Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Review and External Validation of Literature Models
2.3. Population Pharmacokinetic Analysis
2.4. Rescue Therapy Guidance
3. Results
3.1. Study Population
3.2. Review and External Validation of Literature Models
3.3. Population Pharmacokinetic Analysis
3.4. Rescue Therapy Guidance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kansara, M.; Teng, M.W.; Smyth, M.J.; Thomas, D.M. Translational Biology of Osteosarcoma. Nat. Rev. Cancer 2014, 14, 722–735. [Google Scholar] [CrossRef]
- Anninga, J.K.; Gelderblom, H.; Fiocco, M.; Kroep, J.R.; Taminiau, A.H.M.; Hogendoorn, P.C.W.; Egeler, R.M. Chemotherapeutic Adjuvant Treatment for Osteosarcoma: Where Do We Stand? Eur. J. Cancer 2011, 47, 2431–2445. [Google Scholar] [CrossRef] [PubMed]
- Rosen, G.; Marcove, R.C.; Caparros, B.; Nirenberg, A.; Kosloff, C.; Huvos, A.G. Primary Osteogenic Sarcoma. The Rationale for Preoperative Chemotherapy and Delayed Surgery. Cancer 1979, 43, 2163–2177. [Google Scholar] [CrossRef]
- Mailankody, S.; Kumar, V.S.; Khan, S.A.; Banavali, S.D.; Bajpai, J. Resource-appropriate selection of osteosarcoma treatment protocols in low- and middle-income countries. Pediatr. Blood Cancer 2022, 69, e29540. [Google Scholar] [CrossRef] [PubMed]
- Petrilli, A.S.; De Camargo, B.; Filho, V.O.; Bruniera, P.; Brunetto, A.L.; Jesus-Garcia, R.; Camargo, O.P.; Pena, W.; Péricles, P.; Davi, A.; et al. Results of the Brazilian Osteosarcoma Treatment Group Studies III and IV: Prognostic Factors and Impact on Survival. J. Clin. Oncol. 2006, 24, 1161–1168. [Google Scholar] [CrossRef]
- Senerchia, A.A.; Macedo, C.R.; Ferman, S.; Scopinaro, M.; Cacciavillano, W.; Boldrini, E.; Lins de Moraes, V.L.; Rey, G.; de Oliveira, C.T.; Castillo, L.; et al. Results of a Randomized, Prospective Clinical Trial Evaluating Metronomic Chemotherapy in Nonmetastatic Patients with High-Grade, Operable Osteosarcomas of the Extremities: A Report from the Latin American Group of Osteosarcoma Treatment. Cancer 2017, 123, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Dombrowsky, E.; Jayaraman, B.; Narayan, M.; Barrett, J.S. Evaluating Performance of a Decision Support System to Improve Methotrexate Pharmacotherapy in Children and Young Adults with Cancer. Ther. Drug Monit. 2011, 33, 99–107. [Google Scholar] [CrossRef]
- Crews, K.R.; Liu, T.; Rodriguez-Galindo, C.; Tan, M.; Meyer, W.H.; Panetta, J.C.; Link, M.P.; Daw, N.C. High-Dose Methotrexate Pharmacokinetics and Outcome of Children and Young Adults with Osteosarcoma. Cancer 2004, 100, 1724–1733. [Google Scholar] [CrossRef]
- Bacci, G.; Ferrari, S.; Delepine, N.; Bertoni, F.; Picci, P.; Mercuri, M.; Bacchini, P.; Brach Del Prever, A.; Tienghi, A.; Comandone, A.; et al. Predictive Factors of Histologic Response to Primary Chemotherapy in Osteosarcoma of the Extremity: Study of 272 Patients Preoperatively Treated with High-Dose Methotrexate, Doxorubicin, and Cisplatin. J. Clin. Oncol. 1998, 16, 658–663. [Google Scholar] [CrossRef]
