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Abstract: Intervertebral disc degeneration (IVDD) stands as the foremost contributor to low back
pain (LBP), imposing a substantial weight on the world economy. Traditional treatment modalities
encompass both conservative approaches and surgical interventions; however, the former falls short
in halting IVDD progression, while the latter carries inherent risks. Hence, the quest for an efficacious
method to reverse IVDD onset is paramount. Biomaterial delivery systems, exemplified by hydrogels,
microspheres, and microneedles, renowned for their exceptional biocompatibility, biodegradability,
biological efficacy, and mechanical attributes, have found widespread application in bone, cartilage,
and various tissue engineering endeavors. Consequently, IVD tissue engineering has emerged as a
burgeoning field of interest. This paper succinctly introduces the intervertebral disc (IVD) structure
and the pathophysiology of IVDD, meticulously classifies biomaterials for IVD repair, and reviews
recent advances in the field. Particularly, the strengths and weaknesses of biomaterials in IVD tissue
engineering are emphasized, and potential avenues for future research are suggested.

Keywords: biomaterials; intervertebral disc; intervertebral disc degeneration; tissue engineering

1. Introduction

In contemporary society, the prevalence of low back pain (LBP) and its consequent
disability rates are steadily escalating, imposing a substantial economic burden world-
wide [1,2]. The etiology of LBP is multifaceted, with histological and imaging evidence
indicating a correlation with intervertebral disc degeneration (IVDD). Common treatments
include conservative approaches and surgical interventions [3]. Conservative approaches
involve rest, non-steroidal anti-inflammatory drugs (NSAIDs), and physical rehabilitation,
offering partial relief from pain symptoms but failing to halt IVDD progression. Moreover,
their efficacy and duration are limited, with some cases showing no symptom alleviation at
all [4,5]. When conservative measures prove ineffective, surgical intervention becomes the
primary recourse. Surgical options such as discectomy, decompression, and spinal fusion
yield significant symptom improvement. Despite the prevalence of minimally invasive
spinal surgery, stringent indications must be adhered to. Furthermore, regardless of the
procedure chosen, there remains a risk of increased trauma, recurrence, reduced mobility,
and adjacent vertebral diseases [6,7].

Given the constraints of conservative and surgical treatments and the deepening
comprehension of IVDD pathophysiology, biomaterial-based biological therapy offers novel
avenues for IVDD treatment. Biomaterials such as hydrogels, microspheres, microneedles,
and microfluidic chips boast remarkable biocompatibility, biodegradability, and swelling
rates. Additionally, they can facilitate the delivery of cells, cytokines, drugs, genes, etc.,
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and have found widespread application in bone, cartilage, skin, and other tissue repairs,
with a growing focus on disc repair [8–10].

This review provides a concise introduction to the intervertebral disc (IVD) struc-
ture and the mechanisms underlying nucleus pulposus (NP) degeneration. It metic-
ulously categorizes biomaterials for IVD repair and examines recent advances in
the field.

2. Structure of IVD and Pathophysiology of IVDD

IVD is located between adjacent vertebral bodies and consists of three main compo-
nents: a central NP, an outer annulus fibrosus (AF), and a cartilage endplate (CEP) [11,12].
The nucleus pulposus, situated between adjacent CEPs and forming the gelatinous core
of IVD, is primarily composed of type II collagen and proteoglycans. The hydrophilic-
ity of its internal structure ensures the water content and osmotic pressure in a healthy
IVD, maintaining the disc’s shape and hydrostatic pressure [13,14]. The AF consists of
numerous highly oriented collagen fibers that form a lamellar structure in alternating
layers. Abundant in type I collagen, the AF is segmented into inner and outer layers to
endure the high stress exerted by the central NP and the flexion and lateral bending of
the spine [15,16]. The CEP, composed of hyaline cartilage, is crucial for maintaining disc
integrity and separating the vascularized tissue from the non-vascularized tissue within the
IVD. Additionally, the CEP serves as the main route for nutrients to enter the NP from the
vertebral body [17]. The primary functions of the IVD are to support body weight, resist
pressure, facilitate vertebral motion, and connect adjacent vertebral bodies. Both the NP
and inner AF tissues have minimal blood supply, relying mainly on the diffusion of oxygen
and nutrients through capillaries in the outer AF tissue and CEP [18,19]. Consequently, the
IVD has limited capacity for self-regeneration and repair following degeneration.

The pathophysiological mechanisms of IVDD are still under debate and depend on
various factors, including age, mechanical load, hormones, and genetics [19]. A key aspect
of degeneration is the loss of IVD homeostasis, which is marked by a decrease in NP
cells and alterations in the extracellular matrix (ECM) components. Endplate calcification
obstructs the nutrient supply to NP cells, leading to an accumulation of metabolites and
proinflammatory factors such as IL-1β, IL-6, and TNF-α. This process also results in
increased levels of matrix metalloproteinases (MMPs) and reactive oxygen species (ROS),
ultimately causing phenotype changes, senescence, and apoptosis of NP cells, as well
as enhanced ECM catabolism and reduced ECM synthesis [20–22]. Additionally, the
elevated expression of inflammatory factors can stimulate the formation of nerves and
blood vessels, which is associated with discogenic pain. IVDD involves a wide range of
cellular and molecular signaling pathways, including PI3K, NF-κB, MAPK, and ERK [23,24].
Clinically, IVDD is manifested in imaging studies by reduced MRI signals in IVD tissue,
narrowing of the IVD space, irregularity and hardening of the CEP, annular herniation of
the intervertebral disc, and the formation of vertebral osteophytes. These changes can lead
to motor dysfunction and pain [25,26].

