acid (PLGA)-based NPs, which had previously been
established in bacterial biofilm treatments. The synthesized CQD-PLGA indicated efficient
loading of antimicrobial drugs, such as azithromycin and tobramycin, and released the
drug based on laser irradiation. The CQDs rapidly converted NIR to heat, disrupting the
PLGA nanomembrane network, increasing bacterial membrane permeability, and releasing
the drug. Thus, the azithromycin-loaded CQD-PLGA system demonstrated antibiofilm
properties against P. aeruginosa [33].

3. Controlled Antibacterial Drug Delivery Development

In recent years, many ground-breaking strategies for creating DDSs have been devised
and are currently in use. An essential feature of an effective DDS is its ability to deliver
proper drug concentrations to target areas, and thereby enhance medication bioavailability.
Furthermore, selecting a suitable delivery carrier is a significant challenge. Because of
their biocompatibility and ease of production, liposomes, microspheres, nanomaterials,
polymeric particles, and other drug carriers are widely employed today [61]. As a result of
their precise target delivery and programable drug release mechanisms, the demand for
these treatments to combat increased antimicrobial resistance and microbial infection has
dramatically risen.

3.1. Polymer-Based Exosome Modification

Hydrogels comprising natural or synthetic polymers are widely used for injections and
topical therapeutics due to their self-supporting and 3D viscoelastic networks. Although
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they provide excellent applications, their lower tensile strength impacts drug loading
distribution. A study on a biocompatible and degradable dual-delivery nanogel system,
synthesized by allyl-functional hyperbranched dendritic-linear-dendritic copolymers and
fabricated via thiol-ene chemistry, demonstrated that hydrogels are primarily used as
wound healing treatments [62]. These hydrophobic antimicrobial ciprofloxacin nanogels
exhibited a 2.83 wt% drug loading capacity, enabling a prolonged antimicrobial release and
significantly reducing bacteria (S. aureus and E. coli) in vitro [62].

Hydrogels are currently produced with more than one attribute. For instance, a
study developed an antibacterial and osteogenic hydrogel loaded with vancomycin and
recombinant human bone morphogenetic protein-2 (Figure 3). Poly (lactic-co-glycolic
acid) is extensively used to develop controlled DDSs due to its enhanced biocompatibility,
high encapsulation efficiencies, and biodegradability. Additionally, to avoid the cellular
damaging effects of conventional cross-linking agents, the photo-crosslinking method was
employed, which allowed for programable reaction time and rapid gel formation [63]. This
DDS reportedly shows an excellent antibacterial effect against S. aureus in both in vitro and
in vivo model experiments [63].
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Figure 3. CM/VAN/MPs hydrogel film fabrication. Modified from [63] with permission from
Elsevier. This figure was created with biorender.com; License number: 5806481251498.

Exosomes are a promising DDS due to their superior delivery efficiency, biocom-
patibility, and lower immunogenicity. These vesicles, enclosed by a 40–200 nm mem-
brane, form via the fusion of multivesicular bodies with cell plasma membranes. For
instance, Yang et al. [64] conveyed that exosomes could serve as excellent DDS carriers for
antimicrobial therapy, capable of loading both hydrophilic and lipophilic drugs due to
their lipid bilayer. Similarly, a mannose-modified exosome DDS was designed to deliver
lysostaphin and vancomycin in a nanocomposite platform to bacterial infection sites to
eradicate MRSA [65]. In this method, azides were incorporated into exosomes by attaching
DBCO-mannosyl ligands to azide-integrated exosomes, altering the metabolic function of
exosome-secreting cells [65] (Figure 4).



Pharmaceutics 2024, 16, 976 11 of 20Pharmaceutics 2024, 16, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 4. MExoV (vancomycin)- or MExoL (lysostaphin)-loaded mannosylated exosome fabrication. 
Reprinted from [65] with permission from Elsevier (License Number: 5806490380839). 