- Comandone, A.; Passera, R.; Boglione, A.; Tagini, V.; Ferrari, S.; Cattel, L. High Dose Methotrexate in Adult Patients with Osteosarcoma: Clinical and Pharmacokinetic Results. Acta Oncol. 2005, 44, 406–411. [Google Scholar] [CrossRef]
- De Jonge, M.E.; Huitema, A.D.R.; Schellens, J.H.M.; Rodenhuis, S. Individualised Cancer Chemotherapy: Strategies and Performance of Prospective Studies on Therapeutic Drug Monitoring with A Review. Clin. Pharmacokinet. 2005, 44, 147–173. [Google Scholar] [CrossRef]
- Aquerreta, I.; Aldaz, A.; Giráldez, J.; Sierrasesúmaga, L. Methotrexate Pharmacokinetics and Survival in Osteosarcoma. Pediatr. Blood Cancer 2004, 42, 52–58. [Google Scholar] [CrossRef] [PubMed]
- Corral Alaejos, Á.; Zarzuelo Castañeda, A.; Jiménez Cabrera, S.; Sánchez-Guijo, F.; Otero, M.J.; Pérez-Blanco, J.S. External evaluation of population pharmacokinetic models of imatinib in adults diagnosed with chronic myeloid leukaemia. Br. J. Clin. Pharmacol. 2022, 88, 1913–1924. [Google Scholar] [CrossRef]
- Colom, H.; Farré, R.; Soy, D.; Peraire, C.; Cendros, J.M.; Pardo, N.; Torrent, M.; Domenech, J.; Mangues, M.A. Population Pharmacokinetics of High-Dose Methotrexate after Intravenous Administration in Pediatric Patients with Osteosarcoma. Ther. Drug Monit. 2009, 31, 76–85. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Nakamura, T.; Aomori, T.; Nishiba, H.; Shinozaki, T.; Yanagawa, T.; Takagishi, K.; Watanabe, H.; Okada, Y.; Nakamura, K.; et al. Pharmacokinetic Individualization of High-Dose Methotrexate Chemotherapy for the Treatment of Localized Osteosarcoma. J. Chemother. 2010, 22, 186–190. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Tian, X.H.; Zhao, H.T.; Lu, W.; Zhen, J.; Niu, X.H. Population Pharmacokinetics of High-dose Methotrexate after Intravenous Administration in Chinese Osteosarcoma Patients from a Single Institution. Chin. Med. J. 2015, 128, 111–118. [Google Scholar] [CrossRef]
- Ho Hui, K.; Man Chu, H.; Shan Fong, P.; Tsoi Frankie Cheng, W.; Ning Lam, T.; Floor, T.; Kwee-, L. Population Pharmacokinetic Study and Individual Dose Adjustments of High-Dose Methotrexate in Chinese Pediatric Patients With Acute Lymphoblastic Leukemia or Osteosarcoma. Pharmacomet. J. Clin. Pharmacol. 2019, 59, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Henz, P.D.O.; Pinhatti, A.V.; Gregianin, L.J.; Martins, M.; Curra, M.; de Araújo, B.V.; Dalla Costa, T. Population Pharmacokinetic Model of Methotrexate in Brazilian Pediatric Patients with Acute Lymphoblastic Leukemia. Pharm. Res. 2023. [Google Scholar] [CrossRef]
- National Cancer Institute. NCCR*Explorer: An Interactive Website for NCCR Cancer Statis-Tics. National Cancer Institute: Bethesda, MD, USA. Available online: https://nccrexplorer.ccdi.cancer.gov/ (accessed on 15 December 2023).