3. Mechanical Properties of IVD

AF and NP serve distinct functions in the biomechanical performance of IVD. The
collagen fibers within AF not only extend into the vertebral bone but also link the adjacent
vertebral bodies, thereby stabilizing the spine and establishing a connection between AF
and vertebral bodies [27,28]. The dense collagen fibers in the outer lamellar regions of AF
form intricate cross-folds, which effectively resist substantial tensile stresses, thereby pre-
venting extensive disc herniation and reducing spinal strain caused by axial compression,
torsion, bending movements, and axial rotation loads. Prolonged exposure to high levels of
axial loading, particularly in an upright posture, leads to the compression of IVD, causing
the expulsion of interstitial water. Consequently, the disc height decreases and may lead to
herniation [29,30].
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The nucleus pulposus, under static loads, primarily functions as a liquid, generating
significant fluid hydrostatic pressure and providing a barrier to limit deformation. Due to
the cartilage-like characteristics of the inner fibrous ring and NP, which are characterized by
higher protein polysaccharide content as well as high water content, the entire IVD exhibits
viscoelastic behavior. In the inner fibrous ring and NP, a less dense collagen matrix allows
for a significant degree of deformation to accommodate loads, resulting in volume changes
and subsequent flow of interstitial fluid within the disc, dissipating energy and viscoelastic
creep. Degeneration of NP leads to reduced disc height and stiffness, along with increased
deformation of AF. Injection of physiological saline into NP can temporarily increase
intradiscal pressure and reduce segmental mobility. This demonstrates that removing NP
or damaging AF alone results in loss of hydraulic function, leading to the load-deformation
response of the entire IVD [31,32].

Therefore, IVD provides both flexibility and stability to the spine while also pos-
sessing biomechanical capabilities to absorb and disperse high loads. Any abnormalities
in any part of IVD will affect its overall biomechanical performance. An adequately
designed carrier with suitable mechanical properties is indispensable in IVD tissue
engineering [33,34].

4. Biomaterials in IVD Tissue Engineering

With the growing understanding of the anatomical structure, pathophysiology,
and mechanical properties of IVD, biomaterial-based repair strategies for IVDD have
garnered increasing attention. Firstly, biomaterials used for IVDD repair must exhibit
excellent biocompatibility and biodegradability. This ensures they are non-toxic to
host tissues and foreign cells and can match the metabolic rate and tissue regener-
ation processes [35,36]. Secondly, these materials must possess suitable mechanical
properties to restore vertebral space height, withstand mechanical loads, and main-
tain spinal motion, thereby ensuring adequate load distribution. Another crucial but
often overlooked parameter is the swelling rate, which reflects the hydrophilicity of
the gel [37]. High-swelling materials facilitate the diffusion and release of drugs or
cytokines but tend to have weaker mechanical strength. Reducing the swelling rate can
stabilize the mechanical properties, and the release capabilities can be adjusted through
material modifications [38,39]. In addition, the microenvironment of IVDD is complex,
characterized by increased reactive oxygen species (ROS) and decreased pH. Therefore,
biomaterials should not exacerbate these conditions but instead should be engineered
to perform specific functions in response to these environmental factors [10]. Bioma-
terials such as hydrogels, microspheres, and microneedles are particularly suitable
due to their modifiable properties and mechanical characteristics similar to those of
biological tissues. Many of these materials are injectable and have crosslinking capabil-
ities, making them easy to design and use [39,40]. Moreover, advanced biomaterials
can encapsulate cells, deliver drugs and cytokines, and provide a controlled release to
influence molecular signaling pathways, exerting anti-inflammatory, antioxidant, or
other therapeutic effects. These properties make them highly effective for the regenera-
tion and repair of IVDs [10,37]. The various types of biomaterials used for IVDD are
described below (Figure 1).
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Figure 1. Biomaterials used in intervertebral disc degeneration tissue engineering. Abbreviations:
HA, hyaluronic acid; PEG, polyethylene glycol; PVA, polyvinyl alcohol; PAA, polyacrylic acid; PLA,
poly(lactic acid); PLGA, poly(lactic-coglycolic acid); EVs, extracellular vesicles; IVDD, intervertebral
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5. Hydrogels

Hydrogels, composed of interconnected natural or synthetic polymers holding water
within their structures, typically surpass particles in size [41,42]. These versatile materials
operate as carriers for cells, drugs, genes, and cytokines. Significantly, hydrogels comprise
fine particles, offering adaptable physical and chemical characteristics by modifying compo-
sition and concentration. This flexibility facilitates efficient drug delivery while maintaining
mechanical properties that closely resemble those of the Intervertebral Disc (IVD), con-
sequently aiding in the preservation of the IVD’s structural integrity [43]. By employing
different gelation strategies, hydrogels can intelligently respond to various microenviron-
ments, enabling accurate drug release. This capability has already been demonstrated in
numerous hydrogel materials used for wound hemostasis and bone defect repairs [44].
Various materials are utilized to construct hydrogels, including natural derivatives like
hyaluronic acid, alginate, and chitosan, as well as synthetic materials such as polyethylene
glycol (PEG), polyvinyl alcohol (PVA), and poly(lactic-coglycolic acid) (PLGA) [36].

5.1. Natural Hydrogels
5.1.1. Hyaluronic Acid

Hyaluronic acid (HA) is a natural polymer classified within a family of diverse het-
eropolysaccharides identified as glycosaminoglycans (GAGs), is found in the interstitial
fluid or can be obtained through microbial fermentation [45,46]. At the normal pH level,
every carboxylic group within the structure of hyaluronic acid bears a negative charge.
This property allows hyaluronic acid to establish hydrogen bonds with water molecules
by utilizing its carboxyl and acetamido groups, thereby enhancing the stability of the
biopolymer’s secondary structurer [47]. Its biocompatibility, immunocompatibility, and
susceptibility to chemical modifications make HA an ideal biomaterial choice. However,
insufficient mechanical properties have constrained the applicability of HA. Consequently,
the method of chemical modification and crosslinking with diverse performance-enhancing
materials has emerged as a broadly acknowledged strategy [48].
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Yang et al. [49] introduced an innovative self-gelling method driven by nucleobases in
HA. By embedding nucleobases into HA chains, this approach stimulates gel formation by
strengthening intermolecular hydrogen bonds. The resulting gel demonstrates self-gelation
properties, injectability, and tissue adhesion capacity. Moreover, the integration of man-
ganese dioxide (MnO2) nanoparticles aids in managing oxidative stress and addressing
the hypoxic microenvironment in IVDD, thus promoting cell viability within the encapsu-
lated environment. (Figure 2a). Chen et al. [50] developed an oxidized HA hydrogel by
synthesizing aldehyde-functionalized HA (HA-CHO) and crosslinking it with gene carrier
amine-terminated Generation 5 poly(amidoamine) dendrimers loaded with siRNAs. This
process formed a gel through dynamic Schiff base bonds, resulting in an injectable hydrogel.
This novel system significantly reduced IVD inflammation and slowed the progression of
IVDD by disrupting the STING-NF-κB pathway, demonstrating the considerable potential
for gene delivery applications in various diseases.