Another study demonstrated that selective laser melting can fabricate 3D porous bio-
ceramic (Si–CaSiO3) scaffolds with an even, spherical macropore structure, approximately 
400 µm pore size, and 35% porosity. In addition, mesopores were obtained with pore sizes 
ranging from 15 to 50 µm. The controllable porosity at both macro- and meso-levels com-
bined with a biocompatible polymer (PCL) coating allows for scaffold production aimed 
at bone regeneration and sustained vancomycin release [66]. Furthermore, the Plackett–
Burman factorial design has been utilized to create calcium alginate microspheres (Ca-SA) 
fortified with chitosan and dual antimicrobials encapsulated in chitosan-based-Ca-SA. 
The CS-Ca-SA microspheres exhibited a surface pH of 6.5 ± 0.5 with enhanced muco-ad-
herence and reduced swelling and erosion compared to Ca-SA microspheres. This system 
showed significant antibacterial action against S. aureus and E. coli and was cytocompati-
bility with L929 cell lines [67]. This study confirmed that dual polymer and drug-based 
microspheres are biodegradable, stable, non-toxic, mucoadhesive, and capable of con-
trolled drug release [67]. The solvothermal technique has successfully fabricated the Car-
boxymethylcellulose/MOF-5/GO bio-nanocomposite (CMC/MOF-5/GO). The GO and 
CMC/MOF-5/GO were encapsulated with tetracycline (TC), aiding in stomach pH regu-
lation. This aspect was essential for TC release in the gastrointestinal tract, ensuring the 
long-term stability of dosage-dependent drug release. Antibacterial activity against E. coli 
was enhanced as compared to non-MOF-loaded TC trials [61]. 

3.2. Inorganic Nanomaterials-Based Modifications  
Metal-organic frameworks (MOFs) have found successful applications in DDSs due 

to their high porosity, programmable composition, structure manipulation, large surface 

Figure 4. MExoV (vancomycin)- or MExoL (lysostaphin)-loaded mannosylated exosome fabrication.
Reprinted from [65] with permission from Elsevier (License Number: 5806490380839).

Another study demonstrated that selective laser melting can fabricate 3D porous bio-
ceramic (Si–CaSiO3) scaffolds with an even, spherical macropore structure, approximately
400 µm pore size, and 35% porosity. In addition, mesopores were obtained with pore
sizes ranging from 15 to 50 µm. The controllable porosity at both macro- and meso-levels
combined with a biocompatible polymer (PCL) coating allows for scaffold production
aimed at bone regeneration and sustained vancomycin release [66]. Furthermore, the
Plackett–Burman factorial design has been utilized to create calcium alginate microspheres
(Ca-SA) fortified with chitosan and dual antimicrobials encapsulated in chitosan-based-
Ca-SA. The CS-Ca-SA microspheres exhibited a surface pH of 6.5 ± 0.5 with enhanced
muco-adherence and reduced swelling and erosion compared to Ca-SA microspheres.
This system showed significant antibacterial action against S. aureus and E. coli and was
cytocompatibility with L929 cell lines [67]. This study confirmed that dual polymer and
drug-based microspheres are biodegradable, stable, non-toxic, mucoadhesive, and capable
of controlled drug release [67]. The solvothermal technique has successfully fabricated the
Carboxymethylcellulose/MOF-5/GO bio-nanocomposite (CMC/MOF-5/GO). The GO
and CMC/MOF-5/GO were encapsulated with tetracycline (TC), aiding in stomach pH
regulation. This aspect was essential for TC release in the gastrointestinal tract, ensuring
the long-term stability of dosage-dependent drug release. Antibacterial activity against
E. coli was enhanced as compared to non-MOF-loaded TC trials [61].