- Ottaviani, G.; Jaffe, N. The epidemiology of osteosarcoma. Cancer Treat. Res. 2009, 152, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Hendel, J.; Nyfors, A. Nonlinear renal elimination kinetics of methotrexate due to saturation of renal tubular reabsorption. Eur. J. Clin. Pharmacol. 1984, 26, 121–124. [Google Scholar] [CrossRef]
- Wählby, U.; Thomson, A.H.; Milligan, P.A.; Karlsson, M.O. Models for Time-Varying Covariates in Population Pharmacokinetic-Pharmacodynamic Analysis. Br. J. Clin. Pharmacol. 2004, 58, 367–377. [Google Scholar] [CrossRef] [PubMed]
- Rousseau, A.; Sabot, C.; Delepine, N.; Delepine, G.; Debord, J.; Lachâtre, G.; Marquet, P. Bayesian Estimation of Methotrexate Pharmacokinetic Parameters and Area under the Curve in Children and Young Adults with Localised Osteosarcoma. Clin. Pharmacokinet. 2002, 41, 1095–1104. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence Guidance. Think Kidneys. UK Renal Registry. Available online: https://www.thinkkidneys.nhs.uk/aki/wp-content/uploads/sites/2/2016/05/Guidance-for-paediatric-patients-FINAL-1017.pdf (accessed on 26 March 2024).
- Haycock, G.B.; Schwartz, G.J.; Wisotsky, D.H. Geometric method for measuring body surface area: A height-weight formula validated in infants, children, and adults. J. Pediatr. 1978, 93, 62–66. [Google Scholar] [CrossRef]
- Gadzik, J. “How much should I weigh?”—Quetelet’s equation, upper weight limits, and BMI prime. Conn. Med. 2006, 70, 81–88. [Google Scholar] [PubMed]
- Schwartz, G.J.; Muñoz, A.; Schneider, M.F.; Mak, R.H.; Kaskel, F.; Warady, B.A.; Furth, S.L. New equations to estimate GFR in children with CKD. J. Am. Soc. Nephrol. 2009, 20, 629–637. [Google Scholar] [CrossRef]
- Lui, G.; Treluyer, J.M.; Fresneau, B.; Piperno-Neumann, S.; Gaspar, N.; Corradini, N.; Gentet, J.C.; Marec Berard, P.; Laurence, V.; Schneider, P.; et al. Sarcoma Group of UNICANCER. A Pharmacokinetic and Pharmacogenetic Analysis of Osteosarcoma Patients Treated with High-Dose Methotrexate: Data from the OS2006/Sarcoma-09 Trial. J. Clin. Pharmacol. 2018, 58, 1541–1549. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Q.; Zheng, T.T.; Zhen, J.C.; Niu, X.H. Delayed High-Dose Methotrexate Excretion and Influencing Factors in Osteosarcoma Patients. Chin. Med. J. 2016, 129, 2530. [Google Scholar] [CrossRef]
- Dupuis, C.; Mercier, C.; Yang, C.; Monjanel-Mouterde, S.; Ciccolini, J.; Fanciullino, R.; Pourroy, B.; Deville, J.-L.; Duffaud, F.; Bagarry-Liegey, D.; et al. High-dose methotrexate in adults with osteosarcoma: A population pharmacokinetics study and validation of a new limited sampling strategy. Anti-Cancer Drugs 2008, 19, 267–273. [Google Scholar] [CrossRef]
- Wippel, B.; Gundle, K.R.; Dang, T.; Paxton, J.; Bubalo, J.; Stork, L.; Fu, R.; Ryan, C.W.; Davis, L.E. Safety and Efficacy of High-Dose Methotrexate for Osteosarcoma in Adolescents Compared with Young Adults. Cancer Med. 2019, 8, 111–116. [Google Scholar] [CrossRef]
- Nader, A.; Zahran, N.; Alshammaa, A.; Altaweel, H. Population Pharmacokinetics of Intravenous Methotrexate in Patients with Hematological Malignancies: Utilization of Routine Clinical Monitoring Parameters. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Simon, N.; Marsot, A.; Villard, E.; Choquet, S.; Khe, H.X.; Zahr, N.; Lechat, P.; Leblond, V.; Hulot, J.S. Impact of ABCC2 Polymorphisms on High-Dose Methotrexate Pharmacokinetics in Patients with Lymphoid Malignancy. Pharmacogenomics J. 2012, 13, 507–513. [Google Scholar] [CrossRef]
- Bedoui, Y.; Guillot, X.; Sélambarom, J.; Guiraud, P.; Giry, C.; Jaffar-Bandjee, M.C.; Ralandison, S.; Gasque, P. Methotrexate an Old Drug with New Tricks. Int. J. Mol. Sci. 2019, 20, 5023. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on Pharmacokinetics in Risk Assessment. Drinking Water and Health, Volume 8: Pharmacokinetics in Risk Assessment. In Methotrexate: Pharmacokinetics and Assessment of Toxicity; National Academies Press: Washington, DC, USA, 1987. Available online: https://www.ncbi.nlm.nih.gov/books/NBK218077/ (accessed on 13 January 2024).