5.1.2. Collagen and Gelatin

Collagen, a vital constituent of the extracellular matrix (ECM) and a naturally occur-
ring biomaterial found abundantly in bone and soft tissues, exhibits low immunogenicity.
Additionally, collagen possesses favorable biocompatibility, biodegradability characteristics,
and weak cytotoxicity [51]. Gelatin, which is obtained through the heat-induced denatura-
tion of animal collagen, retains the key sequence characteristic of collagen. This sequence
is instrumental in promoting cell cycle progression [52]. Degradation products of gelatin,
originating from the same collagen, also demonstrate non-toxic and non-immunogenic
properties [53]. Gelatin hydrogels are often physically crosslinked, making them unsuitable
for long-term applications. A representative reaction product is methylacrylylated gelatin,
which is modified by methacrylate to form covalently crosslinked hydrogels. The storage
modulus can be adjusted between 1.2 and 15.9 kPa by changing the degree of methacrylate
substitution and the concentration of methylacrylyl gelatin, which greatly improves its
mechanical strength [54]. As a result, hydrogels made from collagen and gelatin have been
extensively utilized in the field of tissue engineering due to their diverse applications [55].
Hydrogel systems based on gelatin and collagen have made significant advancements in
tissue engineering applications for bone, cartilage, skin, and numerous other tissues [56,57].

Tian et al. [58] devised a dynamic self-healing gelatin hydrogel infused with kartogenin
(KGN). The administration of KGN-enhanced hydrogel effectively countered IVDD and
alleviated inflammation by stimulating NRF2, which plays an essential role in reducing ROS
and preventing ECM degradation in a rat model of puncture-induced IVDD (Figure 2b). In
a separate study, Luo et al. [59] developed an injectable bioorthogonal hydrogel (BIOGEL)
based on gelatin. Encapsulation of TGF-β within BIOGEL significantly bolstered tissue
repair processes, including tissue structure and matrix remodeling, while also enhancing
functional recovery, such as improved water retention by promoting matrix remodeling
and reduced pain, in an in vivo rat IVDD model.

5.1.3. Alginate

Alginate, a linear polysaccharide derived from natural mucopolysaccharides found
in brown algae, is widely recognized for its versatility in drug delivery systems. Its
biocompatibility, low immunogenicity, water retention properties, and mechanical strength
make it an ideal choice for supporting cell growth and proliferation [60]. Alginate scaffolds
utilize their porous structure to effectively encapsulate drugs, enabling gradual release over
time. The most commonly used form of alginate in hydrogels is sodium alginate (SA) [61,62].
Moreover, sodium alginate gels with sensitivity to light, heat, pH, and ionic strength can
be engineered to achieve precise control over drug release, leveraging alginate’s inherent
responsiveness to these environmental factors [63]. Meanwhile, the mechanical supporting
effect of sodium alginate alone is limited. Crosslinking with other biomaterials can result in
alginate gels having a skeletal network structure and improved mechanical properties [54].
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Li et al. [64] developed an injectable SA hydrogel reinforced with silk fibroin nanofibers
featuring core–shell structures. Platelet-rich plasma (PRP) was integrated into the core–shell
nanofibers to facilitate sustained release and enhance NP regeneration. In rat models of
IVDD, radiographic signal intensities significantly decreased following 8 weeks of injection
with the SA hydrogel. Wu et al. [65] introduced a novel injectable composite hydrogel
named Mel-MBG/SA, comprising SA, melatonin, and mesoporous bioactive glasses. This
composite hydrogel provides a combined system for sustained melatonin release, effectively
mitigating IL-1β-induced oxidative stress and alleviating inflammation associated with
IVDD pathophysiology. This innovative system presents a novel approach to promote
tissue regeneration by modulating the inflammatory environment while leveraging the
mechanical properties of the material (Figure 2c).

5.1.4. Chitosan

Chitosan (CS), a sole naturally occurring alkaline polysaccharide that carries a posi-
tive charge, finds extensive applications in drug delivery, antibacterial tissue engineering,
and wound hemostasis [66]. Structurally akin to natural glycosaminoglycans, CS and its
degradation products boast non-toxic, non-immunogenic properties and excellent biocom-
patibility [67]. However, the elastic modulus and compressive strength of CS hydrogels fall
significantly below those of the spinal structure, necessitating additional modifications to
bolster their mechanical robustness. This often entails the formation of double-network
hydrogels to fulfill the intended functions [68].

Du et al. [69] synthesized a thermosensitive injectable chitosan hydrogel loaded with
celecoxib. The hydrogel demonstrated low toxicity, biodegradability, and excellent bio-
compatibility. In animal experiments, this composite hydrogel effectively filled local tissue
defects, maintaining spinal stability and slowing the progression of IVDD post-surgery
(Figure 2d). Moreover, as hydrogels based on CS have gained recognition as effective carri-
ers for exosomes due to their notable biocompatibility, biodegradability, and antibacterial
capacity, Guan et al. [70] developed a hydrogel using quaternized chitosan (QCS) and
oxidized starch (OST) embedded with Exos for IVDD treatment. In a rat model of IVDD,
the QCS-OST/Exos hydrogel rejuvenated NP cell degeneration, facilitated ECM synthesis,
and partially restored the structures of NP and AF.

5.1.5. Fibrin and Silk Fibroin

Fibrin, composed of fibrinogen and thrombin, serves as a hemostatic agent widely
utilized in surgery due to its role in the physiological blood coagulation cascade [71]. It is
highly valued as an ideal cell carrier in bone tissue engineering owing to its exceptional
biocompatibility, capacity to mitigate immunogenic responses, and abundance of integrin
binding sites that facilitate cell adhesion. However, fibrin gels exhibit limited mechanical
strength and often necessitate combination with other components to form a composite
capable of maintaining specific mechanical properties [72].

Panebianco et al. [73] developed a genipin-crosslinked fibrin (FibGen) composite
integrated with microspheres, which effectively preserved stable mechanical properties.
This composite has shown promise in IVD repair by mechanisms such as apoptosis reversal
and promotion of ECM synthesis.

Silk fibroin (SF), which constitutes approximately 70% of silk and is composed of
18 amino acids, flaunts remarkable mechanical characteristics that outperform those of
other natural materials, with a tensile strength several times greater than Kevlar—a bench-
mark in the realm of high-performance fiber technology [74–76]. SF hydrogels exhibit
significantly improved mechanical properties, which is related to the β-folding structure
in the crystallization area of the protein. Due to its inherent mechanical stability, bio-
compatibility, biodegradability, and bioresorbability, SF has been widely utilized in tissue
engineering [77].