3.2. Inorganic Nanomaterials-Based Modifications

Metal-organic frameworks (MOFs) have found successful applications in DDSs due
to their high porosity, programmable composition, structure manipulation, large surface
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area, intrinsic biodegradability, functionality, and biocompatibility [61,68,69]. Their ability
to load drugs efficiently and prevent drug leakage make them promising tools for drug
delivery. ZIF-8, a subclass of MOFs, is a porous crystalline material formed by zinc
ions and 2-methylimidazole coordination. ZIFs exhibit pH-responsive degradability; for
example, ZIF-8 degrades under acidic conditions while maintaining structural stability
under normal physiological conditions [70,71]. This pH-sensitive property makes it an ideal
nanocarrier for delivering therapeutic drugs. Bagchi et al. [70] investigated nano-MOFs that
encapsulated squaraine (SQ) drugs for PDT to combat drug resistance in planktonic bacteria
and biofilm formations. They reported on ZIF-8 MOF nanocrystals cohered to SQ (ZIF8-
SQ), demonstrating a gravimetrically analyzed thermal stability up to 450 ◦C and a drug
loading capacity of approximately 31%. ZIF-8 increased the drug loading capacity to 39.2%,
indicating its complementary structuring effect. Upon exposure to 650 nm radiation, the
nano-MOF exhibited pH-sensitive release of ROS and dual-stimulus responsiveness. This
action effectively disrupted MRSA biofilms, causing functional and complete adherence
loss to structurally robust bacterial biofilms (Figure 5) [70]. Nano-based DDSs can be
programmed to respond to various stimuli types: endogenous, exogenous, or both. A
demonstration of near-field IR and pH stimuli-response using ZIF-8 (MOF) with a surface
PDA configuration and encapsulated vancomycin showed excellent antibacterial activity
through photothermal degradation, membrane disruption, and cellular damage against
planktonic Gram-positive and Gram-negative bacteria and their respective biofilms. This
nanoparticle-based DDS exhibited superior biocompatibility, photothermal conversion, pH-
triggered drug release, and NIR-mediated drug release, potentially enhancing therapeutic
efficacy. Further in vivo, cytotoxic studies on a Mu50 mouse model with skin abscess
confirmed the effectiveness and non-toxicity of the NP-based DDS [16]. Several studies
have provided insights into targeted drug delivery using MOF-based DDSs at specific
pathological sites, summarized in Table 2.
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Table 2. Metal–organic framework (MOF) drug delivery systems’ stimuli response for enhanced antibacterial activity. Metal–organic framework (MOF); doxorubicin
(DOX); tragacanth gum-g-poly (NIPA-co-VOE)-cl-poly(MBA) hydrogels (TGIAVE); mesoporous zinc-imidazolate derivative MOF (mesoMOF); cisplatin (cis-Pt);
konjac glucomannan (KGM); glucose oxidase (GOx); norfloxacin (NOR); polyvinyl alcohol (PVA); lignin (Lig); vancomycin (Van); ZIF-8-derived porous carbon
(ZDPC); 5-Fluorouracil (5FU).

Composite\Carrier Composition MOF Average Size Drug Bioactivity Drug Loading Capacity Reference

van@ZIF-8@PDA 175.9 ± 2.74 nm Vancomycin
Eradication of S. aureus biofilms and

treatment of bacteria-infected
wounds

6.71% [16]

Pd-Cu nanoalloy ZIF-8 155.3 nm Amoxicillin
Eradication of P. aeruginosa and

S. aureus biofilm; S. aureus infected
wound healing

- [60]

ZJU-101 300 nm Diclofenac sodium - (∼0.546 g/g) [72]

UiO-66 1.22 nm pore diameter Ciprofloxacin 24 mm (E. coli)
22 mm (S. aureus) inhibition zones 84%. [73]

UiO-66-NH2 200 nm Quinazoline 0.25–0.7 mg m/L MIC
0.25–4 mg m/L MBC [74]

MIL-101(Cr) SBET—103 (m2 g−1

Vp—2.50 (cm3 g−1)
Ibuprofen and nimesulide - IBU, NMS

(850, 443 mg g−1) [75]