- Yamashita, S.; Katsumi, H.; Sakane, T.; Yamamoto, A. Bone-targeting dendrimer for the delivery of methotrexate and treatment of bone metastasis. J. Drug Target. 2018, 26, 818–828. [Google Scholar] [CrossRef]
- Sand, T.E.; Jacobsen, S. Effect of urine pH and flow on renal clearance of methotrexate. Eur. J. Clin. Pharmacol. 1981, 19, 453–456. [Google Scholar] [CrossRef]
- Lin, F.; Juan, Y.; Zheng, S.; Shen, Z.; Tang, L. Relationship of Serum Methotrexate Concentration in High-Dose Methotrexate Chemotherapy to Prognosis and Tolerability: A Prospective Cohort Study in Chinese Adults With Osteosarcoma. Curr. Ther. Res. 2009, 70, 150–160. [Google Scholar] [CrossRef]
- Schulte, R.R.; Choi, L.; Utreja, N.; Van Driest, S.L.; Stein, C.M.; Ho, R.H. Effect of SLCO1B1 Polymorphisms on High-Dose Methotrexate Clearance in Children and Young Adults With Leukemia and Lymphoblastic Lymphoma. Clin. Transl. Sci. 2020, 14, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Medellin-Garibay, S.E.; Hernández-Villa, N.; Correa-González, L.C.; Morales-Barragán, M.N.; Valero-Rivera, K.P.; Reséndiz-Galván, J.E.; Ortiz-Zamudio, J.J.; Milán-Segovia, R.d.C.; Romano-Moreno, S. Population pharmacokinetics of methotrexate in Mexican pediatric patients with acute lymphoblastic leukemia. Cancer Chemother. Pharmacol. 2020, 85, 21–31. [Google Scholar] [CrossRef] [PubMed]
MTX Level | Target MTX Levels to Avoid Toxicity | Moderate MTX Toxicity | Severe MTX Toxicity | ||
---|---|---|---|---|---|
C24 h | <10 μM (4.5 mg/L) | 10–50 μM (4.5–22.7 mg/L) | >50 μM (22.7 mg/L) | ||
C48 h | <2 μM (0.9 mg/L) | 2–5 μM (0.9–2.3 mg/L) | >5 μM (2.3 mg/L) | ||
C72 h | <0.3 μM (0.1 mg/L) | 0.3–1 μM (0.1–0.5 mg/L) | >1 μM (0.5 mg/L) | ||
LCV | first 24 h | 15 mg i.v. bolus | 30 mg i.v. bolus | 150 mg i.v. q3 h (until 1 μM) | |
after 24 h | 15 mg v.o. q6 h | 30 mg v.o. q6 h | 15 mg i.v. q3 h |
Demographic Data | Unit | Value |
---|---|---|
Number of patients | 32 | |
Race | ||
White | % | 78.1 |
Black | % | 18.8 |
Other | % | 3.1 |
Sex | M/F | 18/14 |
Age (years) | Median (Range) | 13.25 (5–18) |
Weight (kg) | Median (Range) | 47 (13.80–85.50) |
Height (cm) | Median (Range) | 159 (115–177) |
Body surface area a (m2) | Median (Range) | 1.45 (0.67–2.03) |
Body mass index b (kg/m2) | Median (Range) | 18.11 (10.43–28.56) |
Treatment | ||
Dose (g/m2) | Median (Range) | 11.9 (5.9–12.9) |
Total of cycles | 216 | |
Cycles pre-tumor ressection | 96 | |
Cycles post-tumor ressection | 120 | |
Total number of MTX concentrations | 563 | |