Bhunia et al. [78] developed self-assembled SF hydrogels using natural SF derived from
Bombyx mori (BM) and Antheraea assamensis (AA) without the need for external intervene.
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They observed that NP cells cultured on the surface of the SF hydrogels proliferated
normally, and NP cells encapsulated within the SF hydrogel survived for more than
seven days. These findings confirm that SF hydrogel possesses excellent cytocompatibility,
making it a promising candidate for IVDD therapy.
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5.2. Synthetic Hydrogels
5.2.1. PEG

Polyethylene glycol (PEG), a versatile synthetic polymer synthesized from polyethy-
lene oxide and water, enjoys widespread application due to its exceptional biocompatibility,
remarkable ability to retain water and diverse functionalities. Furthermore, it is notably
non-allergic, meaning it poses a minimal risk of triggering allergic responses in clinical
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settings [79]. Leveraging these properties, some studies have utilized PEG hydrogels
to develop hemostatic materials with high biocompatibility and excellent swelling rates,
making them effective for rapid hemostasis [80–82]. PEG itself has strong mechanical
properties, and its end groups can be modified by different reactions. Through these chemi-
cal crosslinking reactions, relatively strong hydrogel network structures can be obtained.
PEG hydrogels also demonstrate excellent biodegradability, breaking down into harmless
metabolites, which reduces the implant burden on the body [83]. The degradative charac-
teristics of PEG-based hydrogels can be meticulously regulated by fine-tuning parameters
like the length of the PEG chains, the concentration of crosslinking, and the attributes of
the copolymers involved. However, due to their biodegradability, PEG hydrogels, while ex-
hibiting some inherent instability, can have their durability significantly enhanced through
the strategic incorporation of supplementary crosslinking or innovative modifications,
thereby extending their functional longevity [84].

Huang et al. [85] introduced an innovative, rapidly forming injectable hydrogel
(CSMA-PEGDA-L) composed of chitosan and PEG, which is created through the photo-
crosslinking of methacrylate chitosan (CSMA) and a Schiff base reaction between CSMA
and aldehyde polyethylene glycol (PEGDA), achieved by substituting 4-formylbenzoic
acid for the hydroxyl group on the PEG chain. When applied to punctured IVDs in
rat tails, the CSMA-PEGDA-L hydrogel significantly decelerated the development of
IVDD by physically sealing the puncture sites, as evidenced by radiological and histo-
logical assessments (Figure 3a). Hossein et al. [86] developed a PEG hydrogel based on
4-arm poly(ethylene glycol)-b-poly(trimethylene carbonate)-acrylate (4a[PEG-b-PTMC-
Ac]), which was crosslinked with thiolated chondroitin sulfate through a Michael-type
reaction. These hydrogels have exhibited impressive resilience to cyclic compression
stress and have shown a controlled degradation profile over an in vitro period of 70 days.
The formulation of this in situ gelling hydrogel is highly promising, and with continued
optimization, it may emerge as a potent clinical intervention for the treatment of IVDD.

5.2.2. PVA

Polyvinyl alcohol (PVA), a pristine, stable, and non-toxic polymer that is readily
soluble in water, has a broad spectrum of applications spanning the realms of medical care,
culinary uses, and the chemistry of polymer materials. It is frequently employed in the
creation of wound dressings, materials with antibacterial properties, and as a substitute
material for implants, underscoring its versatility and utility in various fields [87,88]. The
formulation and preparation of PVA hydrogels can be modified to create microporous
structures with exceptional elasticity and compressibility. Moreover, PVA’s ability to bind
nucleic acids through its positively charged hydrogen atoms makes it an excellent candidate
for encapsulating mRNA [89].

Gao et al. [90] developed an injectable ROS-responsive hydrogel designed for the swift
encapsulation and targeted discharge of chemically crafted modified mRNA. This innovative
PVA-tsPBA hydrogel system encapsulates modRNA to inhibit ferroptosis in NP cells, presenting
a promising new strategy for patients with early-stage IVDD (Figure 3b). Zhou et al. [91] crafted
an innovative, multifunctional metal–phenolic network delivery system named TMP@Alg-
PBA/PVA, specifically tailored for the treatment of IL-1β-induced IVDD. This advanced plat-
form is designed to target mitochondria, effectively neutralizing ROS and mitigating the degra-
dation of ECM. Additionally, it curbs pyroptosis by dampening the IL-17/ERK signaling cascade.
In a rat model simulating IVDD, TMP@Alg-PBA/PVA has showcased remarkable therapeutic
efficacy, significantly curtailing the progression of the disease.

5.2.3. PAA

Polyacrylic acid (PAA) represents a category of anionic hydrogels endowed with
carboxyl groups. The intrinsic characteristics of these hydrogels, including their mechan-
ical strength, water absorption capacity, and porosity, can be meticulously tailored by
modulating the crosslinking density [92,93]. Due to the large number of carboxyl groups
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in the main chain, acrylic monomers can form hydrogels through covalent crosslinking
and physical crosslinking, which results in a stable structure [94]. As a prevalent pH-
responsive polymer, PAA frequently assumes the role of the hydrophilic component within
amphiphilic or amphipathic block copolymers, bestowing these materials with distinctive
attributes [95]. Owing to its minimal toxicity and high biodegradability, PAA has garnered
extensive application in the realms of antimicrobial agents, tissue engineering, and cancer
therapeutics [96].