TGIAVE-Ag 25 nm 5-FU
Inhibited K. pneumonia,

P. aeruginosa, E. coli, and
S. aureus

89.13 ± 1.4% [76]

Rifampicin@ZIF-8 157.96 ± 1.07 nm Rifampicin Inhibited S. aureus [77]

Fe3O4@PAA@ZIF-8 50–200 nm Ciprofloxacin Inhibited E. coli and S. aureus [78]

Hydrogel
(CMC/PNIPAM-co-PAM). 39.782–38.235 g/g Tetracycline >85% scavenging efficiency [79]

NCQDs/Dox/HA 4–6 nm, 4.89 nm diameter Doxorubicin Inhibited S. aureus [80]

KGM/MOF Hydrogels -
Honokiol, caffeic acid, osthole,

baicalein, palmatine, pterostilbene,
quercetin, and luteolin

S. aureus 0.09 mg/mg–
0.157 mg/mg [81]

MEL-loaded MOF (MM) <1 µM Antimicrobial peptides MRSA - [82]
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Table 2. Cont.

Composite\Carrier Composition MOF Average Size Drug Bioactivity Drug Loading Capacity Reference

MOF(Fe-Cu)/GOx-polyacrylamide
(PAM) gel 280 nm Fe-Cu

E. coli and S. aureus; infected wound
healing by modulation of

antibacterial and inflammatory
- [83]

Ag NPs@ACM-1 370 to 700 nm AgNPs E. coli and S. aureus - [84]

Curcumin-Loaded Zn-MOF
Hydrogel - Curcumin E. coli and S. aureus - [85]

Ca–Sr–AMN–MOF Ca, Sr E. coli - [86]

NOR-Fe3O4@ZIF-8 nanoparticles 20 nm Norfloxacin E. coli - [87]

Zn-MOF(ZIF-8)-PVA-Gel 98.72 nm Zn-MOF(ZIF-8) Infected wound healing and
antibacterial activity against S. aureus - [88]

Isoniazid-loaded Cu-based
metal-organic frameworks - Isoniazid Inhibition of Mycobacterium

tuberculosis biofilm 10% [89]

CoCu-ZIF and ZnCu-ZIF - G-quadruplex/hemin
DNAzyme-aptamer functionalized MRSA - [90]

ZnO@ZIF-8 1.29 ± 0.45 µm ZnO S. aureus, and P. aeruginosa 30.23% [91]

Lig-Van-MOF 242.48 ± 12.20 nm Vancomycin E. coli and S. aureus 84.25 ± 2.50% [92]

Zn3[Fe(CN)6]/g-C3N4 500 nm zinc hexacyanoferrate E. coli and S. aureus and wound
healing effect - [93]

Cu-MOF/CS Pore size: 11.56 µm Cu
E. coli, P. aeruginosa, S. aureus, and
MRSA and P. aeruginosa infected

wound healing
- [94]

AgSA-ZDPC 40–50 nm Single atom-dispersed silver S. aureus and E. coli - [95]

SnFe2O4-PBA/Ce6@ZIF-8
(SBC@ZIF-8) 50–100 nm 3-aminobenzeneboronic acid (PBA)

and dihydroporphyrin e6 (Ce6)
MDR S. aureus infected wound

healing - [96]