MTX concentrations/cycle | Median (Range) | 3 (2–6) |
Clinical data | ||
SCr (mg/dL) | Median (Range) | 0.58 (0.17–3.2) |
CrCL c (mL/min/1.73 m2) | Median (Range) | 190.28 (37.41–372.05) |
BUN (mg/dL) | Median (Range) | 17 (4–87) |
AST (U/L) | Median (Range) | 34 (8–1052) |
ALT (U/L) | Median (Range) | 47 (6–1052) |
Urinary pH value | Median (Range) | 7.5 (7–9) |
Hematocrit (%) | Median (Range) | 28.9 (10–52.20) |
Hemoglobin (g/dL) | Median (Range) | 9.6 (3.28–13.2) |
Parameter | Unit | Estimate | R.S.E (%) | Bootstrap Medians * (95% CI) | |
---|---|---|---|---|---|
Clearance (CL) | TVCL | L/h | 14.8 | 19 | 14.4 (10.7–19.3) |
ωBSV | % | 19.8 | 16 | 20.2 (14.1–27.5) | |
ωBOV | % | 15.1 | 6 | 14.8 (12.8–16.9) | |
θSCr | −0.192 | 31 | −0.201 (−0.32–−0.08) | ||
Central Volume (Vc) | TVVC | L | 82.5 | 23 | 79.9 (54.5–115.9) |
ωBSV | % | 13.5 | 29 | 15.3 (7.6–25.1) | |
θBSA | 0.301 | 36 | 0.298 (0.025–0.481) | ||
Correlation CL–Vc | % | 94 | |||
Peripheral Volume (Vp) | TVVP | L | 5.72 | 35 | 5.42 (3.1–10.5) |
Inter-compartmental Clearance (Q) | TVQ | L/h | 0.178 | 31 | 0.171 (0.106–0.285) |
Residual Variability | |||||
Proporcional Error | % | 30.9 | 4 | 30.3 (27.5–33.1) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivo, L.B.; de Oliveira Henz, P.; Wermann, S.; Dias, B.B.; Porto, G.O.; Pinhatti, A.V.; Martins, M.D.; Gregianin, L.J.; Costa, T.D.; de Araújo, B.V. Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model. Pharmaceutics 2024, 16, 1180. https://doi.org/10.3390/pharmaceutics16091180
Olivo LB, de Oliveira Henz P, Wermann S, Dias BB, Porto GO, Pinhatti AV, Martins MD, Gregianin LJ, Costa TD, de Araújo BV. Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model. Pharmaceutics. 2024; 16(9):1180. https://doi.org/10.3390/pharmaceutics16091180
Chicago/Turabian StyleOlivo, Laura Ben, Pricilla de Oliveira Henz, Sophia Wermann, Bruna Bernar Dias, Gabriel Osorio Porto, Amanda Valle Pinhatti, Manoela Domingues Martins, Lauro José Gregianin, Teresa Dalla Costa, and Bibiana Verlindo de Araújo. 2024. "Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model" Pharmaceutics 16, no. 9: 1180. https://doi.org/10.3390/pharmaceutics16091180
APA StyleOlivo, L. B., de Oliveira Henz, P., Wermann, S., Dias, B. B., Porto, G. O., Pinhatti, A. V., Martins, M. D., Gregianin, L. J., Costa, T. D., & de Araújo, B. V. (2024). Anticipating Leucovorin Rescue Therapy in Patients with Osteosarcoma through Methotrexate Population Pharmacokinetic Model. Pharmaceutics, 16(9), 1180. https://doi.org/10.3390/pharmaceutics16091180