Prudni kova K et al. [97] engineered an innovative biomimetic proteoglycan (BPG)
by covalently attaching natural CS brushes onto a synthetic PAA core. This process has
resulted in a three-dimensional structure that resembles the bottle-brush morphology
of natural proteoglycans. Upon injection into bovine NP tissue, the BPG is effectively
dispersed throughout the ECM and seamlessly integrates at the molecular level. This novel
biomaterial has demonstrated remarkable resilience, being capable of withstanding both
tensile and compressive forces (Figure 3c).
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5.2.4. PLA/PLGA

Poly(lactic acid) (PLA) and poly(lactic-coglycolic acid) (PLGA), which have non-toxic,
biodegradable properties, have been approved by the U.S. Food and Drug Administration
(FDA) for use in the pharmaceutical field, are classes of polymer carrier materials with
great potential [98–100]. PLA and PLGA have become staples in targeted drug delivery
systems, leveraging their distinctive biodegradability, affinity for adsorption, and excep-
tional biocompatibility. Compared with PLA, PLGA has obvious advantages in uniaxial
tensile properties, compressive properties, and three-point bending properties [101,102].
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Hydrogels containing PLA/PLGA are now widely applied in tissue engineering, with
PLGA-PEG-PLGA being particularly noteworthy. This block polyester polymer is synthesized
through ring-opening polymerization (ROP) using PLGA and PEG as initiators [103–105].
Chen et al. [106] developed an injectable, heat-sensitive PLGA-PEG-PLGA hydrogel loaded
with bevacizumab, a vascular endothelial growth factor (VEGF) inhibitor. Their study
demonstrated that inhibiting VEGF expression with bevacizumab decreased MMP3 ex-
pression and promoted COL II synthesis, thus improving disc degeneration. In addition,
Marshall et al. [107] have ingeniously modified PLA to develop a variant known as flexible
PLA (FPLA). Utilizing this material, they have crafted a viscoelastic scaffold with customizable
biomechanical properties, ideal for applications involving the entire spinal motion segment.
These FPLA scaffolds exhibit biocompatibility, fostering the survival of NP cells within hydro-
gel composites. This pioneering study reveals that FPLA scaffolds exhibit newly acquired
viscoelastic mechanical characteristics that closely mimic the native IVD motion segment
under both tensile and compressive loads. The results underscore the substantial promise of
FPLA as a mechanically robust and biocompatible material for IVD tissue engineering.

6. Microspheres

Microspheres, three-dimensional spherical structures ranging from 1 to 250 µm, fea-
ture crosslinked polymer networks at the nanometer scale. This architecture grants them
exceptional biocompatibility and allows for easy structural adjustments, including varia-
tions in stiffness, porosity, and composition. These properties, combined with their high
encapsulation efficiency for therapeutic agents such as drugs and cells, make microspheres
invaluable in various biomedical applications [108,109]. Through diverse fabrication tech-
niques, microspheres can be customized to meet specific needs, ensuring versatility in
their applications. Whether they are used for delivering biologics, aiding in tissue regen-
eration, or facilitating bio-lubrication, their injectability and multifunctional nature make
them promising tools for addressing clinical conditions. Based on the special structural
characteristics of microspheres, the particle size and crosslinking density of microspheres
have significant effects on the swelling behavior and mechanical properties of physically
crosslinked hydrogels [110]. Additionally, their stability and slow degradation profile en-
able the sustained release of active ingredients, accommodating a wide range of substances
from small hydrophobic drugs to large organic molecules and even cells [111,112].

Gelatin methacrylate anhydride (GelMA) has proven to be exceptionally biocompatible
and can be meticulously crafted into uniform hydrogel microspheres through the application
of microfluidic technology. The porous structure that emerges post-freeze-drying offers an
enhanced surface for the integration of nanoparticles, further augmenting its utility in various
applications [113]. Consequently, GelMA microspheres have gained significant attention for
injectable therapies targeting IVDD. Li et al. [114] employed microfluidic technology and
surface modification methods to successfully attach chitosan nanoparticles, which encapsulate
potent black phosphorus quantum dots (BPQDs), onto the surface of GelMA microspheres.
This groundbreaking strategy serves to alleviate extracellular acidosis in NP cells, disrupts the
inflammatory response, diminishes the expression of matrix metalloproteinases (MMPs), and
promotes the restructuring of ECM within IVDs. Similarly, Bian et al. [115] constructed an
injectable “peptide-cell-hydrogel” microsphere system composed of GelMA, APETx2, and NP
cells. This system effectively inhibits local inflammatory cytokine, thereby regulating the syn-
thesis of ECM (Figure 4). Zhou et al. [116] successfully developed a nanoparticle–microsphere
complex (GM@T-NNP cells) by integrating a biomimetic method and nano-drug delivery
strategy. This complex consists of neutrophil membrane-coated PLGA nanoparticles, TGF-β1,
and GelMA microspheres. GM@T-NNP cells were shown to reduce inflammation, restore IVD
structure, and significantly improve the biological function of NP cells in a rat model of IVDD.
In addition, Zheng et al. [117] heralded the development of a novel hydrogen ion-capturing
hydrogel microsphere, termed GMNP, which incorporates mineralized TGF-β and catalase
nanoparticles. This creation was achieved through a combination of biomimetic mineraliza-
tion processes and the precision of microfluidic technology. The GMNP has been shown
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to effectively neutralize the NLRP3 inflammatory cascade, a critical pathway in the aging
process characterized by chronic inflammation, thereby suppressing excessive activation of
inflammation in IVD. Chen et al. [118] crafted a sophisticated system of fibronectin-modified
GelMA microspheres, boasting an independently adjustable elastic modulus and ECM ligand
density, offering a high degree of customization for specific applications. This design allowed
for extensive cytoskeleton modulation, triggering specific signaling pathways, which presents
a promising approach for the endogenous regeneration of NP cells.

In another study, Chen et al. [119] developed circadian clock-regulating microspheres
(ClockMPs) made from PVA using air-microfluidic techniques and crosslinked with modi-
fied phenylboronic acid (PBA) linkers, which effectively activated the intrinsic circadian
clock of NP cells in IVDD, enhancing their physiological function and promoting disc regen-
eration. Chang et al. [120] designed methacrylated hyaluronic acid (HAMA) microspheres
using microfluidics, which exhibited excellent degradability, swellability, and injectability.
HAMA microspheres loaded with CircSTC2-silenced gene-encapsulated cationic liposomes
significantly promoted the synthesis of ECM-related proteins and inhibited the secretion
of ECM catabolism-related proteases in NP cells. In addition, Xu et al. [121] reported the
development of antagonist-functionalized injectable porous microspheres, which were
constructed from bovine serum albumin nanoparticles encapsulating recombinant human
soluble tumor necrosis factor receptor type II (rhsTNFRII) and microfluidic poly(L-lactic
acid) (PLLA) porous microspheres for in situ injection into NP cells. This approach aimed
to regulate the metabolic balance of the ECM, thereby inhibiting IVDD.
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7. Microneedles

Microneedles (MNs), with their micron-sized projections typically ranging from 100 to
1000 µm in length, provide a pathway for localized and minimally invasive drug delivery,
which effectively addresses issues such as anchoring the AF, localized drug release, and pre-
venting further exacerbation of IVDD [122,123]. MNs offer several advantages, including
painlessness, increased depth of delivery, and efficient, long-lasting drug administration.
The mechanical properties of MNs are affected by factors such as tip size, geometric shape,
and number of tip arrays. Currently, MNs are mostly used in skin tissue engineering and
rarely in IVD tissue engineering. Hydrogel-based MNs have garnered significant prefer-
ence in the realms of drug delivery systems, attributed to their straightforward fabrication
process and the flexibility in their structural design [124].