Pharmaceutics 2024, 16, 976 15 of 20

4. Combination Therapy

Combinational therapy allows for dual or multi-therapeutic delivery to targeted sites.
For example, ZIF MOFs are promising gatekeepers as they respond to UV and pH stimuli.
This light-initiated sequential reaction involves a jump reagent for pH activation triggered
by UV radiation, which generates acid for MOF degradation, thereby releasing antimi-
crobial and zinc in a dose-dependent and controlled manner [71]. This targeted delivery
demonstrates synergistic actions such as preventing wound infections and enhancing
wound healing [71]. Ciprofloxacin (CIP)-loaded ZIF-8 (CIP-ZIF-8), which is pH-dependent,
demonstrated a 21 wt% drug-loading capacity. The drug release rate was slower at pH 7.4
than at mildly acidic conditions (pH 5.0). Their combined activity against Gram-positive
and Gram-negative species indicated enhanced microbial growth inhibition compared
to the control [97]. Another MOF-53(Fe)@Vancomycin DDS had a 20 wt% drug-loading
capacity. The MOF-53(Fe) exhibited the highest degradation percentage of 0.75% at pH 7.4
and 0.17% at pH 5.5, which is essential for a DDS. This study suggests that if a bacte-
rial infection induces antimicrobial release, MOF-based carrier systems are applicable for
surgical implants in acidic environments, establishing 99.3% antibacterial efficacy and
non-adverse drug release therapy [68]. Synergistic DDSs provide an edge over traditional
DDS approaches, overcoming drug-resistance development by bacteria and ensuring ef-
ficient bacteriostatic or bactericidal effects. A study that used water phase self-assembly
of tetracycline (Tet)@ZIF-8@ hyaluronic acid (TZH) demonstrated a triple effect system:
targeted pH-dependent drug release from the MOF cage, a synergistic antibacterial effect
of zinc ions being released, and TZH triggering the hyaluronic acid-mediated pathway in
CD44R cells. These effects indicated a clearance rate of over 98% [69].

5. Conclusions and Future Prospects

The rise of antimicrobial-resistant bacterial species has underscored the limitations
of conventional methods, which often exacerbate antimicrobial resistance rather than
suppression. Therefore, there is an urgent need for novel, effective, and safe DDSs for
developmental therapeutics for bacterial diseases. Various mechanisms have been devel-
oped to combat bacterial infection, ranging from biohybrid systems and mediated bacterial
therapies to multiple stimuli-responsive DDSs. These innovative methodologies surpass
conventional therapeutic approaches by offering higher bioavailability, targeted treatment,
drug delivery, and reduced antimicrobial leakage, ultimately providing safety by means of
non-cytotoxicity.

Despite the development of several inorganic and organic DDSs for eradicating bacte-
rial biofilms and treating infections, most of the studies have been confined to laboratory
and in vivo mice experiments. The transition from these experimental stages to commer-
cial products in medical or industrial settings remains limited. This review has explored
various drug carrier types and their bacterial therapy mechanisms through mediated or
target-specific stimuli. Stimuli-based DDSs have the potential to resolve problems faced by
conventional DDSs, but they are not without drawbacks. One limitation is accessibility, as
these methods are relatively expensive. Another challenge is the variability in individual
physiochemical compositions and reactions, leading to fluctuations in efficacy. In certain
scenarios, the stimulus may be less intense or vice versa, leading to dosage imbalances. This
review substantiates that these DDSs improve efficacy, site targeting, and biocompatibility.
However, further investigation is still necessary to enhance the practical application of
these systems.

To tackle the challenges faced by current DDSs, future research must focus on several
pivotal areas. Developing cost-effective methods for synthesizing and implementing
stimuli-responsive DDSs is essential to make these advanced treatments more accessible and
affordable in clinical practices. Additionally, advancing personalized DDSs that consider
individual physiological variations will ensure consistent and effective treatment outcomes
across diverse patient groups. The transition from laboratory research to commercial
products could be facilitated by conducting extensive clinical trials and forging partnerships
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with pharmaceutical companies. Enhancing the sensitivity of DDSs to stimuli is another
critical area, as it will ensure precise dosage control and minimize the risks associated
with incorrect dosages. Establishing comprehensive regulatory guidelines might help
streamline the approval process for new DDSs, ensuring they are both safe and effective
while speeding up the availability of them on the market. Furthermore, incorporating
sustainable materials and eco-friendly fabrication processes into the development of DDSs
might reduce their environmental impact. Addressing these areas will significantly advance
the adoption of innovative DDSs, leading to more effective and safe treatments for bacterial
diseases and helping to combat the growing issue of antimicrobial resistance.
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