Meng et al. [125] developed high-strength smart polydopamine/GelMA MNs loaded
with diclofenac sodium, which can penetrate AF tissue through a localized, minimally
invasive method and achieve remote-controlled, accelerated drug release and hyperthermia
via near-infrared light. To enable MNs to penetrate and anchor on AF, the mechanical
strength of MNs was improved by cryogenic preservation methods. The composite MNs
were designed to address the inflammation, mitigating cellular damage while elevating
the intracellular concentration of cytoprotective heat shock proteins to bolster the cellular
defense mechanisms, thereby enhancing resilience against the adverse conditions of the
microenvironment (Figure 5). Hu et al. [126] reported a thread-structured microneedle (T-
MN) loaded with BMSCs-derived exosomes containing a mitophagy-regulating microRNA.
This T-MN offers an in situ anchorage at the AF defect site, serving as a barrier against
the leakage of NP cells and fostering the repair of AF. The T-MN firmly bonds with AF,
gradually releasing therapeutic engineered exosomes. It contributes to the prevention of
IVDD progression through a multifaceted approach: it restores mitophagy, stimulates the
proliferation and migration of AF cells, and curbs the pathological remodeling of ECM.
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8. Microfluidic Chips

Microfluidics, the manipulation of small fluid volumes, has evolved into a versatile
technology with increasingly complex chip designs [127]. Lab-on-a-chip technology, rooted
in microfluidic engineering, replicates physiological activities in vitro and holds promise
for developing new platforms for various disease studies [128,129].

Kim et al. [130] developed a bespoke electrical stimulation platform that is capable
of delivering low-constant-current stimulation (LCCS) signals to microfluidic chips. This
innovative setup facilitates the investigation of the impact of LCCS on IL-1β-induced
inflammatory responses in NP cells. The research revealed that LCCS applied at current
densities exerted a beneficial modulation on the morphological phenotype and kinetic
behavior of the inflamed human NP cells. These findings indicate that LCCS may hold
promise as a therapeutic intervention for degenerative conditions.

9. Electrospinning

Electrospinning, a prevalent method for crafting tissue engineering scaffolds, is adept
at generating continuous microfibers or nanofibers [131]. These fibers, endowed with a
high specific surface area, can significantly enhance tissue regeneration when impregnated
with therapeutic drugs or cytokines. Its porosity and pore sizes facilitate cell infiltration
and growth, making it advantageous for regenerating thicker tissues. The method provides
favorable conditions for cell adhesion and growth due to its suitable mechanical strength
and biocompatibility. The mechanical properties of electrospinning mainly depend on
the molecular chain arrangement, crystallinity, and the form of interfiber connection.
Additionally, various nanofiber structures can load additives, and aligned nanofibers can
be collected using rotators to orient specific biomimetic tissues [132,133].

Han et al. [134] utilized electrospinning to fabricate aligned core–shell nanofibrous
scaffolds, which were enriched with TGF-β3 and ibuprofen (IBU). The research findings
confirmed that the swift release of IBU ameliorated the inflammatory microenvironment,
while the sustained delivery of TGF-β3 facilitated the development of new ECM. This
multifunctional nanofibrous scaffold has shown considerable promise as a reparative
solution for IVD repair.

10. Electrospraying

Electrospraying, a technique leveraging electrostatic forces to fabricate nanoparticles,
overcomes the harsh conditions of traditional encapsulation techniques (such as pH and
temperature extremes) by generating solid particles in a one-step process without high tem-
peratures or toxic solvents [135,136]. Recent breakthroughs in electrospraying techniques
have facilitated the creation of particles with precise size specifications and uniform size
distributions, all at an accelerated pace of production [137].

Leopfe et al. [138] designed microparticles encapsulating epigallocatechin-3-gallate
(EGCG) using electrospraying of glutaraldehyde-crosslinked gelatin. This electrospray-
based encapsulation preserved EGCG activity and produced cytocompatible microparticles
capable of controlling EGCG release. The resulting microparticles showed the potential to
promote IVD health by downregulating local inflammation.

11. Three-Dimensional Bioprinting Carrier

Three-dimensional (3D) bioprinting is a cutting-edge technology that holds tremen-
dous promise and offers significant advantages for IVD repair [139]. As a tailored, adapt-
able, and exacting methodology, 3D bioprinting is capable of generating highly precise
biomimetic constructs that emulate the natural architecture and functionality of indigenous
tissues and organs. The mechanical attributes of these constructs can be further enhanced
by incorporating a variety of distinct material components. This technology allows for the
precise placement of a combination of biomaterials, cells, drugs, or cytokines [140,141].

Sun et al. [142] designed an IVD carrier incorporating polydopamine nanoparticles
loaded with connective tissue growth factor (CTGF) and TGF-β3, which were combined
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with BMSCs to regenerate NP and AF. In vitro experiments confirmed that the BMSCs
differentiated into NP-like cells and AF-like cells. In vivo studies have illustrated that the
reconstructed IVD displayed a zone-specific matrix, complete with matching histological
and immunological characteristics, underscoring the promising clinical applicability of the
dual-growth factor-releasing IVD scaffold, which was meticulously crafted through the
medium of 3D bioprinting. In addition, Yang et al. [143] developed a bioprinting technique
specifically for bacterial cellulose (BC) nanofibers, utilizing a high-throughput, finely opti-
mized micropattern screening microchip. The innovative process has yielded a complete
IVD model that includes a type II collagen-rich NP and a hierarchically organized, micro-
patterned AF based on BC, closely replicating the native IVD tissue structure. Experiments
in rats have confirmed the superior structural and functional integrity of the synthetic IVD,
which presents a groundbreaking strategy for the fabrication of highly biomimetic artificial
tissues, offering a significant advancement in the field.

12. Nanocarriers

Nanocarriers represent the smallest delivery systems, typically utilized for the trans-
port of small molecule drugs and genetic therapeutics [144]. From the vantage point of
surface chemistry, diminishing the dimensions of nanomaterials escalates the proportion of
atoms present on the surface and the incidence of lattice imperfections. This enhancement
markedly boosts their surface reactivity, thereby promoting the engagement of biophysical
and biochemical interactions at the bio–nano interface [145,146]. The exploitation of this
distinctive attribute paves the way for the development of functional nanomaterials, broad-
ening their utility across a spectrum of biomedical applications. Meanwhile, nanocarriers
are usually loaded into the target area by injection or by carrying other biological scaffolds.
Furthermore, nanocarriers often exhibit lower biological toxicity, minimizing unnecessary
tissue damage and improving the safety profile of therapeutic interventions [147].

12.1. Liposomes

Liposomes, the trailblazing nanoparticles that have been successfully integrated into
clinical practice, are spherical nanostructures encapsulated by lipid bilayers [148]. Re-
sembling cellular membranes, they are predominantly composed of phospholipids and
cholesterol. Characterized by a hydrophilic core and multiple hydrophobic regions en-
closed by lipid bilayers, liposomes possess the unique capability to encapsulate a diverse
array of substances, spanning hydrophobic to hydrophilic compounds [149,150].

In a study by Banala et al. [151], siRNAs targeting Caspase3 and ADAMTS5, genes
associated with the degradation of ECM, have been encapsulated within cationic liposomes.
These liposomal formulations not only bolster the stability of the siRNAs but also enhance
their cellular uptake when administered in vivo. The direct intradiscal injection of this
siRNA–liposomal complex effectively silenced the expression of Caspase3 and ADAMTS5,
resulting in diminished apoptosis and curtailment of ECM degradation. This method
underscores the promise of direct siRNA delivery to IVD as a noninvasive therapeutic
strategy for IVDD.

12.2. Nanomicelles

Nanomicelles, delivery systems formed by the spontaneous self-assembly of am-
phiphilic polymers in aqueous solutions, can be customized to feature a spectrum of
particle sizes and functionalities [152]. The micelle’s hydrophobic core serves as a reservoir
for hydrophobic chemotherapeutic drugs, enhancing their aqueous solubility. Simultane-
ously, the micelle’s hydrophilic shell forms a protective hydration layer that shields the
encapsulated agents. This protective layer minimizes protein adsorption and slows down
the clearance by the reticulo-endothelial system during circulation, effectively prolonging
the drug’s therapeutic half-life. Typically, nanomicelles are sized between 10 and 100
nanometers, with tight control over size distribution. The particle size can be finely tuned
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by modulating the lengths of both the hydrophilic and hydrophobic components of the
micelles [153,154].

Xia et al. [155] introduced a biomaterial pre-modification cell strategy using esterase-
responsive ibuprofen nanomicelles (PEG-PIB) to pre-modify nucleus pulposus progenitor
cells (NPPCs), which enhanced the adaptability of NPPCs in the harsh IVDD microenviron-
ment by inhibiting pyroptosis. In vitro studies demonstrated that PEG-PIB pre-modified
NPPCs effectively inhibited pyroptosis. Further synergistic transplantation of these modi-
fied cells resulted in functional recovery, histological regeneration, and continued inhibition
of pyroptosis during IVDD (Figure 6a). Yu et al. [156] developed a novel amphiphilic copoly-
mer, PEG-PAPO, which self-assembles into nanosized micelles capable of loading lipophilic
kartogenin (KGN) as a single complex (PAKM). This innovative complex enhanced the
viability of human ADSCs, activated autophagy (as indicated by P62 and LC3 II), main-
tained ECM-related transcription factors (such as SOX9), and preserved ECM components
(including Collagen II and Aggrecan) (Figure 6b).

12.3. Nanozymes

Nanozymes are nanomaterials that exhibit enzyme-like properties, often mimicking
superoxide dismutase, catalase, and peroxidase. Compared to natural enzymes, nanozymes
provide superior physicochemical stability, enduring performance, and reduced production
expenses, even under harsh environmental conditions [157]. The metal active sites within
nanozymes emulate the catalytic electron transfer reactions of natural enzymes, with their
catalytic potency being directly related to their size. Nanozymes that possess larger surface
areas and an increased number of accessible active sites generally display enhanced catalytic
activity, which allows for the precise modulation of their catalytic attributes by adjusting
the dimensions of the nanomaterials [158,159].

Wang et al. [160] constructed a core–shell structured nanozyme consisting of a Co-
doped NiO nanoparticle (CNO) core encapsulated with a polydopamine (PDA) shell. This
nanozyme aims to regulate the pathological environment of IVD, which also effectively
reduces intracellular ROS in NP cells to benign H2O and O2, thereby protecting NP cells
from stagnant proliferation, abnormal metabolism, and inflammation, ultimately restoring
ECM homeostasis (Figure 6c). Shi et al. [161] introduced a versatile greigite nanozyme
with dual capabilities: it liberates a generous amount of polysulfides and demonstrates
potent superoxide dismutase and catalase activities. These multifaceted functions are
instrumental in neutralizing ROS and in sustaining tissue at its physiological redox balance.
By substantially reducing ROS levels, the greigite nanozyme effectively restores impaired
mitochondrial function within IVDD models in both in vitro and in vivo settings, averts
the senescence of NP cells, and mitigates the inflammatory response.

12.4. Extracellular Vesicles

Extracellular vesicles (EVs), minuscule structures enveloped by membranes and laden
with an array of biologically active molecules—including proteins, nucleic acids, and
lipids—are increasingly acknowledged for their pivotal roles in a spectrum of biological
phenomena. These include facilitating intercellular communication, modulating inflam-
mation, guiding cell differentiation, and driving tissue repair [162,163]. EVs are typically
categorized into exosomes and microvesicles based on their size and origin. Exosomes,
with diameters spanning 30 to 150 nanometers, are generated by the body’s intrinsic
multivesicular system, whereas microvesicles, measuring between 100 nanometers and
1 micrometer in diameter, emerge from the direct budding of cell membranes. Given their
fundamental function in cellular dialogue and regulatory processes, extracellular vesicles
(EVs) have captured considerable interest in the realms of biomedical research and clinical
applications [164,165].

Liao et al. [166] developed engineered EVs by modifying caveolae-associated protein 2
(Cavin-2) through gene editing of parental mesenchymal stem cells (MSCs). These modified
EVs demonstrated an improved uptake rate in TNF-α-treated NP cells, effectively prevent-



Pharmaceutics 2024, 16, 979 16 of 24

ing cell death by protecting against pyroptosis and slowing the progression of IVDD in
an ex vivo organ culture model. Liu et al. [167] created GLRX3+ MSC-derived EVs (EVs-
GLRX3) using a hypoxic preconditioning method, which enhanced cellular antioxidant
defense, thereby preventing ROS accumulation and the expansion of the senescence cascade
in vitro. EVs-GLRX3-loaded carriers mitigated mitochondrial damage, alleviated NP cell
senescence, and restored ECM deposition by modulating redox homeostasis (Figure 6d). In
addition, due to mechanically responsive miR-1249 is identified via miRNA sequencing to
be down-regulated in compression-induced IDD of rats, Guo et al. [168] identified mechan-
ically responsive miR-1249 as being down-regulated in compression-induced IVDD in rats
through miRNA sequencing. They developed extracellular vesicle–mimetic nanovesicles by
extruding NP cells to create a miRNA therapeutic system integrated with miR-1249 mimics
(NV-mimics). In vivo studies demonstrated that local injection of NV-mimics effectively
alleviated the progression of compression-induced IVDD, preserving the water content
and height of the discs, conserving NP tissues, and improving the metabolic balance of
the ECM.
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cell strategy using esterase-responsive ibuprofen nanomicelles [155]. Reproduced with permission
from Copyright 2023 Elsevier. (b) Injectable kartogenin and apocynin-loaded nanomicelles [156].
Reproduced with permission from Copyright 2021 Elsevier. (c) Nanozyme consisting of a Co-doped
NiO nanoparticle (CNO) core encapsulated with a polydopamine (PDA) shell [160]. Reproduced with
permission from Copyright 2024 American Chemical Society. (d) A redox homeostasis modulatory
hydrogel with GLRX3+ extracellular vesicles [167]. (A) The GDC@EVs-GLRX3 hydrogel system was
synthesized from GelDA, Borax-ACS, and EVs-GLRX3. (B) The GDC@EVs-GLRX3 hydrogel system
attenuated mitochondrial damage, decreased local senescence state, and restored matrix deposition
of NP cells via ROS microenvironment mitigation. Reproduced with permission from Copyright 2023
American Chemical Society.
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13. Others

In addition to the above common nanocarriers, various other biomaterials are used
for IVD repair. Sun et al. [169] developed carbonized Mn-containing nanodots (MCDs), a
class of ROS-scavenging catalytic biomaterials designed to mitigate pyroptosis in NP cells,
thus significantly easing the symptoms of IVDD, which showcased superior performance
in neutralizing intracellular ROS and reestablishing equilibrium within the NP microen-
vironment, outperforming traditional antioxidants like N-acetylcysteine. Yu et al. [170]
designed an isoginkgetin-loaded, ROS-responsive delivery system based on diselenide
block copolymers. This controlled-release system not only efficiently scavenged ROS in
IVD but also enhanced autophagy in NP cells, thereby inhibiting ECM degradation and
cell apoptosis, which showed significant therapeutic effects in a rat model of IVDD. In
addition, Wang et al. [171] developed a novel approach using low-dose celecoxib-loaded
polycaprolactone (PCL) nanofibers to reverse IVDD, which maintained prostaglandin E2
(PGE2) at physiological levels and promoted the expression of chondroitin sulfate synthase
3 (CHSY3), offering a new strategy for the treatment of IVDD.

14. Conclusions

At present, the incidence of LBP remains high, with complex etiology often related to
IVDD. IVDD leads to reduced disc height and inadequate support, along with inflamma-
tion and ROS accumulation in NP. Suitable biomaterials can provide mechanical support
for IVDD while guiding the regeneration of NP tissue. Additionally, these materials can
carry cells, drugs, or cytokines to further promote IVD recovery. By summarizing pre-
vious preclinical studies, we discuss various biomaterials, including natural hydrogels
(e.g., hyaluronic acid, chitosan, collagen/gelatin, alginate, silk fibroin), synthetic hydro-
gels (e.g., PEG, PVA, PAA, PLA/PLGA), microspheres, microneedles, microfluidic chips,
electrospinning, electrospraying, three-dimensional bioprinting carriers, and nanocarri-
ers (e.g., liposomes, nanomicelles, nanozymes, extracellular vesicles) in terms of their
physicochemical properties and IVD repair abilities. Numerous studies have demonstrated
that biocompatibility, biodegradability, biological efficacy, and the ability to maintain me-
chanical properties are essential for IVDD repair biomaterials. Using a single material
(especially natural hydrogels) to repair IVD often lacks sufficient mechanical support to
maintain the overall spinal structure, making it difficult to realize subsequent biological
functions. Forming a crosslinked network with synthetic hydrogels is currently a hot topic
in applications. These materials, which aim to reverse the fate of IVDs, are expected to
address the limitations of current conservative and surgical treatments for IVDD, improve
patients’ quality of life, and ultimately lead to fundamental changes in IVDD treatment.

15. Limitation

While the aforementioned therapies show promise, they are still far from clinical
application. Several potential directions for IVDD biomaterials need to be explored. Firstly,
current research is primarily in the cell and animal experiment stages, with the majority
of studies using the SD rat coccygeal vertebra acupuncture model for IVDD. Only a few
studies have used other animal models, such as New Zealand rabbits, beagles, and goats,
indicating a significant gap before these findings can be translated into clinical practice.
Secondly, accurately delivering biomaterials into the IVD remains a critical challenge.
Injectable hydrogels are commonly used, but their injection can damage the integrity of
the AF, potentially exacerbating IVDD. The injectability of hydrogels often conflicts with
mechanical properties; that is, materials that provide robust support are difficult to inject
into the lesion site. Simultaneously, achieving precise injection of the appropriate amount
of hydrogel into the confined space of the rat tail vertebrae poses a significant challenge.
Although photocurable hydrogels are widely used in tissue engineering, their properties
also conflict with the requirements for injectability. Spinal channel surgery on experimental
animals might offer a solution to this issue. Lastly, most IVDD patients primarily complain
of LBP, making pain relief a major concern. The role of IVD repair materials in addressing
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discogenic pain is gaining attention, but research in this area is still limited. Challenges
include establishing reliable animal models and setting appropriate evaluation criteria,
both of which are crucial for future clinical applications.
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